Datasets:
Tasks:
Summarization
Sub-tasks:
news-articles-summarization
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
| # coding=utf-8 | |
| # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Lint as: python3 | |
| """Multi-News dataset.""" | |
| import datasets | |
| _HOMEPAGE = "https://github.com/Alex-Fabbri/Multi-News" | |
| _LICENSE = "For non-commercial research and educational purposes only" | |
| _CITATION = """ | |
| @misc{alex2019multinews, | |
| title={Multi-News: a Large-Scale Multi-Document Summarization Dataset and Abstractive Hierarchical Model}, | |
| author={Alexander R. Fabbri and Irene Li and Tianwei She and Suyi Li and Dragomir R. Radev}, | |
| year={2019}, | |
| eprint={1906.01749}, | |
| archivePrefix={arXiv}, | |
| primaryClass={cs.CL} | |
| } | |
| """ | |
| _DESCRIPTION = """ | |
| Multi-News, consists of news articles and human-written summaries | |
| of these articles from the site newser.com. | |
| Each summary is professionally written by editors and | |
| includes links to the original articles cited. | |
| There are two features: | |
| - document: text of news articles seperated by special token "|||||". | |
| - summary: news summary. | |
| """ | |
| _REPO = "https://huggingface.co/datasets/multi_news/resolve/main/data" | |
| _URLs = { | |
| "train": [ | |
| f"{_REPO}/train.src.cleaned", | |
| f"{_REPO}/train.tgt", | |
| ], | |
| "val": [ | |
| f"{_REPO}/val.src.cleaned", | |
| f"{_REPO}/val.tgt", | |
| ], | |
| "test": [ | |
| f"{_REPO}/test.src.cleaned", | |
| f"{_REPO}/test.tgt", | |
| ], | |
| } | |
| _DOCUMENT = "document" | |
| _SUMMARY = "summary" | |
| class MultiNews(datasets.GeneratorBasedBuilder): | |
| """Multi-News dataset.""" | |
| VERSION = datasets.Version("1.0.0") | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features({_DOCUMENT: datasets.Value("string"), _SUMMARY: datasets.Value("string")}), | |
| supervised_keys=(_DOCUMENT, _SUMMARY), | |
| homepage=_HOMEPAGE, | |
| license=_LICENSE, | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| files = dl_manager.download(_URLs) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| gen_kwargs={"src_file": files["train"][0], "tgt_file": files["train"][1]}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| gen_kwargs={"src_file": files["val"][0], "tgt_file": files["val"][1]}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| gen_kwargs={"src_file": files["test"][0], "tgt_file": files["test"][1]}, | |
| ), | |
| ] | |
| def _generate_examples(self, src_file, tgt_file): | |
| """Yields examples.""" | |
| with open(src_file, encoding="utf-8") as src_f, open(tgt_file, encoding="utf-8") as tgt_f: | |
| for i, (src_line, tgt_line) in enumerate(zip(src_f, tgt_f)): | |
| yield i, { | |
| # In original file, each line has one example and natural newline | |
| # tokens "\n" are being replaced with "NEWLINE_CHAR". Here restore | |
| # the natural newline token to avoid special vocab "NEWLINE_CHAR". | |
| _DOCUMENT: src_line.strip().replace("NEWLINE_CHAR", "\n"), | |
| _SUMMARY: tgt_line.strip(), | |
| } | |