Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- infer_4_33_0/lib/libpython3.10.so +3 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/__pycache__/_tensor_docs.cpython-310.pyc +3 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_custom_op/__pycache__/__init__.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_custom_op/__pycache__/autograd.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_custom_op/__pycache__/functional.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_custom_op/__pycache__/impl.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_custom_op/functional.py +188 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_custom_op/impl.py +670 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_library/__init__.py +6 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_library/autograd.py +241 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_library/custom_ops.py +835 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_library/fake_impl.py +207 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_library/simple_registry.py +85 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_library/triton.py +233 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_library/utils.py +318 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_logging/__init__.py +17 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_logging/__pycache__/_internal.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_logging/__pycache__/_registrations.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_logging/__pycache__/scribe.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_logging/__pycache__/structured.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_logging/_internal.py +1162 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_logging/_registrations.py +192 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_logging/structured.py +57 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/__init__.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_binary_ufuncs_impl.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_casting_dicts.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_dtypes.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_dtypes_impl.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_funcs.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_funcs_impl.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_getlimits.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_ndarray.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_normalizations.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_reductions_impl.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_ufuncs.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_unary_ufuncs_impl.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_util.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/fft.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/linalg.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/random.cpython-310.pyc +0 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/_binary_ufuncs_impl.py +85 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/_casting_dicts.py +1368 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/_dtypes.py +453 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/_dtypes_impl.py +217 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/_funcs.py +76 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/_funcs_impl.py +2056 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/_ndarray.py +592 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/_normalizations.py +259 -0
- infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/_reductions_impl.py +459 -0
.gitattributes
CHANGED
|
@@ -1541,3 +1541,5 @@ infer_4_47_1/lib/python3.10/site-packages/mpl_toolkits/mplot3d/__pycache__/axes3
|
|
| 1541 |
evalkit_tf446/lib/python3.10/site-packages/cusparselt/lib/libcusparseLt.so.0 filter=lfs diff=lfs merge=lfs -text
|
| 1542 |
infer_4_47_1/lib/python3.10/site-packages/torch/_dynamo/__pycache__/trace_rules.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 1543 |
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/engine.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 1541 |
evalkit_tf446/lib/python3.10/site-packages/cusparselt/lib/libcusparseLt.so.0 filter=lfs diff=lfs merge=lfs -text
|
| 1542 |
infer_4_47_1/lib/python3.10/site-packages/torch/_dynamo/__pycache__/trace_rules.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 1543 |
evalkit_cambrian/lib/python3.10/site-packages/deepspeed/runtime/__pycache__/engine.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
| 1544 |
+
infer_4_33_0/lib/libpython3.10.so filter=lfs diff=lfs merge=lfs -text
|
| 1545 |
+
infer_4_47_1/lib/python3.10/site-packages/torch/__pycache__/_tensor_docs.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
|
infer_4_33_0/lib/libpython3.10.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:52417985e9a3a806afba85d5b82d2db467dda5522096df98aede1a754dd32d70
|
| 3 |
+
size 17434008
|
infer_4_47_1/lib/python3.10/site-packages/torch/__pycache__/_tensor_docs.cpython-310.pyc
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f9fd63246772250f7e6e893a567be9621c38d09916352a8e89b995c17446b069
|
| 3 |
+
size 134921
|
infer_4_47_1/lib/python3.10/site-packages/torch/_custom_op/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (174 Bytes). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_custom_op/__pycache__/autograd.cpython-310.pyc
ADDED
|
Binary file (8.88 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_custom_op/__pycache__/functional.cpython-310.pyc
ADDED
|
Binary file (5.96 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_custom_op/__pycache__/impl.cpython-310.pyc
ADDED
|
Binary file (21 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_custom_op/functional.py
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
import weakref
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.utils._pytree as pytree
|
| 6 |
+
from torch._C import _ExcludeDispatchKeyGuard, DispatchKey, DispatchKeySet
|
| 7 |
+
from torch._ops import OpOverload
|
| 8 |
+
from torch.library import Library
|
| 9 |
+
from torchgen.model import (
|
| 10 |
+
BaseTy,
|
| 11 |
+
BaseType,
|
| 12 |
+
FunctionSchema,
|
| 13 |
+
OperatorName,
|
| 14 |
+
OptionalType,
|
| 15 |
+
SchemaKind,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
from .autograd import autograd_not_implemented
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def register_functional_op(
|
| 22 |
+
lib: Library,
|
| 23 |
+
new_op_name: str,
|
| 24 |
+
mutable_op: OpOverload,
|
| 25 |
+
) -> None:
|
| 26 |
+
"""Given a mutable operator, registers the functional variant.
|
| 27 |
+
|
| 28 |
+
This API also correctly links the functional variant with the mutable
|
| 29 |
+
operator for the purposes of functionalization.
|
| 30 |
+
|
| 31 |
+
All of the new registrations are performed on the ``lib`` passed in.
|
| 32 |
+
|
| 33 |
+
Arguments:
|
| 34 |
+
lib (Library): Should be a torch.library.Library object that has
|
| 35 |
+
the same namespace as ``mutable_op``'s namespace.
|
| 36 |
+
lib will be used to register the new functional op as well
|
| 37 |
+
as a functionalization kernel for the ``mutable_op``
|
| 38 |
+
If you don't have a library handy, use
|
| 39 |
+
``torch.library.Library(ns, 'FRAGMENT')`` to construct one.
|
| 40 |
+
new_op_name (str): The name of the functional operator (without the
|
| 41 |
+
namespace). If no namespace, the new functional variant will be
|
| 42 |
+
accessible under ``torch.ops.{lib.ns}.new_op_name``.
|
| 43 |
+
mutable_op (OpOverload): The mutable custom operator. Note
|
| 44 |
+
that you may need to add a `.default` to it, like
|
| 45 |
+
`torch.ops.aten.abs_.default`.
|
| 46 |
+
|
| 47 |
+
"""
|
| 48 |
+
validate(mutable_op)
|
| 49 |
+
schema = functional_schema(new_op_name, mutable_op)
|
| 50 |
+
lib.define(schema)
|
| 51 |
+
|
| 52 |
+
functional_impl = construct_functional_impl(mutable_op)
|
| 53 |
+
lib.impl(new_op_name, functional_impl, 'CompositeExplicitAutograd')
|
| 54 |
+
|
| 55 |
+
functional_op = getattr(getattr(torch.ops, lib.ns), new_op_name).default
|
| 56 |
+
|
| 57 |
+
# There's no easy way for us to generate the autograd kernel, so we
|
| 58 |
+
# use autograd_not_implemented. Also, this makes it so that the user
|
| 59 |
+
# is unable to register an autograd formula themselves. This shouldn't
|
| 60 |
+
# be a problem if the user doesn't use the functional op direclty
|
| 61 |
+
# in their program, but we may need to revist this in the future.
|
| 62 |
+
lib.impl(new_op_name, autograd_not_implemented(functional_op), 'Autograd')
|
| 63 |
+
|
| 64 |
+
f_kernel = construct_functionalization_kernel(weakref.proxy(mutable_op), functional_op)
|
| 65 |
+
|
| 66 |
+
lib.impl(mutable_op, f_kernel, 'Functionalize')
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def construct_functional_impl(mutable_op):
|
| 70 |
+
def functional_impl(*args):
|
| 71 |
+
# Strategy:
|
| 72 |
+
# - clone args that would have been mutated
|
| 73 |
+
# - run mutable_op
|
| 74 |
+
# - return the cloned args as additional outputs
|
| 75 |
+
new_args = []
|
| 76 |
+
extra_rets = []
|
| 77 |
+
for is_write, arg in zip(mutable_args(mutable_op), args):
|
| 78 |
+
if is_write:
|
| 79 |
+
cloned = arg.clone() if arg is not None else None
|
| 80 |
+
new_args.append(cloned)
|
| 81 |
+
extra_rets.append(cloned)
|
| 82 |
+
else:
|
| 83 |
+
new_args.append(arg)
|
| 84 |
+
result = mutable_op(*new_args)
|
| 85 |
+
if result is None:
|
| 86 |
+
return tuple(extra_rets)
|
| 87 |
+
if isinstance(result, tuple):
|
| 88 |
+
return (*result, *extra_rets)
|
| 89 |
+
return (result, *extra_rets)
|
| 90 |
+
return functional_impl
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def construct_functionalization_kernel(mutable_op, functional_op):
|
| 94 |
+
def kernel(*args):
|
| 95 |
+
# There's nothing to be functionalized!
|
| 96 |
+
# We can still end up here because DispatchKey::Functionalize is a mode key
|
| 97 |
+
if pytree.tree_all_only(torch.Tensor, lambda x: not torch._is_functional_tensor(x), args):
|
| 98 |
+
with _ExcludeDispatchKeyGuard(DispatchKeySet(DispatchKey.Functionalize)):
|
| 99 |
+
return mutable_op(*args)
|
| 100 |
+
|
| 101 |
+
# NB: This differs from the codegen -- codegen handles cases where there
|
| 102 |
+
# are mixed FunctionalTensorWrapper and non-FunctionalTensorWrapper.
|
| 103 |
+
# This only really matters for XLA (mixed CPU-XLA tensors) and
|
| 104 |
+
# running functionalization without the PT2 stack (which guarantees to us that
|
| 105 |
+
# all tensors are FunctionalTensorWrapper).
|
| 106 |
+
if not pytree.tree_all_only(torch.Tensor, torch._is_functional_tensor, args):
|
| 107 |
+
raise RuntimeError("{mutable_op}: expected all args to be FunctionalTensorWrapper")
|
| 108 |
+
|
| 109 |
+
unwrapped_args = []
|
| 110 |
+
for arg in args:
|
| 111 |
+
if isinstance(arg, torch.Tensor) and torch._is_functional_tensor(arg):
|
| 112 |
+
torch._sync(arg)
|
| 113 |
+
unwrapped = torch._from_functional_tensor(arg)
|
| 114 |
+
unwrapped_args.append(unwrapped)
|
| 115 |
+
else:
|
| 116 |
+
unwrapped_args.append(arg)
|
| 117 |
+
|
| 118 |
+
with _ExcludeDispatchKeyGuard(DispatchKeySet(DispatchKey.Functionalize)):
|
| 119 |
+
output = functional_op(*unwrapped_args)
|
| 120 |
+
|
| 121 |
+
num_actual_output = len(mutable_op._schema.returns)
|
| 122 |
+
actual_output = pytree.tree_map(
|
| 123 |
+
torch._to_functional_tensor, output[:num_actual_output])
|
| 124 |
+
|
| 125 |
+
new_values_to_propagate = output[num_actual_output:]
|
| 126 |
+
inputs_to_replace = [arg for is_write, arg in zip(mutable_args(mutable_op), args)
|
| 127 |
+
if is_write]
|
| 128 |
+
assert len(new_values_to_propagate) == len(inputs_to_replace)
|
| 129 |
+
for new_value, arg in zip(new_values_to_propagate, inputs_to_replace):
|
| 130 |
+
if (arg is None and new_value is None) or (arg is not None and new_value is not None):
|
| 131 |
+
continue
|
| 132 |
+
torch._C._propagate_xla_data(arg, new_value)
|
| 133 |
+
torch._C._replace_(arg, new_value)
|
| 134 |
+
torch._C._commit_update(arg)
|
| 135 |
+
torch._sync(arg)
|
| 136 |
+
|
| 137 |
+
if len(actual_output) == 1:
|
| 138 |
+
return actual_output[0]
|
| 139 |
+
elif len(actual_output) == 0:
|
| 140 |
+
return None
|
| 141 |
+
return actual_output
|
| 142 |
+
|
| 143 |
+
return kernel
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def validate(mutable_op: OpOverload):
|
| 147 |
+
if not isinstance(mutable_op, OpOverload):
|
| 148 |
+
raise TypeError(
|
| 149 |
+
f"register_functional_op(mutable_op): expected mutable_op to be instance of "
|
| 150 |
+
f"OpOverload but got {type(mutable_op)}")
|
| 151 |
+
|
| 152 |
+
# There are generally three types of "in-place" or "mutable" ops.
|
| 153 |
+
# Each of them have their own conventions:
|
| 154 |
+
# - inplace (first input modified in-place and returned as only output)
|
| 155 |
+
# - out= (some args modified in-place and returned as outputs)
|
| 156 |
+
# - mutable (some args modified in-place but none of those returned as outputs)
|
| 157 |
+
# In theory we can support all three, but we'll just support the last
|
| 158 |
+
# option right now for simplicity.
|
| 159 |
+
schema = FunctionSchema.parse(str(mutable_op._schema))
|
| 160 |
+
if not schema.kind() == SchemaKind.mutable:
|
| 161 |
+
raise RuntimeError("Expected op to be mutable (as opposed to functional, inplace or out)")
|
| 162 |
+
for ret in schema.returns:
|
| 163 |
+
# construct_functionalization_kernel assumes this for simplicity
|
| 164 |
+
if ret.annotation is not None:
|
| 165 |
+
raise NotImplementedError(
|
| 166 |
+
"NYI: register_functional_op(op) where op returns a mutated or aliased value. "
|
| 167 |
+
"Please file an issue (and as a workaround, modify your operator to "
|
| 168 |
+
"not return the mutated value or aliases)")
|
| 169 |
+
for arg in schema.arguments.flat_all:
|
| 170 |
+
# construct_functionalization_kernel assumes this for simplicity
|
| 171 |
+
if arg.type.is_tensor_like() and (
|
| 172 |
+
arg.type != BaseType(BaseTy.Tensor)
|
| 173 |
+
and arg.type != OptionalType(BaseType(BaseTy.Tensor))
|
| 174 |
+
):
|
| 175 |
+
raise NotImplementedError(
|
| 176 |
+
"NYI: register_functional_op(op) where op has a List[Tensor] input."
|
| 177 |
+
"Please file an issue.")
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def functional_schema(new_op_name, op: OpOverload):
|
| 181 |
+
schema = FunctionSchema.parse(str(op._schema))
|
| 182 |
+
schema = schema.signature().with_name(OperatorName.parse(new_op_name))
|
| 183 |
+
return str(schema)
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def mutable_args(op: OpOverload):
|
| 187 |
+
return tuple(False if arg.alias_info is None else arg.alias_info.is_write
|
| 188 |
+
for arg in op._schema.arguments)
|
infer_4_47_1/lib/python3.10/site-packages/torch/_custom_op/impl.py
ADDED
|
@@ -0,0 +1,670 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
import dataclasses
|
| 3 |
+
import functools
|
| 4 |
+
import inspect
|
| 5 |
+
import sys
|
| 6 |
+
import typing
|
| 7 |
+
import weakref
|
| 8 |
+
import warnings
|
| 9 |
+
|
| 10 |
+
from torchgen.model import FunctionSchema, OperatorName, SchemaKind, BaseType, ListType, BaseTy
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
import torch._C as _C
|
| 14 |
+
import torch.library as library
|
| 15 |
+
from torch.library import get_ctx
|
| 16 |
+
|
| 17 |
+
from .autograd import autograd_kernel_indirection, construct_autograd_kernel
|
| 18 |
+
import torch._library.infer_schema
|
| 19 |
+
from torch._library.infer_schema import infer_schema
|
| 20 |
+
|
| 21 |
+
"""
|
| 22 |
+
torch._custom_op is deprecated. We shipped a production-ready version of it into torch.library.
|
| 23 |
+
Please use those APIs instead.
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
__all__ = ["custom_op", "CustomOp", "get_ctx"]
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
SUPPORTED_DEVICE_TYPE_TO_KEY = {
|
| 30 |
+
"cpu": "CPU",
|
| 31 |
+
"cuda": "CUDA",
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
# We will not let users register CustomOps with anything that could look like
|
| 35 |
+
# PyTorch internals to avoid confusion.
|
| 36 |
+
RESERVED_NS = {
|
| 37 |
+
"prim",
|
| 38 |
+
"prims",
|
| 39 |
+
"aten",
|
| 40 |
+
"at",
|
| 41 |
+
"torch",
|
| 42 |
+
"pytorch",
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
def warn_deprecated():
|
| 46 |
+
warnings.warn(
|
| 47 |
+
"torch._custom_op is deprecated and will be removed in PyTorch 2.6, please "
|
| 48 |
+
"use the equivalent torch.library API instead.", DeprecationWarning)
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def custom_op(
|
| 52 |
+
qualname: str, manual_schema: typing.Optional[str] = None
|
| 53 |
+
) -> typing.Callable:
|
| 54 |
+
r"""
|
| 55 |
+
This API is deprecated, please use torch.library.custom_op instead
|
| 56 |
+
"""
|
| 57 |
+
warn_deprecated()
|
| 58 |
+
|
| 59 |
+
def inner(func):
|
| 60 |
+
if not inspect.isfunction(func):
|
| 61 |
+
raise ValueError(
|
| 62 |
+
f"custom_op(...)(func): Expected `func` to be a Python "
|
| 63 |
+
f"function, got: {type(func)}"
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
ns, name = parse_qualname(qualname)
|
| 67 |
+
validate_namespace(ns)
|
| 68 |
+
if func.__name__ != name:
|
| 69 |
+
raise ValueError(
|
| 70 |
+
f"custom_op(qualname='{qualname}', ...)(func): expected `func` "
|
| 71 |
+
f"to have name '{name}' but got '{func.__name__}'. "
|
| 72 |
+
f"Please either change the name of `func` or the qualname that "
|
| 73 |
+
f"is passed to `custom_op`"
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
schema = infer_schema(func, mutates_args=()) if manual_schema is None else manual_schema
|
| 77 |
+
schema_str = f"{name}{schema}"
|
| 78 |
+
function_schema = FunctionSchema.parse(schema_str)
|
| 79 |
+
validate_schema(function_schema)
|
| 80 |
+
if manual_schema is not None:
|
| 81 |
+
validate_function_matches_schema(function_schema, func)
|
| 82 |
+
|
| 83 |
+
lib = library.Library(ns, "FRAGMENT")
|
| 84 |
+
lib.define(schema_str)
|
| 85 |
+
ophandle = find_ophandle_or_throw(ns, function_schema.name)
|
| 86 |
+
result = CustomOp(lib, ns, function_schema, name, ophandle, _private_access=True)
|
| 87 |
+
|
| 88 |
+
result.__name__ = func.__name__
|
| 89 |
+
result.__module__ = func.__module__
|
| 90 |
+
result.__doc__ = func.__doc__
|
| 91 |
+
|
| 92 |
+
library.impl(lib, result._opname, "Autograd")(
|
| 93 |
+
autograd_kernel_indirection(weakref.proxy(result))
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
torch._C._dispatch_set_report_error_callback(
|
| 97 |
+
ophandle, functools.partial(report_error_callback, weakref.proxy(result))
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
return result
|
| 101 |
+
|
| 102 |
+
return inner
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
# Global dictionary holding references to all CustomOp objects
|
| 106 |
+
# Yes, it keeps all CustomOps alive (see NOTE [CustomOp lifetime])
|
| 107 |
+
# Used to query the CustomOp associated with a specific C++ dispatcher operator.
|
| 108 |
+
# An example usage is FakeTensor: FakeTensor checks if a specific operator
|
| 109 |
+
# has an implementation registered via the CustomOp API.
|
| 110 |
+
# Indexed by qualname (e.g. aten::foo)
|
| 111 |
+
global_registry: typing.Dict[str, "CustomOp"] = {}
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
class CustomOp:
|
| 115 |
+
r"""
|
| 116 |
+
This API is deprecated, please use torch.library.custom_op instead
|
| 117 |
+
"""
|
| 118 |
+
|
| 119 |
+
def __init__(self, lib, cpp_ns, schema, operator_name, ophandle, *, _private_access=False):
|
| 120 |
+
super().__init__()
|
| 121 |
+
warn_deprecated()
|
| 122 |
+
if not _private_access:
|
| 123 |
+
raise RuntimeError(
|
| 124 |
+
"The CustomOp constructor is private and we do not guarantee "
|
| 125 |
+
"BC for it. Please use custom_op(...) to create a CustomOp object"
|
| 126 |
+
)
|
| 127 |
+
name = f"{cpp_ns}::{operator_name}"
|
| 128 |
+
self._schema = schema
|
| 129 |
+
self._cpp_ns = cpp_ns
|
| 130 |
+
self._lib: library.Library = lib
|
| 131 |
+
self._ophandle: _C._DispatchOperatorHandle = ophandle
|
| 132 |
+
# Has the name of the op, e.g. "foo". We cache here for convenience.
|
| 133 |
+
self._opname: str = operator_name
|
| 134 |
+
# this is _opname but with namespace. e.g. "custom::foo"
|
| 135 |
+
self._qualname: str = name
|
| 136 |
+
self.__name__ = None # mypy requires this
|
| 137 |
+
# NB: Some of these impls are registered as kernels to DispatchKeys.
|
| 138 |
+
# Modifying the _impls dict directly won't do anything in that case.
|
| 139 |
+
self._impls: typing.Dict[str, typing.Optional[FuncAndLocation]] = {}
|
| 140 |
+
# See NOTE [CustomOp autograd kernel indirection]
|
| 141 |
+
self._registered_autograd_kernel_indirection = False
|
| 142 |
+
|
| 143 |
+
global_registry[self._qualname] = self
|
| 144 |
+
|
| 145 |
+
def _register_autograd_kernel_indirection(self):
|
| 146 |
+
assert not self._registered_autograd_kernel_indirection
|
| 147 |
+
self._lib.impl(self._opname, autograd_kernel_indirection(weakref.proxy(self)), "Autograd")
|
| 148 |
+
self._registered_autograd_kernel_indirection = True
|
| 149 |
+
|
| 150 |
+
# Records the impl and the source location in self._impls
|
| 151 |
+
# Note that this doesn't cause torch.library to use the impl, that
|
| 152 |
+
# needs to be done in a separate self._lib.impl call.
|
| 153 |
+
def _register_impl(self, kind, func, stacklevel=2):
|
| 154 |
+
if self._has_impl(kind):
|
| 155 |
+
func_and_location = self._impls[kind]
|
| 156 |
+
assert func_and_location is not None # Pacify mypy
|
| 157 |
+
location = func_and_location.location
|
| 158 |
+
raise RuntimeError(
|
| 159 |
+
f"Attempting to register a {kind} impl for operator {self._qualname} "
|
| 160 |
+
f"that already has a {kind} impl registered from Python at "
|
| 161 |
+
f"{location}. This is not supported."
|
| 162 |
+
)
|
| 163 |
+
frame = inspect.getframeinfo(sys._getframe(stacklevel))
|
| 164 |
+
location = f"{frame.filename}:{frame.lineno}"
|
| 165 |
+
self._impls[kind] = FuncAndLocation(func, location)
|
| 166 |
+
|
| 167 |
+
def _get_impl(self, kind):
|
| 168 |
+
return self._impls[kind]
|
| 169 |
+
|
| 170 |
+
def _has_impl(self, kind):
|
| 171 |
+
return kind in self._impls
|
| 172 |
+
|
| 173 |
+
def _destroy(self):
|
| 174 |
+
# NOTE: [CustomOp lifetime]
|
| 175 |
+
# A CustomOp, once created, lives forever. The mechanism is that the
|
| 176 |
+
# global registry holds a reference to it. However, to make testing
|
| 177 |
+
# easier, we want to be able to destroy CustomOp objects.
|
| 178 |
+
# CustomOp._destroy does the job, though it leaves the CustomOp
|
| 179 |
+
# in a garbage state.
|
| 180 |
+
del self._lib
|
| 181 |
+
|
| 182 |
+
opnamespace = getattr(torch.ops, self._cpp_ns)
|
| 183 |
+
if hasattr(opnamespace, self._opname):
|
| 184 |
+
delattr(opnamespace, self._opname)
|
| 185 |
+
|
| 186 |
+
del global_registry[self._qualname]
|
| 187 |
+
|
| 188 |
+
def __repr__(self):
|
| 189 |
+
return f'<CustomOp(op="{self._qualname}")>'
|
| 190 |
+
|
| 191 |
+
def __call__(self, *args, **kwargs):
|
| 192 |
+
# Bypass torch.ops.* and directly do OperatorHandle::callBoxed.
|
| 193 |
+
# Using torch.ops.* is a bit of a pain (it can be slow and it has lifetime
|
| 194 |
+
# issues from caching operators that make testing CustomOp difficult).
|
| 195 |
+
result = _C._dispatch_call_boxed(self._ophandle, *args, **kwargs)
|
| 196 |
+
return result
|
| 197 |
+
|
| 198 |
+
def impl(
|
| 199 |
+
self, device_types: typing.Union[str, typing.Iterable[str]], _stacklevel=2,
|
| 200 |
+
) -> typing.Callable:
|
| 201 |
+
r"""
|
| 202 |
+
This API is deprecated, please use torch.library.custom_op instead
|
| 203 |
+
"""
|
| 204 |
+
if isinstance(device_types, str):
|
| 205 |
+
device_types = [device_types]
|
| 206 |
+
for device_type in device_types:
|
| 207 |
+
validate_device_type(device_type)
|
| 208 |
+
|
| 209 |
+
def inner(f):
|
| 210 |
+
for device_type in set(device_types):
|
| 211 |
+
self._check_doesnt_have_library_impl(device_type)
|
| 212 |
+
self._register_impl(device_type, f, stacklevel=_stacklevel)
|
| 213 |
+
dispatch_key = SUPPORTED_DEVICE_TYPE_TO_KEY[device_type]
|
| 214 |
+
library.impl(self._lib, self._opname, dispatch_key)(f)
|
| 215 |
+
return f
|
| 216 |
+
|
| 217 |
+
return inner
|
| 218 |
+
|
| 219 |
+
def _check_doesnt_have_library_impl(self, device_type):
|
| 220 |
+
if self._has_impl(device_type):
|
| 221 |
+
return
|
| 222 |
+
key = SUPPORTED_DEVICE_TYPE_TO_KEY[device_type]
|
| 223 |
+
if _C._dispatch_has_computed_kernel_for_dispatch_key(self._qualname, key):
|
| 224 |
+
raise RuntimeError(
|
| 225 |
+
f"impl(..., device_types={device_type}): the operator {self._qualname} "
|
| 226 |
+
f"already has an implementation for this device type via a "
|
| 227 |
+
f"pre-existing torch.library or TORCH_LIBRARY registration.")
|
| 228 |
+
|
| 229 |
+
def impl_factory(self) -> typing.Callable:
|
| 230 |
+
r"""Register an implementation for a factory function."""
|
| 231 |
+
|
| 232 |
+
def inner(f):
|
| 233 |
+
self._register_impl("factory", f)
|
| 234 |
+
library.impl(self._lib, self._opname, "BackendSelect")(f)
|
| 235 |
+
return f
|
| 236 |
+
|
| 237 |
+
return inner
|
| 238 |
+
|
| 239 |
+
def impl_abstract(self, _stacklevel=2) -> typing.Callable:
|
| 240 |
+
r"""
|
| 241 |
+
This API is deprecated, please use torch.library.custom_op instead
|
| 242 |
+
"""
|
| 243 |
+
|
| 244 |
+
def inner(f):
|
| 245 |
+
self._check_doesnt_have_library_meta_impl()
|
| 246 |
+
self._register_impl("abstract", f, stacklevel=_stacklevel)
|
| 247 |
+
location = self._get_impl("abstract").location
|
| 248 |
+
|
| 249 |
+
qualname = self._qualname
|
| 250 |
+
|
| 251 |
+
# Handle DispatchKey.Meta registration
|
| 252 |
+
@functools.wraps(f)
|
| 253 |
+
def f_with_ctx(*args, **kwargs):
|
| 254 |
+
def error_on_ctx():
|
| 255 |
+
raise RuntimeError(
|
| 256 |
+
f"Attempted to call get_ctx() for the meta implementation "
|
| 257 |
+
f"for {qualname}."
|
| 258 |
+
f"You have presumably called get_ctx() because the operator "
|
| 259 |
+
f"has a data-dependent output shape; if so, there is no "
|
| 260 |
+
f"such meta implementation and this error is the correct "
|
| 261 |
+
f"behavior. Otherwise, please remove the call to get_ctx() "
|
| 262 |
+
f"in the implementation registered with impl_abstract "
|
| 263 |
+
f"at {location}"
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
with torch._library.fake_impl.set_ctx_getter(error_on_ctx):
|
| 267 |
+
return f(*args, **kwargs)
|
| 268 |
+
|
| 269 |
+
self._lib.impl(self._opname, f_with_ctx, "Meta")
|
| 270 |
+
return f
|
| 271 |
+
|
| 272 |
+
return inner
|
| 273 |
+
|
| 274 |
+
def _check_can_register_backward(self):
|
| 275 |
+
def error(detail):
|
| 276 |
+
raise RuntimeError(
|
| 277 |
+
f"Cannot use torch._custom_ops APIs to register backward "
|
| 278 |
+
f"formula for {detail}. Got operator "
|
| 279 |
+
f"{self._qualname} with schema: {schema}"
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
schema = self._schema
|
| 283 |
+
if schema.kind() != SchemaKind.functional:
|
| 284 |
+
error("non-functional operator")
|
| 285 |
+
|
| 286 |
+
rets = schema.returns
|
| 287 |
+
if not schema.returns:
|
| 288 |
+
error("operator with no returns")
|
| 289 |
+
|
| 290 |
+
assert len(rets) > 0
|
| 291 |
+
is_non_mutating_view = any(
|
| 292 |
+
r.annotation is not None and not r.annotation.is_write for r in rets
|
| 293 |
+
)
|
| 294 |
+
if is_non_mutating_view:
|
| 295 |
+
error("operator that returns views")
|
| 296 |
+
|
| 297 |
+
# We make assumptions about the schema's return types.
|
| 298 |
+
allowed_return_types = {
|
| 299 |
+
BaseType(BaseTy.int): "int",
|
| 300 |
+
BaseType(BaseTy.SymInt): "SymInt",
|
| 301 |
+
BaseType(BaseTy.bool): "bool",
|
| 302 |
+
BaseType(BaseTy.float): "float",
|
| 303 |
+
BaseType(BaseTy.Tensor): "Tensor",
|
| 304 |
+
ListType(BaseType(BaseTy.Tensor), None): "List[Tensor]",
|
| 305 |
+
}
|
| 306 |
+
for ret in schema.returns:
|
| 307 |
+
if ret.type in allowed_return_types:
|
| 308 |
+
continue
|
| 309 |
+
error(f"operator with return not in {list(allowed_return_types.values())} (got {ret.type})")
|
| 310 |
+
|
| 311 |
+
def _check_doesnt_have_library_autograd_impl(self):
|
| 312 |
+
if self._registered_autograd_kernel_indirection:
|
| 313 |
+
return
|
| 314 |
+
|
| 315 |
+
if _C._dispatch_has_kernel_for_dispatch_key(self._qualname, "CompositeImplicitAutograd"):
|
| 316 |
+
raise RuntimeError(
|
| 317 |
+
f"impl_backward/impl_save_for_backward: the operator {self._qualname} "
|
| 318 |
+
f"already has an implementation for this device type via a "
|
| 319 |
+
f"pre-existing registration to DispatchKey::CompositeImplicitAutograd."
|
| 320 |
+
f"CompositeImplicitAutograd operators do not need an autograd formula; "
|
| 321 |
+
f"instead, the operator will decompose into its constituents and those "
|
| 322 |
+
f"can have autograd formulas defined on them.")
|
| 323 |
+
|
| 324 |
+
# We can improve this by adding "all Autograd<BACKEND> keys", but
|
| 325 |
+
# realistically people will just be using this API for CPU/CUDA for now.
|
| 326 |
+
for key in ["Autograd", "AutogradCPU", "AutogradCUDA"]:
|
| 327 |
+
if _C._dispatch_has_kernel_for_dispatch_key(self._qualname, key):
|
| 328 |
+
raise RuntimeError(
|
| 329 |
+
f"impl_backward/impl_save_for_backward: "
|
| 330 |
+
f"the operator {self._qualname} already has an Autograd kernel "
|
| 331 |
+
f"registered to DispatchKey::{key} vi a pre-existing "
|
| 332 |
+
f"torch.library or TORCH_LIBRARY registration. Please either "
|
| 333 |
+
f"remove those registrations or don't use the torch._custom_ops APIs")
|
| 334 |
+
|
| 335 |
+
def _check_doesnt_have_library_meta_impl(self):
|
| 336 |
+
if self._has_impl("abstract"):
|
| 337 |
+
return
|
| 338 |
+
|
| 339 |
+
# If the user's operator is CompositeExplicitAutograd,
|
| 340 |
+
# allow them to impl_abstract. This is being pragmatic
|
| 341 |
+
# (existing custom ops may have CompositeExplicitAutograd
|
| 342 |
+
# registration that don't work with Meta kernels, so this
|
| 343 |
+
# gives them an escape hatch).
|
| 344 |
+
if (
|
| 345 |
+
_C._dispatch_has_kernel_for_dispatch_key(self._qualname, "CompositeExplicitAutograd")
|
| 346 |
+
and not _C._dispatch_has_kernel_for_dispatch_key(self._qualname, "Meta")
|
| 347 |
+
):
|
| 348 |
+
return
|
| 349 |
+
|
| 350 |
+
# Otherwise, if the user's already has a Meta kernel or their
|
| 351 |
+
# op is CompositeImplicitAutograd or some other alias dispatch key,
|
| 352 |
+
# raise.
|
| 353 |
+
|
| 354 |
+
# Special case for CompositeImplicitAutograd
|
| 355 |
+
if _C._dispatch_has_kernel_for_dispatch_key(self._qualname, "CompositeImplicitAutograd"):
|
| 356 |
+
raise RuntimeError(
|
| 357 |
+
f"impl_abstract(...): the operator {self._qualname} "
|
| 358 |
+
f"already has an implementation for this device type via a "
|
| 359 |
+
f"pre-existing registration to DispatchKey::CompositeImplicitAutograd."
|
| 360 |
+
f"CompositeImplicitAutograd operators do not need an abstract impl; "
|
| 361 |
+
f"instead, the operator will decompose into its constituents and those "
|
| 362 |
+
f"can have abstract impls defined on them.")
|
| 363 |
+
|
| 364 |
+
if _C._dispatch_has_kernel_for_dispatch_key(self._qualname, "Meta"):
|
| 365 |
+
raise RuntimeError(
|
| 366 |
+
f"impl_abstract(...): the operator {self._qualname} "
|
| 367 |
+
f"already has an DispatchKey::Meta implementation via a "
|
| 368 |
+
f"pre-existing torch.library or TORCH_LIBRARY registration. "
|
| 369 |
+
f"Please either remove that registration or don't call impl_abstract.")
|
| 370 |
+
|
| 371 |
+
# NOTE ["backward", "save_for_backward", and "autograd"]
|
| 372 |
+
# As a part of the explicit autograd API, a user must provide us
|
| 373 |
+
# a "save_for_backward" function and a "backward" function.
|
| 374 |
+
# When both of these have been provided, then we automatically
|
| 375 |
+
# construct the "autograd" kernel.
|
| 376 |
+
def _register_autograd_kernel(self):
|
| 377 |
+
assert self._has_impl("backward")
|
| 378 |
+
assert self._has_impl("save_for_backward")
|
| 379 |
+
kernel = construct_autograd_kernel(
|
| 380 |
+
self._schema,
|
| 381 |
+
self._output_differentiability,
|
| 382 |
+
self,
|
| 383 |
+
get_op(self._qualname),
|
| 384 |
+
self._get_impl("save_for_backward").func,
|
| 385 |
+
self._get_impl("backward").func)
|
| 386 |
+
self._register_impl("autograd", kernel)
|
| 387 |
+
|
| 388 |
+
def impl_save_for_backward(self, _stacklevel=2):
|
| 389 |
+
r"""Register a function that tells us what to save for backward.
|
| 390 |
+
|
| 391 |
+
Please see impl_backward for more details.
|
| 392 |
+
"""
|
| 393 |
+
def inner(f):
|
| 394 |
+
self._check_can_register_backward()
|
| 395 |
+
self._check_doesnt_have_library_autograd_impl()
|
| 396 |
+
if not self._registered_autograd_kernel_indirection:
|
| 397 |
+
self._register_autograd_kernel_indirection()
|
| 398 |
+
self._register_impl("save_for_backward", f, stacklevel=_stacklevel)
|
| 399 |
+
if self._has_impl("backward"):
|
| 400 |
+
self._register_autograd_kernel()
|
| 401 |
+
return inner
|
| 402 |
+
|
| 403 |
+
def impl_backward(self, output_differentiability=None, _stacklevel=2):
|
| 404 |
+
r"""
|
| 405 |
+
This API is deprecated, please use torch.library.custom_op instead
|
| 406 |
+
"""
|
| 407 |
+
if output_differentiability is not None:
|
| 408 |
+
def yell():
|
| 409 |
+
raise RuntimeError(
|
| 410 |
+
f"impl_backward(output_differentiability): expected "
|
| 411 |
+
f"output_differentiability to be a list of bools with "
|
| 412 |
+
f"length equal to the number of outputs of this CustomOp "
|
| 413 |
+
f"got: {output_differentiability}")
|
| 414 |
+
|
| 415 |
+
if not isinstance(output_differentiability, list):
|
| 416 |
+
yell()
|
| 417 |
+
for diff in output_differentiability:
|
| 418 |
+
if not isinstance(diff, bool):
|
| 419 |
+
yell()
|
| 420 |
+
if len(self._schema.returns) != len(output_differentiability):
|
| 421 |
+
yell()
|
| 422 |
+
|
| 423 |
+
def inner(f):
|
| 424 |
+
self._check_can_register_backward()
|
| 425 |
+
self._check_doesnt_have_library_autograd_impl()
|
| 426 |
+
if not self._registered_autograd_kernel_indirection:
|
| 427 |
+
self._register_autograd_kernel_indirection()
|
| 428 |
+
self._register_impl("backward", f, stacklevel=_stacklevel)
|
| 429 |
+
self._output_differentiability = output_differentiability
|
| 430 |
+
if self._has_impl("save_for_backward"):
|
| 431 |
+
self._register_autograd_kernel()
|
| 432 |
+
return inner
|
| 433 |
+
|
| 434 |
+
|
| 435 |
+
@dataclasses.dataclass
|
| 436 |
+
class FuncAndLocation:
|
| 437 |
+
func: typing.Callable
|
| 438 |
+
location: str
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
def find_ophandle_or_throw(cpp_ns: str, operator_name: OperatorName):
|
| 442 |
+
overload_name = (
|
| 443 |
+
"" if operator_name.overload_name is None else operator_name.overload_name
|
| 444 |
+
)
|
| 445 |
+
return _C._dispatch_find_schema_or_throw(
|
| 446 |
+
f"{cpp_ns}::{str(operator_name.name)}", overload_name
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
def validate_namespace(ns: str) -> None:
|
| 451 |
+
if "." in ns:
|
| 452 |
+
raise ValueError(
|
| 453 |
+
f'custom_op(..., ns="{ns}"): expected ns to not contain any . (and be a '
|
| 454 |
+
f"valid variable name)"
|
| 455 |
+
)
|
| 456 |
+
if ns in RESERVED_NS:
|
| 457 |
+
raise ValueError(
|
| 458 |
+
f"custom_op(..., ns='{ns}'): '{ns}' is a reserved namespace, "
|
| 459 |
+
f"please choose something else. "
|
| 460 |
+
)
|
| 461 |
+
|
| 462 |
+
def validate_schema(schema: FunctionSchema) -> None:
|
| 463 |
+
if not torch._library.utils.is_functional_schema(schema):
|
| 464 |
+
raise ValueError(
|
| 465 |
+
f"custom_op only supports functional operators "
|
| 466 |
+
f"(ops that do not mutate any inputs, do not return "
|
| 467 |
+
f"views of the inputs, and has at least one return). "
|
| 468 |
+
f"Got the following non-functional schema: {schema}"
|
| 469 |
+
)
|
| 470 |
+
|
| 471 |
+
# For simplicity: don't allow self arguments
|
| 472 |
+
if schema.arguments.self_arg is not None:
|
| 473 |
+
raise ValueError(
|
| 474 |
+
f"custom_op does not support arguments named 'self'. Please "
|
| 475 |
+
f"rename your argument. Got: {schema}"
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
|
| 479 |
+
def parse_qualname(qualname: str) -> typing.Tuple[str, str]:
|
| 480 |
+
names = qualname.split("::", 1)
|
| 481 |
+
if len(names) != 2:
|
| 482 |
+
raise ValueError(f"Expected there to be a namespace in {qualname}, i.e. The "
|
| 483 |
+
f"operator name should look something like ns::foo")
|
| 484 |
+
if '.' in names[1]:
|
| 485 |
+
raise ValueError(f"The torch.custom_ops APIs do not handle overloads, "
|
| 486 |
+
f"i.e. operator names with '.' in them. "
|
| 487 |
+
f"Please name your operator something like ns::foo. "
|
| 488 |
+
f"Got: {qualname}")
|
| 489 |
+
return names[0], names[1]
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
def validate_device_type(device_type: str) -> None:
|
| 493 |
+
if device_type not in SUPPORTED_DEVICE_TYPE_TO_KEY:
|
| 494 |
+
raise ValueError(
|
| 495 |
+
f"CustomOp.impl(device_types=[{device_type}, ...]): we only support device_type "
|
| 496 |
+
f"in {SUPPORTED_DEVICE_TYPE_TO_KEY.keys()}."
|
| 497 |
+
)
|
| 498 |
+
|
| 499 |
+
|
| 500 |
+
def supported_param(param: inspect.Parameter) -> bool:
|
| 501 |
+
return param.kind in (
|
| 502 |
+
inspect.Parameter.POSITIONAL_OR_KEYWORD,
|
| 503 |
+
inspect.Parameter.KEYWORD_ONLY,
|
| 504 |
+
)
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
def validate_function_matches_schema(
|
| 508 |
+
schema: FunctionSchema, func: typing.Callable
|
| 509 |
+
) -> None:
|
| 510 |
+
sig = inspect.signature(func)
|
| 511 |
+
|
| 512 |
+
if not all(supported_param(p) for _, p in sig.parameters.items()):
|
| 513 |
+
raise ValueError(
|
| 514 |
+
f"custom_op(..., manual_schema)(func): positional-only args, "
|
| 515 |
+
f"varargs, and kwargs are not supported. Please rewrite `func` "
|
| 516 |
+
f"to not have them. Got `func` with signature: {sig}"
|
| 517 |
+
)
|
| 518 |
+
|
| 519 |
+
if (
|
| 520 |
+
any(
|
| 521 |
+
p.annotation is not inspect.Parameter.empty
|
| 522 |
+
for _, p in sig.parameters.items()
|
| 523 |
+
)
|
| 524 |
+
or sig.return_annotation is not inspect.Signature.empty
|
| 525 |
+
):
|
| 526 |
+
raise ValueError(
|
| 527 |
+
f"custom_op(..., manual_schema)(func): When passing in a manual "
|
| 528 |
+
f"schema, we expect `func` to have no type annotations to avoid "
|
| 529 |
+
f"ambiguity. Got `func` with signature: {sig}"
|
| 530 |
+
)
|
| 531 |
+
|
| 532 |
+
positional = [
|
| 533 |
+
(name, param)
|
| 534 |
+
for name, param in sig.parameters.items()
|
| 535 |
+
if param.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD
|
| 536 |
+
]
|
| 537 |
+
kwargonly = [
|
| 538 |
+
(name, param)
|
| 539 |
+
for name, param in sig.parameters.items()
|
| 540 |
+
if param.kind == inspect.Parameter.KEYWORD_ONLY
|
| 541 |
+
]
|
| 542 |
+
|
| 543 |
+
def error():
|
| 544 |
+
raise ValueError(
|
| 545 |
+
f"custom_op(..., manual_schema)(func): When passing in a manual "
|
| 546 |
+
f"schema, we expect `func`'s signature to match `manual_schema` "
|
| 547 |
+
f"(aside from type annotations). "
|
| 548 |
+
f"func's signature: {sig}, manual_schema: {schema}"
|
| 549 |
+
)
|
| 550 |
+
|
| 551 |
+
def error_default_args():
|
| 552 |
+
raise ValueError(
|
| 553 |
+
f"custom_op(..., manual_schema)(func): "
|
| 554 |
+
f"neither func nor manual_schema should have default "
|
| 555 |
+
f"arguments. Got "
|
| 556 |
+
f"func's signature: {sig}, manual_schema: {schema}"
|
| 557 |
+
)
|
| 558 |
+
|
| 559 |
+
def compare(sig_args, schema_args):
|
| 560 |
+
if len(sig_args) != len(schema_args):
|
| 561 |
+
error()
|
| 562 |
+
for (name, param), arg in zip(sig_args, schema_args):
|
| 563 |
+
if name != arg.name:
|
| 564 |
+
error()
|
| 565 |
+
if param.default is not inspect.Parameter.empty or arg.default is not None:
|
| 566 |
+
error_default_args()
|
| 567 |
+
|
| 568 |
+
compare(positional, schema.arguments.flat_positional)
|
| 569 |
+
compare(kwargonly, schema.arguments.flat_kwarg_only)
|
| 570 |
+
|
| 571 |
+
|
| 572 |
+
def report_error_callback(custom_op: typing.Any, key: str) -> None:
|
| 573 |
+
if key == "Undefined":
|
| 574 |
+
raise NotImplementedError(
|
| 575 |
+
f"{custom_op}: There were no Tensor inputs to this operator "
|
| 576 |
+
f"(e.g. you passed an empty list of Tensors). If your operator is a "
|
| 577 |
+
f"factory function (that is, it takes no Tensors and constructs "
|
| 578 |
+
f"a new one), then please use CustomOp.impl_factory to register "
|
| 579 |
+
f"an implementation for it"
|
| 580 |
+
)
|
| 581 |
+
if key == "Meta":
|
| 582 |
+
raise NotImplementedError(
|
| 583 |
+
f"{custom_op}: when running with device='Meta' tensors: there is no "
|
| 584 |
+
f"abstract impl registered for this CustomOp. Please register one via "
|
| 585 |
+
f"CustomOp.impl_abstract to get this CustomOp to work with Meta tensors"
|
| 586 |
+
)
|
| 587 |
+
if key in ("CPU", "CUDA"):
|
| 588 |
+
device = key.lower()
|
| 589 |
+
raise NotImplementedError(
|
| 590 |
+
f"{custom_op}: when running with device='{device}' tensors: there is no "
|
| 591 |
+
f"{device} impl registered for this CustomOp. Please register one via "
|
| 592 |
+
f"CustomOp.impl(device_type='{device}')"
|
| 593 |
+
)
|
| 594 |
+
raise NotImplementedError(
|
| 595 |
+
f"{custom_op}: No implementation for dispatch key {key}. It is likely "
|
| 596 |
+
f"that we have not added this functionality yet, please either open an "
|
| 597 |
+
f"issue or if you're feeling adventurous, use the low-level "
|
| 598 |
+
f"torch.library API"
|
| 599 |
+
)
|
| 600 |
+
|
| 601 |
+
|
| 602 |
+
def custom_op_from_existing(op):
|
| 603 |
+
ns = op.namespace
|
| 604 |
+
lib = torch.library.Library(ns, "FRAGMENT")
|
| 605 |
+
name = op.name().split("::")[-1]
|
| 606 |
+
schema_str = str(op._schema)
|
| 607 |
+
# CustomOp expects the schema string without the namespace
|
| 608 |
+
schema_str = schema_str.split("::")[-1]
|
| 609 |
+
schema = FunctionSchema.parse(schema_str)
|
| 610 |
+
return CustomOp(lib, ns, schema, name, op, _private_access=True)
|
| 611 |
+
|
| 612 |
+
|
| 613 |
+
def get_op(qualname):
|
| 614 |
+
def error_not_found():
|
| 615 |
+
raise ValueError(
|
| 616 |
+
f"Could not find the operator {qualname}. Please make sure you have "
|
| 617 |
+
f"already registered the operator and (if registered from C++) "
|
| 618 |
+
f"loaded it via torch.ops.load_library.")
|
| 619 |
+
|
| 620 |
+
ns, name = parse_qualname(qualname)
|
| 621 |
+
if not hasattr(torch.ops, ns):
|
| 622 |
+
error_not_found()
|
| 623 |
+
opnamespace = getattr(torch.ops, ns)
|
| 624 |
+
if not hasattr(opnamespace, name):
|
| 625 |
+
error_not_found()
|
| 626 |
+
packet = getattr(opnamespace, name)
|
| 627 |
+
if not hasattr(packet, 'default'):
|
| 628 |
+
error_not_found()
|
| 629 |
+
return packet.default
|
| 630 |
+
|
| 631 |
+
|
| 632 |
+
def _find_custom_op(qualname, also_check_torch_library=False):
|
| 633 |
+
if qualname in global_registry:
|
| 634 |
+
return global_registry[qualname]
|
| 635 |
+
if not also_check_torch_library:
|
| 636 |
+
raise RuntimeError(
|
| 637 |
+
f'Could not find custom op "{qualname}". Did you register it via '
|
| 638 |
+
f"the torch._custom_ops API?")
|
| 639 |
+
overload = get_op(qualname)
|
| 640 |
+
result = custom_op_from_existing(overload)
|
| 641 |
+
return result
|
| 642 |
+
|
| 643 |
+
|
| 644 |
+
def get_abstract_impl(qualname):
|
| 645 |
+
if qualname not in torch._custom_op.impl.global_registry:
|
| 646 |
+
return None
|
| 647 |
+
custom_op = torch._custom_op.impl.global_registry[qualname]
|
| 648 |
+
if custom_op is None:
|
| 649 |
+
return None
|
| 650 |
+
if not custom_op._has_impl("abstract"):
|
| 651 |
+
return None
|
| 652 |
+
return custom_op._get_impl("abstract").func
|
| 653 |
+
|
| 654 |
+
|
| 655 |
+
def _custom_op_with_schema(qualname, schema, needs_fixed_stride_order=True):
|
| 656 |
+
ns, name = qualname.split("::")
|
| 657 |
+
schema_str = f"{name}{schema}"
|
| 658 |
+
function_schema = FunctionSchema.parse(schema_str)
|
| 659 |
+
validate_schema(function_schema)
|
| 660 |
+
tags = [torch._C.Tag.needs_fixed_stride_order] if needs_fixed_stride_order else []
|
| 661 |
+
lib = library.Library(ns, "FRAGMENT")
|
| 662 |
+
lib.define(schema_str, tags=tags)
|
| 663 |
+
ophandle = find_ophandle_or_throw(ns, function_schema.name)
|
| 664 |
+
result = CustomOp(lib, ns, function_schema, name, ophandle, _private_access=True)
|
| 665 |
+
result._register_autograd_kernel_indirection()
|
| 666 |
+
|
| 667 |
+
torch._C._dispatch_set_report_error_callback(
|
| 668 |
+
ophandle, functools.partial(report_error_callback, weakref.proxy(result))
|
| 669 |
+
)
|
| 670 |
+
return get_op(qualname)
|
infer_4_47_1/lib/python3.10/site-packages/torch/_library/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch._library.autograd
|
| 2 |
+
import torch._library.fake_impl
|
| 3 |
+
import torch._library.simple_registry
|
| 4 |
+
import torch._library.utils
|
| 5 |
+
from torch._library.fake_class_registry import register_fake_class
|
| 6 |
+
from torch._library.triton import capture_triton, triton_op
|
infer_4_47_1/lib/python3.10/site-packages/torch/_library/autograd.py
ADDED
|
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
import dataclasses
|
| 3 |
+
from dataclasses import dataclass
|
| 4 |
+
from typing import Any, Callable, Dict, Optional, Protocol
|
| 5 |
+
|
| 6 |
+
from torch import _C, _ops, autograd, Tensor
|
| 7 |
+
from torch.utils import _pytree
|
| 8 |
+
|
| 9 |
+
from . import utils
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class InfoProtocol(Protocol):
|
| 13 |
+
_backward_fn: Optional[Callable]
|
| 14 |
+
_setup_context_fn: Optional[Callable]
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@dataclasses.dataclass
|
| 18 |
+
class Info:
|
| 19 |
+
_backward_fn: Optional[Callable]
|
| 20 |
+
_setup_context_fn: Optional[Callable]
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def make_autograd_impl(op: _ops.OpOverload, info: InfoProtocol) -> Callable:
|
| 24 |
+
name: str = f"GeneratedBackwardFor_{op._namespace}_{op._opname}_{op._overloadname}"
|
| 25 |
+
|
| 26 |
+
has_kwarg_only_args = utils.has_kwarg_only_args(op._schema)
|
| 27 |
+
|
| 28 |
+
@dataclass
|
| 29 |
+
class Metadata:
|
| 30 |
+
keyset: _C.DispatchKeySet
|
| 31 |
+
keyword_only_args: Dict[str, Any]
|
| 32 |
+
|
| 33 |
+
def forward_no_grad(*args):
|
| 34 |
+
metadata = args[-1]
|
| 35 |
+
args = args[:-1]
|
| 36 |
+
|
| 37 |
+
with _C._AutoDispatchBelowAutograd():
|
| 38 |
+
keyset = metadata.keyset
|
| 39 |
+
kwargs = metadata.keyword_only_args
|
| 40 |
+
result = op.redispatch(keyset & _C._after_autograd_keyset, *args, **kwargs)
|
| 41 |
+
return result
|
| 42 |
+
|
| 43 |
+
def forward(ctx, *args):
|
| 44 |
+
metadata = args[-1]
|
| 45 |
+
args = args[:-1]
|
| 46 |
+
|
| 47 |
+
with _C._AutoDispatchBelowAutograd():
|
| 48 |
+
keyset = metadata.keyset
|
| 49 |
+
kwargs = metadata.keyword_only_args
|
| 50 |
+
result = op.redispatch(keyset & _C._after_autograd_keyset, *args, **kwargs)
|
| 51 |
+
if info._setup_context_fn:
|
| 52 |
+
# The Dispatcher will remove args that are equal to their default
|
| 53 |
+
# values from (args, kwargs). We're going to add it back so that
|
| 54 |
+
# the user can access them.
|
| 55 |
+
#
|
| 56 |
+
# This is OK to do: The Dispatcher removed the args for serialization
|
| 57 |
+
# FC/BC reasons (that is, a graph will not store args that are equal
|
| 58 |
+
# to their default values), but that doesn't matter here. If the user
|
| 59 |
+
# adds a new default arg, then they must update
|
| 60 |
+
# their setup_context (along with the rest of their operator
|
| 61 |
+
# registrations)
|
| 62 |
+
args, kwargs = utils.fill_defaults(op._schema, args, kwargs)
|
| 63 |
+
|
| 64 |
+
if has_kwarg_only_args:
|
| 65 |
+
info._setup_context_fn(
|
| 66 |
+
ctx=ctx, inputs=args, keyword_only_inputs=kwargs, output=result
|
| 67 |
+
)
|
| 68 |
+
else:
|
| 69 |
+
info._setup_context_fn(ctx=ctx, inputs=args, output=result)
|
| 70 |
+
return result
|
| 71 |
+
|
| 72 |
+
def backward(ctx, *grads):
|
| 73 |
+
if info._backward_fn:
|
| 74 |
+
try:
|
| 75 |
+
prev_needs_input_grad = ctx.needs_input_grad
|
| 76 |
+
ctx.needs_input_grad = ctx.needs_input_grad[:-1]
|
| 77 |
+
result = info._backward_fn(ctx, *grads)
|
| 78 |
+
finally:
|
| 79 |
+
ctx.needs_input_grad = prev_needs_input_grad
|
| 80 |
+
if isinstance(result, tuple):
|
| 81 |
+
return (*result, None)
|
| 82 |
+
return result, None
|
| 83 |
+
raise RuntimeError(
|
| 84 |
+
f"Trying to backward through {op} but no autograd "
|
| 85 |
+
f"formula was registered. "
|
| 86 |
+
f"Please use register_autograd to add one."
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
Generated = type(
|
| 90 |
+
name,
|
| 91 |
+
(autograd.Function,),
|
| 92 |
+
{
|
| 93 |
+
"forward": staticmethod(forward),
|
| 94 |
+
"backward": staticmethod(backward),
|
| 95 |
+
},
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
schema = op._schema
|
| 99 |
+
if any(
|
| 100 |
+
utils.is_tensorlist_like_type(a.type)
|
| 101 |
+
for a in (*schema.arguments, *schema.returns)
|
| 102 |
+
):
|
| 103 |
+
Generated = supports_tensorlist(Generated)
|
| 104 |
+
|
| 105 |
+
# The dispatcher passes any keyword-only-args as kwargs and the
|
| 106 |
+
# rest of the args (even if specified as kwargs) as args.
|
| 107 |
+
def autograd_impl(keyset, *args, **keyword_only_args):
|
| 108 |
+
if _C.is_grad_enabled() and _pytree.tree_any_only(
|
| 109 |
+
Tensor, lambda x: x.requires_grad, args, not_list_of_tensor
|
| 110 |
+
):
|
| 111 |
+
result = Generated.apply(*args, Metadata(keyset, keyword_only_args)) # type: ignore[attr-defined]
|
| 112 |
+
else:
|
| 113 |
+
result = forward_no_grad(*args, Metadata(keyset, keyword_only_args))
|
| 114 |
+
return result
|
| 115 |
+
|
| 116 |
+
return autograd_impl
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def supports_tensorlist(cls: Any) -> Any:
|
| 120 |
+
"""Allows a given autograd.Function class to support List[Tensor] inputs/outputs.
|
| 121 |
+
|
| 122 |
+
Regular autograd.Function has a constraint that it only directly supports autograd for
|
| 123 |
+
Tensors. Applying @supports_tensorlist enables an autograd.Function to support
|
| 124 |
+
autograd for List[Tensor] inputs and outputs.
|
| 125 |
+
"""
|
| 126 |
+
orig_forward = cls.forward
|
| 127 |
+
orig_backward = cls.backward
|
| 128 |
+
orig_apply = cls.apply
|
| 129 |
+
|
| 130 |
+
@dataclass
|
| 131 |
+
class Metadata:
|
| 132 |
+
input_spec: spec_t
|
| 133 |
+
output_spec: Optional[spec_t] = None
|
| 134 |
+
result_is_tuple: Optional[bool] = None
|
| 135 |
+
|
| 136 |
+
def new_forward(ctx, *args):
|
| 137 |
+
metadata = args[-1]
|
| 138 |
+
args = args[:-1]
|
| 139 |
+
if not isinstance(metadata, Metadata):
|
| 140 |
+
raise NotImplementedError(
|
| 141 |
+
"NYI: calling supports_tensorlist autograd.Function.forward directly. "
|
| 142 |
+
"You should probably be calling .apply instead. "
|
| 143 |
+
"Please file an issue if not."
|
| 144 |
+
)
|
| 145 |
+
args = unflatten(list(args), metadata.input_spec)
|
| 146 |
+
result = orig_forward(ctx, *args)
|
| 147 |
+
metadata.result_is_tuple = isinstance(result, tuple)
|
| 148 |
+
if not metadata.result_is_tuple:
|
| 149 |
+
result = (result,)
|
| 150 |
+
flat_result, output_spec = flatten(result, not_list_of_tensor)
|
| 151 |
+
metadata.output_spec = output_spec
|
| 152 |
+
|
| 153 |
+
if hasattr(ctx, "_pt_metadata"):
|
| 154 |
+
raise RuntimeError(
|
| 155 |
+
"Please don't set ctx._pt_metadata; PyTorch uses it to store info"
|
| 156 |
+
)
|
| 157 |
+
ctx._pt_metadata = metadata
|
| 158 |
+
|
| 159 |
+
return tuple(flat_result)
|
| 160 |
+
|
| 161 |
+
def new_backward(ctx, *grads):
|
| 162 |
+
if not hasattr(ctx, "_pt_metadata"):
|
| 163 |
+
raise NotImplementedError(
|
| 164 |
+
"NYI: calling supports_tensorlist autograd.Function.backward directly. "
|
| 165 |
+
"This will automatically get called by PyTorch autograd. "
|
| 166 |
+
"Please file an issue if you need this."
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
metadata = ctx._pt_metadata
|
| 170 |
+
grads = unflatten(list(grads), metadata.output_spec)
|
| 171 |
+
|
| 172 |
+
# If the user's input is ([x, y, z], w),
|
| 173 |
+
# then needs_input_grad is (bool, bool, bool, bool, bool).
|
| 174 |
+
# We need to
|
| 175 |
+
# 1. get rid of the additional bool (which comes from the extra
|
| 176 |
+
# `metadata input`)
|
| 177 |
+
# 2. unflatten to get the right structure.
|
| 178 |
+
prev_needs_input_grad = ctx.needs_input_grad
|
| 179 |
+
try:
|
| 180 |
+
ctx.needs_input_grad = unflatten(
|
| 181 |
+
list(ctx.needs_input_grad[:-1]), metadata.input_spec
|
| 182 |
+
)
|
| 183 |
+
grad_inputs = orig_backward(ctx, *grads)
|
| 184 |
+
finally:
|
| 185 |
+
ctx.needs_input_grad = prev_needs_input_grad
|
| 186 |
+
|
| 187 |
+
if not isinstance(grad_inputs, tuple):
|
| 188 |
+
grad_inputs = (grad_inputs,)
|
| 189 |
+
# Assume that any Nones in the backward are Tensors.
|
| 190 |
+
# If the forward has an arg that is [1, 2, 3], the backward should
|
| 191 |
+
# return None as the grad.
|
| 192 |
+
# If the forward has an arg that is [tensor, tensor], the backward
|
| 193 |
+
# may return [None, None], [grad, None], [None, grad], or [grad, grad].
|
| 194 |
+
flat_grad_inputs, grad_inputs_spec = flatten(
|
| 195 |
+
grad_inputs, not_list_of_optional_tensor
|
| 196 |
+
)
|
| 197 |
+
if grad_inputs_spec != metadata.input_spec:
|
| 198 |
+
raise RuntimeError(
|
| 199 |
+
f"Expected the return from backward to be of the same structure "
|
| 200 |
+
f"as the inputs. Got: {grad_inputs_spec} (return from backward), "
|
| 201 |
+
f"{metadata.input_spec} (inputs)"
|
| 202 |
+
)
|
| 203 |
+
return tuple(flat_grad_inputs + [None])
|
| 204 |
+
|
| 205 |
+
def new_apply(*args):
|
| 206 |
+
flat_args, input_spec = flatten(args, is_leaf=not_list_of_tensor)
|
| 207 |
+
metadata = Metadata(input_spec)
|
| 208 |
+
result = orig_apply(*flat_args, metadata) # type: ignore[misc]
|
| 209 |
+
assert metadata.output_spec is not None
|
| 210 |
+
result = unflatten(list(result), metadata.output_spec)
|
| 211 |
+
if not metadata.result_is_tuple:
|
| 212 |
+
assert isinstance(result, tuple)
|
| 213 |
+
assert len(result) == 1
|
| 214 |
+
return result[0]
|
| 215 |
+
return result
|
| 216 |
+
|
| 217 |
+
cls.forward = new_forward
|
| 218 |
+
cls.backward = new_backward
|
| 219 |
+
cls.apply = new_apply
|
| 220 |
+
return cls
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def not_list_of_tensor(tree):
|
| 224 |
+
if isinstance(tree, tuple):
|
| 225 |
+
return False
|
| 226 |
+
if isinstance(tree, list):
|
| 227 |
+
return any(not isinstance(l, Tensor) for l in tree)
|
| 228 |
+
return True
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
def not_list_of_optional_tensor(tree):
|
| 232 |
+
if isinstance(tree, tuple):
|
| 233 |
+
return False
|
| 234 |
+
if isinstance(tree, list):
|
| 235 |
+
return any(l is not None and not isinstance(l, Tensor) for l in tree)
|
| 236 |
+
return True
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
flatten = _pytree.tree_flatten
|
| 240 |
+
unflatten = _pytree.tree_unflatten
|
| 241 |
+
spec_t = _pytree.TreeSpec
|
infer_4_47_1/lib/python3.10/site-packages/torch/_library/custom_ops.py
ADDED
|
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-decorators
|
| 2 |
+
# mypy: allow-untyped-defs
|
| 3 |
+
import inspect
|
| 4 |
+
import logging
|
| 5 |
+
import weakref
|
| 6 |
+
from contextlib import contextmanager
|
| 7 |
+
from typing import (
|
| 8 |
+
Any,
|
| 9 |
+
Callable,
|
| 10 |
+
Dict,
|
| 11 |
+
Iterable,
|
| 12 |
+
Iterator,
|
| 13 |
+
List,
|
| 14 |
+
Optional,
|
| 15 |
+
Sequence,
|
| 16 |
+
Set,
|
| 17 |
+
Tuple,
|
| 18 |
+
Union,
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
import torch
|
| 22 |
+
from torch import _C, _ops, Tensor
|
| 23 |
+
from torch.utils._exposed_in import exposed_in
|
| 24 |
+
|
| 25 |
+
from . import autograd, utils
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
device_types_t = Optional[Union[str, Sequence[str]]]
|
| 29 |
+
log = logging.getLogger(__name__)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@exposed_in("torch.library")
|
| 33 |
+
def custom_op(
|
| 34 |
+
name: str,
|
| 35 |
+
fn: Optional[Callable] = None,
|
| 36 |
+
/,
|
| 37 |
+
*,
|
| 38 |
+
mutates_args: Union[str, Iterable[str]],
|
| 39 |
+
device_types: device_types_t = None,
|
| 40 |
+
schema: Optional[str] = None,
|
| 41 |
+
) -> Callable:
|
| 42 |
+
"""Wraps a function into custom operator.
|
| 43 |
+
|
| 44 |
+
Reasons why you may want to create a custom op include:
|
| 45 |
+
- Wrapping a third-party library or custom kernel to work with PyTorch
|
| 46 |
+
subsystems like Autograd.
|
| 47 |
+
- Preventing torch.compile/export/FX tracing from peeking inside your function.
|
| 48 |
+
|
| 49 |
+
This API is used as a decorator around a function (please see examples).
|
| 50 |
+
The provided function must have type hints; these are needed to interface
|
| 51 |
+
with PyTorch's various subsystems.
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
name (str): A name for the custom op that looks like "{namespace}::{name}",
|
| 55 |
+
e.g. "mylib::my_linear". The name is used as the op's stable identifier
|
| 56 |
+
in PyTorch subsystems (e.g. torch.export, FX graphs).
|
| 57 |
+
To avoid name collisions, please use your project name as the namespace;
|
| 58 |
+
e.g. all custom ops in pytorch/fbgemm use "fbgemm" as the namespace.
|
| 59 |
+
mutates_args (Iterable[str] or "unknown"): The names of args that the function mutates.
|
| 60 |
+
This MUST be accurate, otherwise, the behavior is undefined. If "unknown",
|
| 61 |
+
it pessimistically assumes that all inputs to the operator are being mutated.
|
| 62 |
+
device_types (None | str | Sequence[str]): The device type(s) the function
|
| 63 |
+
is valid for. If no device type is provided, then the function
|
| 64 |
+
is used as the default implementation for all device types.
|
| 65 |
+
Examples: "cpu", "cuda".
|
| 66 |
+
When registering a device-specific implementation for an operator that accepts no Tensors,
|
| 67 |
+
we require the operator to have a "device: torch.device argument".
|
| 68 |
+
schema (None | str): A schema string for the operator. If None
|
| 69 |
+
(recommended) we'll infer a schema for the operator from its type
|
| 70 |
+
annotations. We recommend letting us infer a schema unless you
|
| 71 |
+
have a specific reason not to.
|
| 72 |
+
Example: "(Tensor x, int y) -> (Tensor, Tensor)".
|
| 73 |
+
|
| 74 |
+
.. note::
|
| 75 |
+
We recommend not passing in a ``schema`` arg and instead letting us infer
|
| 76 |
+
it from the type annotations. It is error-prone to write your own schema.
|
| 77 |
+
You may wish to provide your own schema if our interpretation of
|
| 78 |
+
the type annotation is not what you want.
|
| 79 |
+
For more info on how to write a schema string, see
|
| 80 |
+
`here <https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/README.md#func>`_
|
| 81 |
+
|
| 82 |
+
Examples::
|
| 83 |
+
>>> import torch
|
| 84 |
+
>>> from torch import Tensor
|
| 85 |
+
>>> from torch.library import custom_op
|
| 86 |
+
>>> import numpy as np
|
| 87 |
+
>>>
|
| 88 |
+
>>> @custom_op("mylib::numpy_sin", mutates_args=())
|
| 89 |
+
>>> def numpy_sin(x: Tensor) -> Tensor:
|
| 90 |
+
>>> x_np = x.cpu().numpy()
|
| 91 |
+
>>> y_np = np.sin(x_np)
|
| 92 |
+
>>> return torch.from_numpy(y_np).to(device=x.device)
|
| 93 |
+
>>>
|
| 94 |
+
>>> x = torch.randn(3)
|
| 95 |
+
>>> y = numpy_sin(x)
|
| 96 |
+
>>> assert torch.allclose(y, x.sin())
|
| 97 |
+
>>>
|
| 98 |
+
>>> # Example of a custom op that only works for one device type.
|
| 99 |
+
>>> @custom_op("mylib::numpy_sin_cpu", mutates_args=(), device_types="cpu")
|
| 100 |
+
>>> def numpy_sin_cpu(x: Tensor) -> Tensor:
|
| 101 |
+
>>> x_np = x.numpy()
|
| 102 |
+
>>> y_np = np.sin(x_np)
|
| 103 |
+
>>> return torch.from_numpy(y_np)
|
| 104 |
+
>>>
|
| 105 |
+
>>> x = torch.randn(3)
|
| 106 |
+
>>> y = numpy_sin_cpu(x)
|
| 107 |
+
>>> assert torch.allclose(y, x.sin())
|
| 108 |
+
>>>
|
| 109 |
+
>>> # Example of a custom op that mutates an input
|
| 110 |
+
>>> @custom_op("mylib::numpy_sin_inplace", mutates_args={"x"}, device_types="cpu")
|
| 111 |
+
>>> def numpy_sin_inplace(x: Tensor) -> None:
|
| 112 |
+
>>> x_np = x.numpy()
|
| 113 |
+
>>> np.sin(x_np, out=x_np)
|
| 114 |
+
>>>
|
| 115 |
+
>>> x = torch.randn(3)
|
| 116 |
+
>>> expected = x.sin()
|
| 117 |
+
>>> numpy_sin_inplace(x)
|
| 118 |
+
>>> assert torch.allclose(x, expected)
|
| 119 |
+
>>>
|
| 120 |
+
>>> # Example of a factory function
|
| 121 |
+
>>> @torch.library.custom_op("mylib::bar", mutates_args={}, device_types="cpu")
|
| 122 |
+
>>> def bar(device: torch.device) -> Tensor:
|
| 123 |
+
>>> return torch.ones(3)
|
| 124 |
+
>>>
|
| 125 |
+
>>> bar("cpu")
|
| 126 |
+
|
| 127 |
+
"""
|
| 128 |
+
|
| 129 |
+
def inner(fn):
|
| 130 |
+
import torch
|
| 131 |
+
|
| 132 |
+
if schema is None:
|
| 133 |
+
schema_str = torch.library.infer_schema(fn, mutates_args=mutates_args)
|
| 134 |
+
else:
|
| 135 |
+
schema_str = schema
|
| 136 |
+
|
| 137 |
+
namespace, opname = name.split("::")
|
| 138 |
+
result = CustomOpDef(namespace, opname, schema_str, fn)
|
| 139 |
+
if schema is not None:
|
| 140 |
+
# Check that schema's alias annotations match those of `mutates_args`.
|
| 141 |
+
expected = set()
|
| 142 |
+
for arg in result._opoverload._schema.arguments:
|
| 143 |
+
if arg.alias_info is not None and arg.alias_info.is_write:
|
| 144 |
+
expected.add(arg.name)
|
| 145 |
+
if expected != set(mutates_args):
|
| 146 |
+
raise ValueError(
|
| 147 |
+
f"Attempted to create a custom op with `mutates_args={mutates_args}` "
|
| 148 |
+
f"and `schema={schema}. The schema suggests that the op mutates {expected}"
|
| 149 |
+
f"which is different from what was provided to us in `mutates_args`. "
|
| 150 |
+
f"Please make these consistent."
|
| 151 |
+
)
|
| 152 |
+
result.register_kernel(device_types)(fn)
|
| 153 |
+
return result
|
| 154 |
+
|
| 155 |
+
if fn is None:
|
| 156 |
+
return inner
|
| 157 |
+
return inner(fn)
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
class CustomOpDef:
|
| 161 |
+
"""CustomOpDef is a wrapper around a function that turns it into a custom op.
|
| 162 |
+
|
| 163 |
+
It has various methods for registering additional behavior for this
|
| 164 |
+
custom op.
|
| 165 |
+
|
| 166 |
+
You should not instantiate CustomOpDef directly; instead, use the
|
| 167 |
+
:func:`torch.library.custom_op` API.
|
| 168 |
+
"""
|
| 169 |
+
|
| 170 |
+
def __init__(self, namespace: str, name: str, schema: str, fn: Callable) -> None:
|
| 171 |
+
# Fields used to interface with the PyTorch dispatcher
|
| 172 |
+
self._namespace = namespace
|
| 173 |
+
self._name = name
|
| 174 |
+
self._schema = schema
|
| 175 |
+
|
| 176 |
+
self._init_fn = fn
|
| 177 |
+
|
| 178 |
+
self._backend_fns: Dict[Union[str, None], Callable] = {}
|
| 179 |
+
self._abstract_fn: Optional[Callable] = None
|
| 180 |
+
self._setup_context_fn: Optional[Callable] = None
|
| 181 |
+
self._backward_fn: Optional[Callable] = None
|
| 182 |
+
self._torch_dispatch_fns: Dict[type, Callable] = {}
|
| 183 |
+
self._vmap_fn: Optional[Callable] = None
|
| 184 |
+
|
| 185 |
+
self._lib = get_library_allowing_overwrite(self._namespace, self._name)
|
| 186 |
+
self._register_to_dispatcher()
|
| 187 |
+
self._disabled_kernel: Set = set()
|
| 188 |
+
OPDEFS[self._qualname] = self
|
| 189 |
+
|
| 190 |
+
@property
|
| 191 |
+
def _qualname(self) -> str:
|
| 192 |
+
return f"{self._namespace}::{self._name}"
|
| 193 |
+
|
| 194 |
+
def __repr__(self) -> str:
|
| 195 |
+
return f"<CustomOpDef({self._qualname})>"
|
| 196 |
+
|
| 197 |
+
@contextmanager
|
| 198 |
+
def set_kernel_enabled(self, device_type: str, enabled: bool = True):
|
| 199 |
+
"""
|
| 200 |
+
Disable or re-enable an already registered kernel for this custom operator.
|
| 201 |
+
|
| 202 |
+
If the kernel is already disabled/enabled, this is a no-op.
|
| 203 |
+
|
| 204 |
+
Note:
|
| 205 |
+
If a kernel is first disabled and then registered, it is disabled until enabled again.
|
| 206 |
+
|
| 207 |
+
Args:
|
| 208 |
+
device_type (str): The device type to disable/enable the kernel for.
|
| 209 |
+
disable (bool): Whether to disable or enable the kernel.
|
| 210 |
+
|
| 211 |
+
Example:
|
| 212 |
+
>>> inp = torch.randn(1)
|
| 213 |
+
>>>
|
| 214 |
+
>>> # define custom op `f`.
|
| 215 |
+
>>> @custom_op("mylib::f", mutates_args=())
|
| 216 |
+
>>> def f(x: Tensor) -> Tensor:
|
| 217 |
+
>>> return torch.zeros(1)
|
| 218 |
+
>>>
|
| 219 |
+
>>> print(f(inp)) # tensor([0.]), default kernel
|
| 220 |
+
>>>
|
| 221 |
+
>>> @f.register_kernel("cpu")
|
| 222 |
+
>>> def _(x):
|
| 223 |
+
>>> return torch.ones(1)
|
| 224 |
+
>>>
|
| 225 |
+
>>> print(f(inp)) # tensor([1.]), CPU kernel
|
| 226 |
+
>>>
|
| 227 |
+
>>> # temporarily disable the CPU kernel
|
| 228 |
+
>>> with f.set_kernel_enabled("cpu", enabled = False):
|
| 229 |
+
>>> print(f(inp)) # tensor([0.]) with CPU kernel disabled
|
| 230 |
+
|
| 231 |
+
"""
|
| 232 |
+
action = "enable" if enabled else "disable"
|
| 233 |
+
originally_disabled = device_type in self._disabled_kernel
|
| 234 |
+
if device_type not in self._backend_fns:
|
| 235 |
+
log.warning(
|
| 236 |
+
"Attempted to %s kernel for %s but no kernel was registered for this device type.",
|
| 237 |
+
action,
|
| 238 |
+
device_type,
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
if not enabled:
|
| 242 |
+
if originally_disabled:
|
| 243 |
+
log.warning(
|
| 244 |
+
"Attempted to disable kernel for %s but it was already disabled.",
|
| 245 |
+
device_type,
|
| 246 |
+
)
|
| 247 |
+
else:
|
| 248 |
+
self._disabled_kernel.add(device_type)
|
| 249 |
+
else: # enable the kernel
|
| 250 |
+
if not originally_disabled:
|
| 251 |
+
log.warning(
|
| 252 |
+
"Attempted to enable kernel for %s but it was already enabled.",
|
| 253 |
+
device_type,
|
| 254 |
+
)
|
| 255 |
+
else:
|
| 256 |
+
self._disabled_kernel.remove(device_type)
|
| 257 |
+
|
| 258 |
+
try:
|
| 259 |
+
yield
|
| 260 |
+
finally:
|
| 261 |
+
# restore original state
|
| 262 |
+
if originally_disabled:
|
| 263 |
+
self._disabled_kernel.add(device_type)
|
| 264 |
+
else:
|
| 265 |
+
self._disabled_kernel.discard(device_type)
|
| 266 |
+
|
| 267 |
+
def register_kernel(
|
| 268 |
+
self, device_types: device_types_t, fn: Optional[Callable] = None, /
|
| 269 |
+
) -> Callable:
|
| 270 |
+
"""Register an implementation for a device type for this operator.
|
| 271 |
+
|
| 272 |
+
Some valid device_types are: "cpu", "cuda", "xla", "mps", "ipu", "xpu".
|
| 273 |
+
This API may be used as a decorator.
|
| 274 |
+
|
| 275 |
+
Args:
|
| 276 |
+
fn (Callable): The function to register as the implementation for
|
| 277 |
+
the given device types.
|
| 278 |
+
device_types (str | Sequence[str]): The device device_types to register an impl to.
|
| 279 |
+
|
| 280 |
+
Examples::
|
| 281 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
|
| 282 |
+
>>> import torch
|
| 283 |
+
>>> from torch import Tensor
|
| 284 |
+
>>> from torch.library import custom_op
|
| 285 |
+
>>> import numpy as np
|
| 286 |
+
>>>
|
| 287 |
+
>>> # Create a custom op that works on cpu
|
| 288 |
+
>>> @custom_op("mylib::numpy_sin", mutates_args=(), device_types="cpu")
|
| 289 |
+
>>> def numpy_sin(x: Tensor) -> Tensor:
|
| 290 |
+
>>> x_np = x.numpy()
|
| 291 |
+
>>> y_np = np.sin(x_np)
|
| 292 |
+
>>> return torch.from_numpy(y_np)
|
| 293 |
+
>>>
|
| 294 |
+
>>> # Add implementations for the cuda device
|
| 295 |
+
>>> @numpy_sin.register_kernel("cuda")
|
| 296 |
+
>>> def _(x):
|
| 297 |
+
>>> x_np = x.cpu().numpy()
|
| 298 |
+
>>> y_np = np.sin(x_np)
|
| 299 |
+
>>> return torch.from_numpy(y_np).to(device=x.device)
|
| 300 |
+
>>>
|
| 301 |
+
>>> x_cpu = torch.randn(3)
|
| 302 |
+
>>> x_cuda = x_cpu.cuda()
|
| 303 |
+
>>> assert torch.allclose(numpy_sin(x_cpu), x_cpu.sin())
|
| 304 |
+
>>> assert torch.allclose(numpy_sin(x_cuda), x_cuda.sin())
|
| 305 |
+
|
| 306 |
+
"""
|
| 307 |
+
|
| 308 |
+
def inner(fn):
|
| 309 |
+
if device_types is None or isinstance(device_types, str):
|
| 310 |
+
dtypes: List[Union[str, None]] = [device_types]
|
| 311 |
+
else:
|
| 312 |
+
dtypes = list(device_types)
|
| 313 |
+
for device_type in dtypes:
|
| 314 |
+
if device_type not in self._backend_fns:
|
| 315 |
+
|
| 316 |
+
def backend_impl(*args, **kwargs):
|
| 317 |
+
# Checks the assumption that outputs cannot alias
|
| 318 |
+
# inputs or other outputs.
|
| 319 |
+
storages = {
|
| 320 |
+
id(tensor.untyped_storage())
|
| 321 |
+
for tensor in iter_tensors(args, kwargs)
|
| 322 |
+
}
|
| 323 |
+
|
| 324 |
+
result = self._backend_fns[device_type](*args, **kwargs)
|
| 325 |
+
|
| 326 |
+
tuple_result = result
|
| 327 |
+
if not isinstance(result, tuple):
|
| 328 |
+
tuple_result = (result,)
|
| 329 |
+
for tensor in iter_tensors(tuple_result, {}):
|
| 330 |
+
key = id(tensor.untyped_storage())
|
| 331 |
+
if id(tensor.untyped_storage()) in storages:
|
| 332 |
+
fn = self._backend_fns[device_type]
|
| 333 |
+
module = inspect.getmodule(fn)
|
| 334 |
+
raise RuntimeError(
|
| 335 |
+
f"{self._name} (with implementation in {module}): "
|
| 336 |
+
f"The output of this custom operator (1) must not "
|
| 337 |
+
f"also be an input to this custom operator and "
|
| 338 |
+
f"(2) may not alias any inputs to this custom operator "
|
| 339 |
+
f"or other returns. "
|
| 340 |
+
f"The most common way to trigger this error is if "
|
| 341 |
+
f"we have y = custom_op(x) and y and x are the same Tensor. "
|
| 342 |
+
f"Please instead return a clone of the offending output "
|
| 343 |
+
f"tensor(s) (e.g. return x.clone()) or refactor the custom "
|
| 344 |
+
f"operator to not return y."
|
| 345 |
+
)
|
| 346 |
+
storages.add(key)
|
| 347 |
+
return result
|
| 348 |
+
|
| 349 |
+
if device_type is None:
|
| 350 |
+
self._lib.impl(
|
| 351 |
+
self._name, backend_impl, "CompositeExplicitAutograd"
|
| 352 |
+
)
|
| 353 |
+
else:
|
| 354 |
+
self._lib.impl(
|
| 355 |
+
self._name,
|
| 356 |
+
backend_impl,
|
| 357 |
+
_C._dispatch_key_for_device(device_type),
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
# Wrap function to choose between the default implementation or the device-specific
|
| 361 |
+
# implementation depending on if the kernel is disabled.
|
| 362 |
+
@torch._disable_dynamo
|
| 363 |
+
def wrapped_fn(*args, **kwargs):
|
| 364 |
+
if device_type in self._disabled_kernel:
|
| 365 |
+
return self._init_fn(*args, **kwargs)
|
| 366 |
+
else:
|
| 367 |
+
return fn(*args, **kwargs)
|
| 368 |
+
|
| 369 |
+
self._backend_fns[device_type] = wrapped_fn
|
| 370 |
+
return fn
|
| 371 |
+
|
| 372 |
+
if device_types is not None and not utils.has_tensor_arg(
|
| 373 |
+
self._opoverload._schema
|
| 374 |
+
):
|
| 375 |
+
device_arg_index = utils.get_device_arg_index(self._opoverload._schema)
|
| 376 |
+
if device_arg_index is None:
|
| 377 |
+
raise ValueError(
|
| 378 |
+
"Functions without tensor inputs are required to have a `device: torch.device` argument"
|
| 379 |
+
)
|
| 380 |
+
self._register_backend_select_dispatcher(device_arg_index)
|
| 381 |
+
|
| 382 |
+
# See NOTE: [Supporting decorator and non-decorator usage]
|
| 383 |
+
if fn is None:
|
| 384 |
+
return inner
|
| 385 |
+
return inner(fn)
|
| 386 |
+
|
| 387 |
+
def register_fake(self, fn: Callable, /) -> Callable:
|
| 388 |
+
r"""Register a FakeTensor implementation for this custom op.
|
| 389 |
+
|
| 390 |
+
This is necessary to get the operator to work efficiently with torch.compile.
|
| 391 |
+
|
| 392 |
+
The Fake impl (sometimes also known as a meta kernel or abstract impl)
|
| 393 |
+
specifies the behavior of this operator on Tensors that carry no data.
|
| 394 |
+
Given some input Tensors with certain properties
|
| 395 |
+
(sizes/strides/storage_offset/device), it specifies what the properties of
|
| 396 |
+
the output Tensors are.
|
| 397 |
+
|
| 398 |
+
Please see :func:`torch.library.impl_abstract` for more details.
|
| 399 |
+
|
| 400 |
+
Args:
|
| 401 |
+
fn (Callable): The function to register as the FakeTensor
|
| 402 |
+
implementation.
|
| 403 |
+
|
| 404 |
+
Examples:
|
| 405 |
+
>>> import torch
|
| 406 |
+
>>> import numpy as np
|
| 407 |
+
>>> from torch import Tensor
|
| 408 |
+
>>>
|
| 409 |
+
>>> # Example 1: an operator without data-dependent output shape
|
| 410 |
+
>>> @torch.library.custom_op("mylib::linear", mutates_args=())
|
| 411 |
+
>>> def linear(x: Tensor, weight: Tensor, bias: Tensor) -> Tensor:
|
| 412 |
+
>>> return (x @ weight.t()) + bias
|
| 413 |
+
>>>
|
| 414 |
+
>>> @linear.register_fake
|
| 415 |
+
>>> def _(x, weight, bias):
|
| 416 |
+
>>> assert x.dim() == 2
|
| 417 |
+
>>> assert weight.dim() == 2
|
| 418 |
+
>>> assert bias.dim() == 1
|
| 419 |
+
>>> assert x.shape[1] == weight.shape[1]
|
| 420 |
+
>>> assert weight.shape[0] == bias.shape[0]
|
| 421 |
+
>>> assert x.device == weight.device
|
| 422 |
+
>>> return x.new_empty(x.size(0), weight.size(0))
|
| 423 |
+
>>>
|
| 424 |
+
>>> x = torch.randn(2, 2)
|
| 425 |
+
>>> weight = torch.randn(2, 2)
|
| 426 |
+
>>> bias = torch.randn(2)
|
| 427 |
+
>>> # xdoctest: +SKIP("Requires Python <= 3.11")
|
| 428 |
+
>>> out = torch.compile(linear, fullgraph=True)(x, weight, bias)
|
| 429 |
+
>>> # xdoctest: +SKIP("Requires Python <= 3.11")
|
| 430 |
+
>>> assert torch.allclose(out, torch.nn.functional.linear(x, weight, bias))
|
| 431 |
+
>>>
|
| 432 |
+
>>> # Example 2: an operator with data-dependent output shape
|
| 433 |
+
>>> @torch.library.custom_op("mylib::nonzero", mutates_args=())
|
| 434 |
+
>>> def nonzero(x: Tensor) -> Tensor:
|
| 435 |
+
>>> x_np = x.cpu().numpy()
|
| 436 |
+
>>> res = np.stack(np.nonzero(x_np), axis=1)
|
| 437 |
+
>>> return torch.tensor(res, device=x.device)
|
| 438 |
+
>>>
|
| 439 |
+
>>> @nonzero.register_fake
|
| 440 |
+
>>> def _(x):
|
| 441 |
+
>>> # Number of nonzero-elements is data-dependent.
|
| 442 |
+
>>> # Since we cannot peek at the data in an abstract impl,
|
| 443 |
+
>>> # we use the ctx object to construct a new symint that
|
| 444 |
+
>>> # represents the data-dependent size.
|
| 445 |
+
>>> ctx = torch.library.get_ctx()
|
| 446 |
+
>>> nnz = ctx.new_dynamic_size()
|
| 447 |
+
>>> shape = [nnz, x.dim()]
|
| 448 |
+
>>> result = x.new_empty(shape, dtype=torch.int64)
|
| 449 |
+
>>> return result
|
| 450 |
+
>>>
|
| 451 |
+
>>> x = torch.tensor([0, 1, 2, 0, 0, 1])
|
| 452 |
+
>>> # xdoctest: +SKIP("Requires Python <= 3.11")
|
| 453 |
+
>>> out = torch.compile(nonzero, fullgraph=True)(x)
|
| 454 |
+
>>> # xdoctest: +SKIP("Requires Python <= 3.11")
|
| 455 |
+
>>> assert torch.allclose(out, x.nonzero())
|
| 456 |
+
|
| 457 |
+
"""
|
| 458 |
+
self._abstract_fn = fn
|
| 459 |
+
return fn
|
| 460 |
+
|
| 461 |
+
def register_torch_dispatch(
|
| 462 |
+
self, torch_dispatch_class: Any, fn: Optional[Callable] = None, /
|
| 463 |
+
) -> Callable:
|
| 464 |
+
r"""Registers a torch_dispatch rule for the given operator and ``torch_dispatch_class``.
|
| 465 |
+
|
| 466 |
+
This allows for open registration to specify the behavior between the operator
|
| 467 |
+
and the ``torch_dispatch_class`` without needing to modify the ``torch_dispatch_class``
|
| 468 |
+
or the operator directly.
|
| 469 |
+
|
| 470 |
+
Please see :func:`torch.library.register_torch_dispatch` for examples and more details.
|
| 471 |
+
"""
|
| 472 |
+
|
| 473 |
+
def register(fn):
|
| 474 |
+
if torch_dispatch_class not in self._torch_dispatch_fns:
|
| 475 |
+
|
| 476 |
+
def inner(*args, **kwargs):
|
| 477 |
+
return self._torch_dispatch_fns[torch_dispatch_class](
|
| 478 |
+
*args, **kwargs
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
self._lib._register_torch_dispatch_rule(
|
| 482 |
+
self._name, torch_dispatch_class, inner
|
| 483 |
+
)
|
| 484 |
+
self._torch_dispatch_fns[torch_dispatch_class] = fn
|
| 485 |
+
return fn
|
| 486 |
+
|
| 487 |
+
if fn is None:
|
| 488 |
+
return register
|
| 489 |
+
else:
|
| 490 |
+
return register(fn)
|
| 491 |
+
|
| 492 |
+
def register_autograd(
|
| 493 |
+
self,
|
| 494 |
+
backward: Callable,
|
| 495 |
+
/,
|
| 496 |
+
*,
|
| 497 |
+
setup_context: Optional[Callable] = None,
|
| 498 |
+
) -> None:
|
| 499 |
+
r"""Register a backward formula for this custom op.
|
| 500 |
+
|
| 501 |
+
In order for an operator to work with autograd, you need to register
|
| 502 |
+
a backward formula:
|
| 503 |
+
1. You must tell us how to compute gradients during the backward pass
|
| 504 |
+
by providing us a "backward" function.
|
| 505 |
+
2. If you need any values from the forward to compute gradients, you can
|
| 506 |
+
use `setup_context` to save values for backward.
|
| 507 |
+
|
| 508 |
+
``backward_fn`` runs during the backward pass. It accepts ``(ctx, *grads)``:
|
| 509 |
+
- ``grads`` is one or more gradients. The number of gradients matches
|
| 510 |
+
the number of outputs of the operator.
|
| 511 |
+
The ``ctx`` object is `the same ctx object <context_method_mixins>`_ used by
|
| 512 |
+
:class:`torch.autograd.Function`. The semantics of ``backward_fn`` are the
|
| 513 |
+
same as :meth:`torch.autograd.Function.backward`.
|
| 514 |
+
|
| 515 |
+
``setup_context(ctx, inputs, output)`` runs during the forward pass.
|
| 516 |
+
Please save quantities needed for backward onto the ``ctx`` object via
|
| 517 |
+
either :meth:`torch.autograd.function.FunctionCtx.save_for_backward`
|
| 518 |
+
or assigning them as attributes of ``ctx``. If your custom op has
|
| 519 |
+
kwarg-only arguments, we expect the signature of ``setup_context``
|
| 520 |
+
to be ``setup_context(ctx, inputs, keyword_only_inputs, output)``.
|
| 521 |
+
|
| 522 |
+
Both ``setup_context_fn`` and ``backward_fn`` must be traceable. That is,
|
| 523 |
+
they may not directly access :meth:`torch.Tensor.data_ptr` and they must
|
| 524 |
+
not depend on or mutate global state. If you need a non-traceable backward,
|
| 525 |
+
you can make it a separate custom_op that you call inside ``backward_fn``.
|
| 526 |
+
|
| 527 |
+
Examples:
|
| 528 |
+
>>> import torch
|
| 529 |
+
>>> import numpy as np
|
| 530 |
+
>>> from torch import Tensor
|
| 531 |
+
>>>
|
| 532 |
+
>>> @torch.library.custom_op("mylib::numpy_sin", mutates_args=())
|
| 533 |
+
>>> def numpy_sin(x: Tensor) -> Tensor:
|
| 534 |
+
>>> x_np = x.cpu().numpy()
|
| 535 |
+
>>> y_np = np.sin(x_np)
|
| 536 |
+
>>> return torch.from_numpy(y_np).to(device=x.device)
|
| 537 |
+
>>>
|
| 538 |
+
>>> def setup_context(ctx, inputs, output) -> Tensor:
|
| 539 |
+
>>> x, = inputs
|
| 540 |
+
>>> ctx.save_for_backward(x)
|
| 541 |
+
>>>
|
| 542 |
+
>>> def backward(ctx, grad):
|
| 543 |
+
>>> x, = ctx.saved_tensors
|
| 544 |
+
>>> return grad * x.cos()
|
| 545 |
+
>>>
|
| 546 |
+
>>> numpy_sin.register_autograd(backward, setup_context=setup_context)
|
| 547 |
+
>>>
|
| 548 |
+
>>> x = torch.randn(3, requires_grad=True)
|
| 549 |
+
>>> y = numpy_sin(x)
|
| 550 |
+
>>> grad_x, = torch.autograd.grad(y, x, torch.ones_like(y))
|
| 551 |
+
>>> assert torch.allclose(grad_x, x.cos())
|
| 552 |
+
>>>
|
| 553 |
+
>>> # Example with a keyword-only arg
|
| 554 |
+
>>> @torch.library.custom_op("mylib::numpy_mul", mutates_args=())
|
| 555 |
+
>>> def numpy_mul(x: Tensor, *, val: float) -> Tensor:
|
| 556 |
+
>>> x_np = x.cpu().numpy()
|
| 557 |
+
>>> y_np = x_np * val
|
| 558 |
+
>>> return torch.from_numpy(y_np).to(device=x.device)
|
| 559 |
+
>>>
|
| 560 |
+
>>> def setup_context(ctx, inputs, keyword_only_inputs, output) -> Tensor:
|
| 561 |
+
>>> ctx.val = keyword_only_inputs["val"]
|
| 562 |
+
>>>
|
| 563 |
+
>>> def backward(ctx, grad):
|
| 564 |
+
>>> return grad * ctx.val
|
| 565 |
+
>>>
|
| 566 |
+
>>> numpy_mul.register_autograd(backward, setup_context=setup_context)
|
| 567 |
+
>>>
|
| 568 |
+
>>> x = torch.randn(3, requires_grad=True)
|
| 569 |
+
>>> y = numpy_mul(x, val=3.14)
|
| 570 |
+
>>> grad_x, = torch.autograd.grad(y, x, torch.ones_like(y))
|
| 571 |
+
>>> assert torch.allclose(grad_x, torch.full_like(x, 3.14))
|
| 572 |
+
|
| 573 |
+
"""
|
| 574 |
+
schema = self._opoverload._schema
|
| 575 |
+
if not utils.is_functional_schema(schema):
|
| 576 |
+
raise RuntimeError(
|
| 577 |
+
f"Cannot register autograd formula for non-functional operator "
|
| 578 |
+
f"{self} with schema {schema}. Please create "
|
| 579 |
+
f"a functional operator and register an autograd formula for that."
|
| 580 |
+
)
|
| 581 |
+
|
| 582 |
+
self._backward_fn = backward
|
| 583 |
+
self._setup_context_fn = setup_context
|
| 584 |
+
|
| 585 |
+
def _register_to_dispatcher(self) -> None:
|
| 586 |
+
lib = self._lib
|
| 587 |
+
schema_str = self._name + self._schema
|
| 588 |
+
cpp_schema = _C.parse_schema(schema_str)
|
| 589 |
+
if utils.has_kwarg_only_tensors(cpp_schema):
|
| 590 |
+
# If you want to support this, the progression is:
|
| 591 |
+
# - supporting kwarg-only Tensors that are non-differentiable
|
| 592 |
+
# - supporting kwarg-only Tensors (regardless of differentiability)
|
| 593 |
+
raise NotImplementedError(
|
| 594 |
+
f"custom_op with kwarg-only Tensor args. Please make your "
|
| 595 |
+
f"tensors not kwarg-only. Got: {schema_str}"
|
| 596 |
+
)
|
| 597 |
+
|
| 598 |
+
lib.define(
|
| 599 |
+
schema_str,
|
| 600 |
+
tags=[_C.Tag.pt2_compliant_tag, _C.Tag.needs_fixed_stride_order],
|
| 601 |
+
)
|
| 602 |
+
self._opoverload = utils.lookup_op(self._qualname)
|
| 603 |
+
|
| 604 |
+
def fake_impl(*args, **kwargs):
|
| 605 |
+
if self._abstract_fn is None:
|
| 606 |
+
if utils.can_generate_trivial_fake_impl(self._opoverload):
|
| 607 |
+
return None
|
| 608 |
+
raise RuntimeError(
|
| 609 |
+
f"There was no fake impl registered for {self}. "
|
| 610 |
+
f"This is necessary for torch.compile/export/fx tracing to work. "
|
| 611 |
+
f"Please use `{self._init_fn.__name__}.register_fake` to add an "
|
| 612 |
+
f"fake impl."
|
| 613 |
+
)
|
| 614 |
+
return self._abstract_fn(*args, **kwargs)
|
| 615 |
+
|
| 616 |
+
lib._register_fake(self._name, fake_impl, _stacklevel=4)
|
| 617 |
+
|
| 618 |
+
autograd_impl = autograd.make_autograd_impl(self._opoverload, self)
|
| 619 |
+
lib.impl(self._name, autograd_impl, "Autograd", with_keyset=True)
|
| 620 |
+
|
| 621 |
+
schema = self._opoverload._schema
|
| 622 |
+
if schema.is_mutable:
|
| 623 |
+
|
| 624 |
+
def adinplaceorview_impl(keyset, *args, **kwargs):
|
| 625 |
+
for arg, val in utils.zip_schema(schema, args, kwargs):
|
| 626 |
+
if not arg.alias_info:
|
| 627 |
+
continue
|
| 628 |
+
if not arg.alias_info.is_write:
|
| 629 |
+
continue
|
| 630 |
+
if isinstance(val, Tensor):
|
| 631 |
+
torch.autograd.graph.increment_version(val)
|
| 632 |
+
elif isinstance(val, (tuple, list)):
|
| 633 |
+
for v in val:
|
| 634 |
+
if isinstance(v, Tensor):
|
| 635 |
+
torch.autograd.graph.increment_version(v)
|
| 636 |
+
with _C._AutoDispatchBelowADInplaceOrView():
|
| 637 |
+
return self._opoverload.redispatch(
|
| 638 |
+
keyset & _C._after_ADInplaceOrView_keyset, *args, **kwargs
|
| 639 |
+
)
|
| 640 |
+
|
| 641 |
+
lib.impl(
|
| 642 |
+
self._name,
|
| 643 |
+
adinplaceorview_impl,
|
| 644 |
+
"ADInplaceOrView",
|
| 645 |
+
with_keyset=True,
|
| 646 |
+
)
|
| 647 |
+
|
| 648 |
+
def _register_backend_select_dispatcher(self, device_arg_index: int):
|
| 649 |
+
"""
|
| 650 |
+
Switch on the device argument to select the correct backend to dispatch to.
|
| 651 |
+
"""
|
| 652 |
+
|
| 653 |
+
def backend_select(keyset, *args, **kwargs):
|
| 654 |
+
device = args[device_arg_index].type
|
| 655 |
+
if device not in self._backend_fns:
|
| 656 |
+
raise RuntimeError(
|
| 657 |
+
f"{self._name} does not have a kernel registered for {device}. "
|
| 658 |
+
"Please use register_kernel to do so."
|
| 659 |
+
)
|
| 660 |
+
dispatch_key = _C._dispatch_key_for_device(device)
|
| 661 |
+
dispatch_key = getattr(_C.DispatchKey, dispatch_key)
|
| 662 |
+
return self._opoverload.redispatch(
|
| 663 |
+
_C.DispatchKeySet(dispatch_key), *args, **kwargs
|
| 664 |
+
)
|
| 665 |
+
|
| 666 |
+
self._lib.impl(self._name, backend_select, "BackendSelect", with_keyset=True)
|
| 667 |
+
|
| 668 |
+
def __call__(self, *args, **kwargs):
|
| 669 |
+
return self._opoverload(*args, **kwargs)
|
| 670 |
+
|
| 671 |
+
def register_vmap(
|
| 672 |
+
self,
|
| 673 |
+
func: Optional[Callable] = None,
|
| 674 |
+
):
|
| 675 |
+
r"""Register a vmap implementation to support :func:`torch.vmap` for this custom op.
|
| 676 |
+
|
| 677 |
+
This API may be used as a decorator.
|
| 678 |
+
|
| 679 |
+
In order for an operator to work with :func:`torch.vmap`, you may need to register a
|
| 680 |
+
vmap implementation in the following signature:
|
| 681 |
+
|
| 682 |
+
``vmap_func(info, in_dims: Tuple[Optional[int]], *args, **kwargs)``,
|
| 683 |
+
|
| 684 |
+
where ``*args`` and ``**kwargs`` are the arguments and kwargs for ``op``.
|
| 685 |
+
|
| 686 |
+
It specifies how do we compute the batched version of ``op`` given inputs with an additional
|
| 687 |
+
dimension (specified by ``in_dims``).
|
| 688 |
+
|
| 689 |
+
For each arg in ``args``, ``in_dims`` has a corresponding ``Optional[int]``. It is ``None``
|
| 690 |
+
if the arg is not a Tensor or if the arg is not being vmapped over, otherwise, it is an integer
|
| 691 |
+
specifying what dimension of the Tensor is being vmapped over.
|
| 692 |
+
|
| 693 |
+
``info`` is a collection of additional metadata that may be helpful:
|
| 694 |
+
``info.batch_size`` specifies the size of the dimension being vmapped over, while
|
| 695 |
+
``info.randomness`` is the ``randomness`` option that was passed to :func:`torch.vmap`.
|
| 696 |
+
|
| 697 |
+
The return of the function ``func`` is a tuple of ``(output, out_dims)``. Similar to ``in_dims``,
|
| 698 |
+
``out_dims`` should be of the same structure as ``output`` and contain one ``out_dim``
|
| 699 |
+
per output that specifies if the output has the vmapped dimension and what index it is in.
|
| 700 |
+
|
| 701 |
+
Examples:
|
| 702 |
+
>>> import torch
|
| 703 |
+
>>> import numpy as np
|
| 704 |
+
>>> from torch import Tensor
|
| 705 |
+
>>> from typing import Tuple
|
| 706 |
+
>>>
|
| 707 |
+
>>> def to_numpy(tensor):
|
| 708 |
+
>>> return tensor.cpu().numpy()
|
| 709 |
+
>>>
|
| 710 |
+
>>> lib = torch.library.Library("mylib", "FRAGMENT")
|
| 711 |
+
>>> @torch.library.custom_op("mylib::numpy_cube", mutates_args=())
|
| 712 |
+
>>> def numpy_cube(x: Tensor) -> Tuple[Tensor, Tensor]:
|
| 713 |
+
>>> x_np = to_numpy(x)
|
| 714 |
+
>>> dx = torch.tensor(3 * x_np ** 2, device=x.device)
|
| 715 |
+
>>> return torch.tensor(x_np ** 3, device=x.device), dx
|
| 716 |
+
>>>
|
| 717 |
+
>>> def numpy_cube_vmap(info, in_dims, x):
|
| 718 |
+
>>> result = numpy_cube(x)
|
| 719 |
+
>>> return result, (in_dims[0], in_dims[0])
|
| 720 |
+
>>>
|
| 721 |
+
>>> numpy_cube.register_vmap(numpy_cube_vmap)
|
| 722 |
+
>>>
|
| 723 |
+
>>> x = torch.randn(3)
|
| 724 |
+
>>> torch.vmap(numpy_cube)(x)
|
| 725 |
+
>>>
|
| 726 |
+
>>> @torch.library.custom_op("mylib::numpy_mul", mutates_args=())
|
| 727 |
+
>>> def numpy_mul(x: Tensor, y: Tensor) -> Tensor:
|
| 728 |
+
>>> return torch.tensor(to_numpy(x) * to_numpy(y), device=x.device)
|
| 729 |
+
>>>
|
| 730 |
+
>>> @numpy_mul.register_vmap
|
| 731 |
+
>>> def numpy_mul_vmap(info, in_dims, x, y):
|
| 732 |
+
>>> x_bdim, y_bdim = in_dims
|
| 733 |
+
>>> x = x.movedim(x_bdim, -1) if x_bdim is not None else x.unsqueeze(-1)
|
| 734 |
+
>>> y = y.movedim(y_bdim, -1) if y_bdim is not None else y.unsqueeze(-1)
|
| 735 |
+
>>> result = x * y
|
| 736 |
+
>>> result = result.movedim(-1, 0)
|
| 737 |
+
>>> return result, 0
|
| 738 |
+
>>>
|
| 739 |
+
>>>
|
| 740 |
+
>>> x = torch.randn(3)
|
| 741 |
+
>>> y = torch.randn(3)
|
| 742 |
+
>>> torch.vmap(numpy_mul)(x, y)
|
| 743 |
+
"""
|
| 744 |
+
from torch._functorch.autograd_function import custom_function_call_vmap_helper
|
| 745 |
+
from torch._functorch.pyfunctorch import retrieve_current_functorch_interpreter
|
| 746 |
+
|
| 747 |
+
def register(func):
|
| 748 |
+
need_register = self._vmap_fn is None
|
| 749 |
+
self._vmap_fn = func
|
| 750 |
+
|
| 751 |
+
if need_register:
|
| 752 |
+
|
| 753 |
+
def wrapped_func(keyset, *args, **kwargs):
|
| 754 |
+
interpreter = retrieve_current_functorch_interpreter()
|
| 755 |
+
return custom_function_call_vmap_helper(
|
| 756 |
+
interpreter, self._vmap_fn, self._opoverload, *args, **kwargs
|
| 757 |
+
)
|
| 758 |
+
|
| 759 |
+
self._lib.impl(
|
| 760 |
+
self._name, wrapped_func, "FuncTorchBatched", with_keyset=True
|
| 761 |
+
)
|
| 762 |
+
|
| 763 |
+
if func is None:
|
| 764 |
+
return register
|
| 765 |
+
else:
|
| 766 |
+
return register(func)
|
| 767 |
+
|
| 768 |
+
|
| 769 |
+
# NOTE: [Supporting decorator and non-decorator usage]
|
| 770 |
+
#
|
| 771 |
+
# Some APIs may be both used as a decorator and not as a decorator.
|
| 772 |
+
# For example:
|
| 773 |
+
#
|
| 774 |
+
# >>> def fn(x):
|
| 775 |
+
# >>> return x.sin()
|
| 776 |
+
# >>>
|
| 777 |
+
# >>> # Usage 1: not as a decorator
|
| 778 |
+
# >>> numpy_sin.register_kernel("cuda", fn)
|
| 779 |
+
# >>>
|
| 780 |
+
# >>> # Usage 2: as a decorator
|
| 781 |
+
# >>> @numpy_sin.register_kernel("cuda")
|
| 782 |
+
# >>> def fn2(x):
|
| 783 |
+
# >>> return x.sin
|
| 784 |
+
#
|
| 785 |
+
# The way we support this is that `register_kernel` accepts an optional `fn`.
|
| 786 |
+
# If `fn` is provided (Usage 1), then we know that the user is using it not
|
| 787 |
+
# as a decorator.
|
| 788 |
+
# If `fn` is not provided (Usage 2), then `register_kernel` needs to return a
|
| 789 |
+
# decorator.
|
| 790 |
+
|
| 791 |
+
|
| 792 |
+
OPDEF_TO_LIB: Dict[str, "torch.library.Library"] = {}
|
| 793 |
+
OPDEFS: weakref.WeakValueDictionary = weakref.WeakValueDictionary()
|
| 794 |
+
|
| 795 |
+
|
| 796 |
+
def get_library_allowing_overwrite(
|
| 797 |
+
namespace: str, name: str
|
| 798 |
+
) -> "torch.library.Library":
|
| 799 |
+
qualname = f"{namespace}::{name}"
|
| 800 |
+
|
| 801 |
+
if qualname in OPDEF_TO_LIB:
|
| 802 |
+
OPDEF_TO_LIB[qualname]._destroy()
|
| 803 |
+
del OPDEF_TO_LIB[qualname]
|
| 804 |
+
|
| 805 |
+
lib = torch.library.Library(namespace, "FRAGMENT") # noqa: TOR901
|
| 806 |
+
OPDEF_TO_LIB[qualname] = lib
|
| 807 |
+
return lib
|
| 808 |
+
|
| 809 |
+
|
| 810 |
+
def iter_tensors(
|
| 811 |
+
args: Tuple[Any], kwargs: Dict[str, Any], allowed_nesting: int = 1
|
| 812 |
+
) -> Iterator[Tensor]:
|
| 813 |
+
def check(arg):
|
| 814 |
+
if isinstance(arg, Tensor):
|
| 815 |
+
yield arg
|
| 816 |
+
elif allowed_nesting > 0 and isinstance(arg, (tuple, list)):
|
| 817 |
+
yield from iter_tensors(tuple(arg), {}, allowed_nesting - 1)
|
| 818 |
+
|
| 819 |
+
for arg in args:
|
| 820 |
+
yield from check(arg)
|
| 821 |
+
for kwarg in kwargs.values():
|
| 822 |
+
yield from check(kwarg)
|
| 823 |
+
|
| 824 |
+
|
| 825 |
+
def _maybe_get_opdef(
|
| 826 |
+
op: Union[CustomOpDef, _ops.OpOverload, str]
|
| 827 |
+
) -> Optional[CustomOpDef]:
|
| 828 |
+
if isinstance(op, CustomOpDef):
|
| 829 |
+
return op
|
| 830 |
+
if isinstance(op, _ops.OpOverload):
|
| 831 |
+
op = op._name
|
| 832 |
+
assert isinstance(op, str)
|
| 833 |
+
if op in OPDEFS:
|
| 834 |
+
return OPDEFS[op]
|
| 835 |
+
return None
|
infer_4_47_1/lib/python3.10/site-packages/torch/_library/fake_impl.py
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
import contextlib
|
| 3 |
+
import functools
|
| 4 |
+
from typing import Callable, Optional
|
| 5 |
+
from typing_extensions import deprecated
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from torch._library.utils import Kernel, RegistrationHandle
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class FakeImplHolder:
|
| 12 |
+
"""A holder where one can register an fake impl to."""
|
| 13 |
+
|
| 14 |
+
def __init__(self, qualname: str):
|
| 15 |
+
self.qualname: str = qualname
|
| 16 |
+
self.kernel: Optional[Kernel] = None
|
| 17 |
+
self.lib: Optional[torch.library.Library] = None
|
| 18 |
+
|
| 19 |
+
def register(self, func: Callable, source: str) -> RegistrationHandle:
|
| 20 |
+
"""Register an fake impl.
|
| 21 |
+
|
| 22 |
+
Returns a RegistrationHandle that one can use to de-register this
|
| 23 |
+
fake impl.
|
| 24 |
+
"""
|
| 25 |
+
if self.kernel is not None:
|
| 26 |
+
raise RuntimeError(
|
| 27 |
+
f"register_fake(...): the operator {self.qualname} "
|
| 28 |
+
f"already has an fake impl registered at "
|
| 29 |
+
f"{self.kernel.source}."
|
| 30 |
+
)
|
| 31 |
+
if torch._C._dispatch_has_kernel_for_dispatch_key(self.qualname, "Meta"):
|
| 32 |
+
raise RuntimeError(
|
| 33 |
+
f"register_fake(...): the operator {self.qualname} "
|
| 34 |
+
f"already has an DispatchKey::Meta implementation via a "
|
| 35 |
+
f"pre-existing torch.library or TORCH_LIBRARY registration. "
|
| 36 |
+
f"Please either remove that registration or don't call "
|
| 37 |
+
f"register_fake."
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
if torch._C._dispatch_has_kernel_for_dispatch_key(
|
| 41 |
+
self.qualname, "CompositeImplicitAutograd"
|
| 42 |
+
):
|
| 43 |
+
raise RuntimeError(
|
| 44 |
+
f"register_fake(...): the operator {self.qualname} "
|
| 45 |
+
f"already has an implementation for this device type via a "
|
| 46 |
+
f"pre-existing registration to "
|
| 47 |
+
f"DispatchKey::CompositeImplicitAutograd."
|
| 48 |
+
f"CompositeImplicitAutograd operators do not need an fake "
|
| 49 |
+
f"impl; "
|
| 50 |
+
f"instead, the operator will decompose into its constituents "
|
| 51 |
+
f"and those "
|
| 52 |
+
f"can have fake impls defined on them."
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# Store the kernel in this holder
|
| 56 |
+
self.kernel = Kernel(func, source)
|
| 57 |
+
|
| 58 |
+
# Also register the fake impl to Meta key
|
| 59 |
+
if self.lib is None:
|
| 60 |
+
ns = self.qualname.split("::")[0]
|
| 61 |
+
self.lib = torch.library.Library(ns, "FRAGMENT") # noqa: TOR901
|
| 62 |
+
meta_kernel = construct_meta_kernel(self.qualname, self)
|
| 63 |
+
self.lib.impl(self.qualname, meta_kernel, "Meta")
|
| 64 |
+
|
| 65 |
+
def deregister_fake_class():
|
| 66 |
+
if self.lib:
|
| 67 |
+
self.lib._destroy()
|
| 68 |
+
self.lib = None
|
| 69 |
+
self.kernel = None
|
| 70 |
+
|
| 71 |
+
return RegistrationHandle(deregister_fake_class)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def construct_meta_kernel(qualname: str, fake_impl_holder: FakeImplHolder) -> Callable:
|
| 75 |
+
assert fake_impl_holder.kernel is not None
|
| 76 |
+
|
| 77 |
+
@functools.wraps(fake_impl_holder.kernel.func)
|
| 78 |
+
def meta_kernel(*args, **kwargs):
|
| 79 |
+
assert fake_impl_holder.kernel is not None
|
| 80 |
+
source = fake_impl_holder.kernel.source
|
| 81 |
+
|
| 82 |
+
def error_on_ctx():
|
| 83 |
+
raise RuntimeError(
|
| 84 |
+
f"Attempted to call get_ctx() for the meta implementation "
|
| 85 |
+
f"for {qualname} (implemented at {source})"
|
| 86 |
+
f"You have presumably called get_ctx() because the operator "
|
| 87 |
+
f"has a data-dependent output shape; if so, there is no "
|
| 88 |
+
f"such meta implementation and this error is the correct "
|
| 89 |
+
f"behavior."
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
with set_ctx_getter(error_on_ctx):
|
| 93 |
+
return fake_impl_holder.kernel(*args, **kwargs)
|
| 94 |
+
|
| 95 |
+
return meta_kernel
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_none():
|
| 99 |
+
return None
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
global_ctx_getter: Callable = get_none
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
@contextlib.contextmanager
|
| 106 |
+
def set_ctx_getter(ctx_getter):
|
| 107 |
+
global global_ctx_getter
|
| 108 |
+
prev = global_ctx_getter
|
| 109 |
+
try:
|
| 110 |
+
global_ctx_getter = ctx_getter
|
| 111 |
+
yield
|
| 112 |
+
finally:
|
| 113 |
+
global_ctx_getter = prev
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
class FakeImplCtx:
|
| 117 |
+
"""
|
| 118 |
+
Context object for writing fake implementations for custom operators.
|
| 119 |
+
"""
|
| 120 |
+
|
| 121 |
+
def __init__(self, _fake_mode, _op):
|
| 122 |
+
self._fake_mode = _fake_mode
|
| 123 |
+
self._shape_env = _fake_mode.shape_env
|
| 124 |
+
self._op = _op
|
| 125 |
+
|
| 126 |
+
@deprecated(
|
| 127 |
+
"`create_unbacked_symint` is deprecated, please use `new_dynamic_size` instead",
|
| 128 |
+
category=FutureWarning,
|
| 129 |
+
)
|
| 130 |
+
def create_unbacked_symint(self, *, min=2, max=None) -> torch.SymInt:
|
| 131 |
+
return self.new_dynamic_size(min=min, max=max)
|
| 132 |
+
|
| 133 |
+
def new_dynamic_size(self, *, min=0, max=None) -> torch.SymInt:
|
| 134 |
+
"""Constructs a new symint (symbolic int) representing a data-dependent value.
|
| 135 |
+
|
| 136 |
+
This is useful for writing the fake implementation (which is necessary
|
| 137 |
+
for torch.compile) for a CustomOp where an output Tensor has a size
|
| 138 |
+
that depends on the data of the input Tensors.
|
| 139 |
+
|
| 140 |
+
Args:
|
| 141 |
+
min (int): A statically known inclusive lower bound for this symint. Default: 0
|
| 142 |
+
max (Optional[int]): A statically known inclusive upper bound for this
|
| 143 |
+
symint. Default: None
|
| 144 |
+
|
| 145 |
+
.. warning:
|
| 146 |
+
|
| 147 |
+
It is important that the ``min`` and ``max`` (if not None) values are set
|
| 148 |
+
correctly, otherwise, there will be undefined behavior under
|
| 149 |
+
torch.compile. The default value of ``min`` is 2 due to torch.compile
|
| 150 |
+
specializing on 0/1 sizes.
|
| 151 |
+
|
| 152 |
+
You must also verify that your implementation on concrete Tensors
|
| 153 |
+
(e.g. CPU/CUDA) only returns Tensors where the size that corresponds
|
| 154 |
+
to the symint also has respects these constraint.
|
| 155 |
+
The easiest way to do this is to add an assertion in the CPU/CUDA/etc
|
| 156 |
+
implementation that the size follows these bounds.
|
| 157 |
+
|
| 158 |
+
Example::
|
| 159 |
+
|
| 160 |
+
>>> # An operator with data-dependent output shape
|
| 161 |
+
>>> lib = torch.library.Library("mymodule", "FRAGMENT")
|
| 162 |
+
>>> lib.define("mymodule::custom_nonzero(Tensor x) -> Tensor")
|
| 163 |
+
>>>
|
| 164 |
+
>>> @torch.library.register_fake("mymodule::custom_nonzero")
|
| 165 |
+
>>> def _(x):
|
| 166 |
+
>>> # Number of nonzero-elements is data-dependent.
|
| 167 |
+
>>> # Since we cannot peek at the data in an fake impl,
|
| 168 |
+
>>> # we use the ctx object to construct a new symint that
|
| 169 |
+
>>> # represents the data-dependent size.
|
| 170 |
+
>>> ctx = torch.library.get_ctx()
|
| 171 |
+
>>> nnz = ctx.new_dynamic_size()
|
| 172 |
+
>>> shape = [nnz, x.dim()]
|
| 173 |
+
>>> result = x.new_empty(shape, dtype=torch.int64)
|
| 174 |
+
>>> return result
|
| 175 |
+
>>>
|
| 176 |
+
>>> @torch.library.impl(lib, "custom_nonzero", "CPU")
|
| 177 |
+
>>> def _(x):
|
| 178 |
+
>>> x_np = x.numpy()
|
| 179 |
+
>>> res = np.stack(np.nonzero(x_np), axis=1)
|
| 180 |
+
>>> return torch.tensor(res, device=x.device)
|
| 181 |
+
|
| 182 |
+
"""
|
| 183 |
+
if (
|
| 184 |
+
self._shape_env is None
|
| 185 |
+
or not self._shape_env.allow_dynamic_output_shape_ops
|
| 186 |
+
):
|
| 187 |
+
raise torch._subclasses.fake_tensor.DynamicOutputShapeException(self._op)
|
| 188 |
+
|
| 189 |
+
if isinstance(min, torch.SymInt) or isinstance(max, torch.SymInt):
|
| 190 |
+
raise ValueError(
|
| 191 |
+
f"ctx.new_dynamic_size(min={min}, max={max}): expected "
|
| 192 |
+
f"min and max to be statically known ints but got SymInt. "
|
| 193 |
+
f"This is not supported."
|
| 194 |
+
)
|
| 195 |
+
|
| 196 |
+
if min < 0:
|
| 197 |
+
raise ValueError(
|
| 198 |
+
f"ctx.new_dynamic_size(min={min}, ...): expected min to be "
|
| 199 |
+
f"greater than or equal to 0: this API can only create "
|
| 200 |
+
f"non-negative sizes."
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
result = self._shape_env.create_unbacked_symint()
|
| 204 |
+
torch.fx.experimental.symbolic_shapes._constrain_range_for_size(
|
| 205 |
+
result, min=min, max=max
|
| 206 |
+
)
|
| 207 |
+
return result
|
infer_4_47_1/lib/python3.10/site-packages/torch/_library/simple_registry.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
from typing import Callable, Optional
|
| 3 |
+
|
| 4 |
+
from .fake_impl import FakeImplHolder
|
| 5 |
+
from .utils import RegistrationHandle
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
__all__ = ["SimpleLibraryRegistry", "SimpleOperatorEntry", "singleton"]
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class SimpleLibraryRegistry:
|
| 12 |
+
"""Registry for the "simple" torch.library APIs
|
| 13 |
+
|
| 14 |
+
The "simple" torch.library APIs are a higher-level API on top of the
|
| 15 |
+
raw PyTorch DispatchKey registration APIs that includes:
|
| 16 |
+
- fake impl
|
| 17 |
+
|
| 18 |
+
Registrations for these APIs do not go into the PyTorch dispatcher's
|
| 19 |
+
table because they may not directly involve a DispatchKey. For example,
|
| 20 |
+
the fake impl is a Python function that gets invoked by FakeTensor.
|
| 21 |
+
Instead, we manage them here.
|
| 22 |
+
|
| 23 |
+
SimpleLibraryRegistry is a mapping from a fully qualified operator name
|
| 24 |
+
(including the overload) to SimpleOperatorEntry.
|
| 25 |
+
"""
|
| 26 |
+
|
| 27 |
+
def __init__(self):
|
| 28 |
+
self._data = {}
|
| 29 |
+
|
| 30 |
+
def find(self, qualname: str) -> "SimpleOperatorEntry":
|
| 31 |
+
if qualname not in self._data:
|
| 32 |
+
self._data[qualname] = SimpleOperatorEntry(qualname)
|
| 33 |
+
return self._data[qualname]
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
singleton: SimpleLibraryRegistry = SimpleLibraryRegistry()
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class SimpleOperatorEntry:
|
| 40 |
+
"""This is 1:1 to an operator overload.
|
| 41 |
+
|
| 42 |
+
The fields of SimpleOperatorEntry are Holders where kernels can be
|
| 43 |
+
registered to.
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
def __init__(self, qualname: str):
|
| 47 |
+
self.qualname: str = qualname
|
| 48 |
+
self.fake_impl: FakeImplHolder = FakeImplHolder(qualname)
|
| 49 |
+
self.torch_dispatch_rules: GenericTorchDispatchRuleHolder = (
|
| 50 |
+
GenericTorchDispatchRuleHolder(qualname)
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
# For compatibility reasons. We can delete this soon.
|
| 54 |
+
@property
|
| 55 |
+
def abstract_impl(self):
|
| 56 |
+
return self.fake_impl
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class GenericTorchDispatchRuleHolder:
|
| 60 |
+
def __init__(self, qualname):
|
| 61 |
+
self._data = {}
|
| 62 |
+
self.qualname = qualname
|
| 63 |
+
|
| 64 |
+
def register(
|
| 65 |
+
self, torch_dispatch_class: type, func: Callable
|
| 66 |
+
) -> RegistrationHandle:
|
| 67 |
+
if self.find(torch_dispatch_class):
|
| 68 |
+
raise RuntimeError(
|
| 69 |
+
f"{torch_dispatch_class} already has a `__torch_dispatch__` rule registered for {self.qualname}"
|
| 70 |
+
)
|
| 71 |
+
self._data[torch_dispatch_class] = func
|
| 72 |
+
|
| 73 |
+
def deregister():
|
| 74 |
+
del self._data[torch_dispatch_class]
|
| 75 |
+
|
| 76 |
+
return RegistrationHandle(deregister)
|
| 77 |
+
|
| 78 |
+
def find(self, torch_dispatch_class):
|
| 79 |
+
return self._data.get(torch_dispatch_class, None)
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def find_torch_dispatch_rule(op, torch_dispatch_class: type) -> Optional[Callable]:
|
| 83 |
+
return singleton.find(op.__qualname__).torch_dispatch_rules.find(
|
| 84 |
+
torch_dispatch_class
|
| 85 |
+
)
|
infer_4_47_1/lib/python3.10/site-packages/torch/_library/triton.py
ADDED
|
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import contextlib
|
| 2 |
+
import threading
|
| 3 |
+
from typing import Callable, Generator, Iterable, Optional, Union
|
| 4 |
+
|
| 5 |
+
from .custom_ops import custom_op
|
| 6 |
+
from .infer_schema import infer_schema
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def triton_op(
|
| 10 |
+
name: str,
|
| 11 |
+
fn: Optional[Callable] = None,
|
| 12 |
+
/,
|
| 13 |
+
*,
|
| 14 |
+
mutates_args: Union[str, Iterable[str]],
|
| 15 |
+
schema: Optional[str] = None,
|
| 16 |
+
) -> Callable:
|
| 17 |
+
"""Create a custom operator whose implementation is backed by 1+ triton kernels.
|
| 18 |
+
|
| 19 |
+
Use this instead of :func:`torch.library.custom_op` when the implementation
|
| 20 |
+
consists of 1+ triton kernels. :func:`torch.library.custom_op` treats
|
| 21 |
+
custom operators as opaque (:func:`torch.compile` and
|
| 22 |
+
:func:`torch.export.export` will never trace into them), but ``triton_op``
|
| 23 |
+
makes the implementation visible to these subsystems, allowing them
|
| 24 |
+
to optimize the triton kernel(s).
|
| 25 |
+
|
| 26 |
+
Note that ``fn`` must only consist of calls to PyTorch-understood
|
| 27 |
+
operators and triton kernels. Any triton kernels called inside ``fn``
|
| 28 |
+
must be wrapped in a call to :func:`torch._library.capture_triton``.
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
name (str): A name for the custom op that looks like "{namespace}::{name}",
|
| 32 |
+
e.g. "mylib::my_linear". The name is used as the op's stable identifier
|
| 33 |
+
in PyTorch subsystems (e.g. torch.export, FX graphs).
|
| 34 |
+
To avoid name collisions, please use your project name as the namespace;
|
| 35 |
+
e.g. all custom ops in pytorch/fbgemm use "fbgemm" as the namespace.
|
| 36 |
+
mutates_args (Iterable[str] or "unknown"): The names of args that the function mutates.
|
| 37 |
+
This MUST be accurate, otherwise, the behavior is undefined. If "unknown",
|
| 38 |
+
it pessimistically assumes that all inputs to the operator are being mutated.
|
| 39 |
+
schema (None | str): A schema string for the operator. If None
|
| 40 |
+
(recommended) we'll infer a schema for the operator from its type
|
| 41 |
+
annotations. We recommend letting us infer a schema unless you
|
| 42 |
+
have a specific reason not to.
|
| 43 |
+
Example: "(Tensor x, int y) -> (Tensor, Tensor)".
|
| 44 |
+
|
| 45 |
+
Example::
|
| 46 |
+
|
| 47 |
+
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA)
|
| 48 |
+
>>> import torch
|
| 49 |
+
>>> from torch._library import triton_op, capture_triton
|
| 50 |
+
>>>
|
| 51 |
+
>>> import triton
|
| 52 |
+
>>> from triton import language as tl
|
| 53 |
+
>>>
|
| 54 |
+
>>> @triton.jit
|
| 55 |
+
>>> def add_kernel(
|
| 56 |
+
>>> in_ptr0,
|
| 57 |
+
>>> in_ptr1,
|
| 58 |
+
>>> out_ptr,
|
| 59 |
+
>>> n_elements,
|
| 60 |
+
>>> BLOCK_SIZE: "tl.constexpr",
|
| 61 |
+
>>> ):
|
| 62 |
+
>>> pid = tl.program_id(axis=0)
|
| 63 |
+
>>> block_start = pid * BLOCK_SIZE
|
| 64 |
+
>>> offsets = block_start + tl.arange(0, BLOCK_SIZE)
|
| 65 |
+
>>> mask = offsets < n_elements
|
| 66 |
+
>>> x = tl.load(in_ptr0 + offsets, mask=mask)
|
| 67 |
+
>>> y = tl.load(in_ptr1 + offsets, mask=mask)
|
| 68 |
+
>>> output = x + y
|
| 69 |
+
>>> tl.store(out_ptr + offsets, output, mask=mask)
|
| 70 |
+
>>>
|
| 71 |
+
>>> @triton_op("mylib::add", mutates_args={})
|
| 72 |
+
>>> def add(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
|
| 73 |
+
>>> output = torch.empty_like(x)
|
| 74 |
+
>>> n_elements = output.numel()
|
| 75 |
+
>>>
|
| 76 |
+
>>> def grid(meta):
|
| 77 |
+
>>> return (triton.cdiv(n_elements, meta["BLOCK_SIZE"]),)
|
| 78 |
+
>>>
|
| 79 |
+
>>> # NB: we need to wrap the triton kernel in a call to capture_triton
|
| 80 |
+
>>> capture_triton(add_kernel)[grid](x, y, output, n_elements, 16)
|
| 81 |
+
>>> return output
|
| 82 |
+
>>>
|
| 83 |
+
>>> @torch.compile
|
| 84 |
+
>>> def f(x, y):
|
| 85 |
+
>>> return add(x, y)
|
| 86 |
+
>>>
|
| 87 |
+
>>> x = torch.randn(3, device="cuda")
|
| 88 |
+
>>> y = torch.randn(3, device="cuda")
|
| 89 |
+
>>>
|
| 90 |
+
>>> z = f(x, y)
|
| 91 |
+
>>> assert torch.allclose(z, x + y)
|
| 92 |
+
|
| 93 |
+
"""
|
| 94 |
+
|
| 95 |
+
def dec(fn: Callable) -> Callable:
|
| 96 |
+
def backend_fn(*args, **kwargs): # type: ignore[no-untyped-def]
|
| 97 |
+
# Optimization: we're passing regular Tensors into the triton kernel, so
|
| 98 |
+
# no need to go through HOP dispatch
|
| 99 |
+
with set_capture_triton_enabled(False):
|
| 100 |
+
return fn(*args, **kwargs)
|
| 101 |
+
|
| 102 |
+
result = custom_op(
|
| 103 |
+
name,
|
| 104 |
+
backend_fn,
|
| 105 |
+
mutates_args=mutates_args,
|
| 106 |
+
schema=infer_schema(fn, mutates_args=mutates_args),
|
| 107 |
+
)
|
| 108 |
+
from .._subclasses.functional_tensor import FunctionalTensorMode
|
| 109 |
+
|
| 110 |
+
# We require that the user pass us a function that is make_fx traceable,
|
| 111 |
+
# so we can just register it as the Fake/meta kernel.
|
| 112 |
+
result.register_fake(fn)
|
| 113 |
+
|
| 114 |
+
# We decompose the operator when FunctionalTensorMode is active.
|
| 115 |
+
# The goal is to decompose the operator in AOTDispatcher.
|
| 116 |
+
# - With torch.compile, this means that the backend (usually Inductor)
|
| 117 |
+
# can see a call to the triton kernel(s) and so it can directly optimize
|
| 118 |
+
# them by inlining them into the lowering process.
|
| 119 |
+
# - With post-dispatch torch.export, this means that there will
|
| 120 |
+
# be a call(s) to the triton_kernel_wrapper_functional HOP in the
|
| 121 |
+
# graph (that we have yet to figure out how to serialize).
|
| 122 |
+
def functional_decomp( # type: ignore[no-untyped-def]
|
| 123 |
+
mode, _, types, args, kwargs
|
| 124 |
+
):
|
| 125 |
+
with mode:
|
| 126 |
+
return fn(*args, **kwargs)
|
| 127 |
+
|
| 128 |
+
result.register_torch_dispatch(FunctionalTensorMode, functional_decomp)
|
| 129 |
+
return result
|
| 130 |
+
|
| 131 |
+
if fn is None:
|
| 132 |
+
return dec
|
| 133 |
+
else:
|
| 134 |
+
return dec(fn)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
capture_triton_enabled = threading.local()
|
| 138 |
+
capture_triton_enabled_default = True
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
@contextlib.contextmanager
|
| 142 |
+
def set_capture_triton_enabled(enabled: bool) -> Generator[None, None, None]:
|
| 143 |
+
"""If triton kernels annotated with @capture_triton should dispatch via HOP
|
| 144 |
+
or go straight to the triton kernel execution.
|
| 145 |
+
|
| 146 |
+
We have this switch because eager-mode performance of HOP dispatch is slow
|
| 147 |
+
enough to matter (~1ms) and we know that capture_triton isn't necessary in
|
| 148 |
+
some situations (eager-mode with regular Tensors)
|
| 149 |
+
"""
|
| 150 |
+
try:
|
| 151 |
+
prev = is_capture_triton_enabled()
|
| 152 |
+
capture_triton_enabled.value = enabled
|
| 153 |
+
yield
|
| 154 |
+
finally:
|
| 155 |
+
capture_triton_enabled.value = prev
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def is_capture_triton_enabled() -> bool:
|
| 159 |
+
return getattr(capture_triton_enabled, "value", capture_triton_enabled_default)
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def capture_triton(triton_kernel: Callable, /) -> Callable:
|
| 163 |
+
"""Allows capture of a triton kernel into a graph via make_fx or
|
| 164 |
+
non-strict export (coming soon).
|
| 165 |
+
|
| 166 |
+
These technologies perform Dispatcher-based tracing (via
|
| 167 |
+
``__torch_dispatch__``) and cannot see calls to raw triton kernels.
|
| 168 |
+
The ``capture_triton`` API returns a new callable that can actually
|
| 169 |
+
be traced into a graph.
|
| 170 |
+
|
| 171 |
+
Examples:
|
| 172 |
+
|
| 173 |
+
>>> # xdoctest: +SKIP
|
| 174 |
+
>>> import torch
|
| 175 |
+
>>> import triton
|
| 176 |
+
>>> from triton import language as tl
|
| 177 |
+
>>> from torch.fx.experimental.proxy_tensor import make_fx
|
| 178 |
+
>>> from torch._higher_order_ops.triton_kernel_wrap import capture_triton
|
| 179 |
+
>>>
|
| 180 |
+
>>> @triton.jit
|
| 181 |
+
>>> def add_kernel(
|
| 182 |
+
>>> in_ptr0,
|
| 183 |
+
>>> in_ptr1,
|
| 184 |
+
>>> out_ptr,
|
| 185 |
+
>>> n_elements,
|
| 186 |
+
>>> BLOCK_SIZE: "tl.constexpr",
|
| 187 |
+
>>> ):
|
| 188 |
+
>>> pid = tl.program_id(axis=0)
|
| 189 |
+
>>> block_start = pid * BLOCK_SIZE
|
| 190 |
+
>>> offsets = block_start + tl.arange(0, BLOCK_SIZE)
|
| 191 |
+
>>> mask = offsets < n_elements
|
| 192 |
+
>>> x = tl.load(in_ptr0 + offsets, mask=mask)
|
| 193 |
+
>>> y = tl.load(in_ptr1 + offsets, mask=mask)
|
| 194 |
+
>>> output = x + y
|
| 195 |
+
>>> tl.store(out_ptr + offsets, output, mask=mask)
|
| 196 |
+
>>>
|
| 197 |
+
>>> def add(x, y):
|
| 198 |
+
>>> output = torch.empty_like(x)
|
| 199 |
+
>>> n_elements = output.numel()
|
| 200 |
+
>>>
|
| 201 |
+
>>> def grid_fn(meta):
|
| 202 |
+
>>> return (triton.cdiv(n_elements, meta["BLOCK_SIZE"]),)
|
| 203 |
+
>>>
|
| 204 |
+
>>> capture_triton(add_kernel)[grid_fn](x, y, output, n_elements, 16)
|
| 205 |
+
>>> return output
|
| 206 |
+
>>>
|
| 207 |
+
>>> x = torch.randn(3, device="cuda")
|
| 208 |
+
>>> y = torch.randn(3, device="cuda")
|
| 209 |
+
>>> gm = make_fx(add)(x, y)
|
| 210 |
+
>>> print(gm.code)
|
| 211 |
+
>>> # def forward(self, x_1, y_1):
|
| 212 |
+
>>> # empty_like = torch.ops.aten.empty_like.default(x_1, pin_memory = False)
|
| 213 |
+
>>> # triton_kernel_wrapper_mutation_proxy = triton_kernel_wrapper_mutation(
|
| 214 |
+
>>> # kernel_idx = 0, constant_args_idx = 0,
|
| 215 |
+
>>> # grid = [(1, 1, 1)], kwargs = {
|
| 216 |
+
>>> # 'in_ptr0': x_1, 'in_ptr1': y_1, 'out_ptr': empty_like,
|
| 217 |
+
>>> # 'n_elements': 3, 'BLOCK_SIZE': 16
|
| 218 |
+
>>> # })
|
| 219 |
+
>>> # return empty_like
|
| 220 |
+
|
| 221 |
+
"""
|
| 222 |
+
from triton.runtime.autotuner import Autotuner
|
| 223 |
+
from triton.runtime.jit import JITFunction
|
| 224 |
+
|
| 225 |
+
from torch._higher_order_ops.triton_kernel_wrap import TraceableTritonKernelWrapper
|
| 226 |
+
|
| 227 |
+
if not isinstance(triton_kernel, (JITFunction, Autotuner)):
|
| 228 |
+
raise RuntimeError(
|
| 229 |
+
"capture_triton only works on functions annotated with triton.jit or triton.autotune"
|
| 230 |
+
)
|
| 231 |
+
if not is_capture_triton_enabled():
|
| 232 |
+
return triton_kernel
|
| 233 |
+
return TraceableTritonKernelWrapper(triton_kernel, None, None)
|
infer_4_47_1/lib/python3.10/site-packages/torch/_library/utils.py
ADDED
|
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
import dataclasses
|
| 3 |
+
import inspect
|
| 4 |
+
import sys
|
| 5 |
+
from typing import Any, Callable, Dict, Iterable, Tuple, Union
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from torch import _C, _utils_internal
|
| 9 |
+
from torch._ops import OpOverload
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@dataclasses.dataclass
|
| 13 |
+
class Kernel:
|
| 14 |
+
"""Models a (function, source location)"""
|
| 15 |
+
|
| 16 |
+
func: Callable
|
| 17 |
+
source: str
|
| 18 |
+
|
| 19 |
+
def __call__(self, *args, **kwargs):
|
| 20 |
+
return self.func(*args, **kwargs)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class RegistrationHandle:
|
| 24 |
+
"""Does something when someone calls .destroy() on it"""
|
| 25 |
+
|
| 26 |
+
def __init__(self, on_destroy: Callable):
|
| 27 |
+
self._on_destroy = on_destroy
|
| 28 |
+
|
| 29 |
+
def destroy(self) -> None:
|
| 30 |
+
self._on_destroy()
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def get_source(stacklevel: int) -> str:
|
| 34 |
+
"""Get a string that represents the caller.
|
| 35 |
+
|
| 36 |
+
Example: "/path/to/foo.py:42"
|
| 37 |
+
|
| 38 |
+
Use stacklevel=1 to get the caller's source
|
| 39 |
+
Use stacklevel=2 to get the caller's caller's source
|
| 40 |
+
etc.
|
| 41 |
+
"""
|
| 42 |
+
frame = inspect.getframeinfo(sys._getframe(stacklevel))
|
| 43 |
+
source = f"{frame.filename}:{frame.lineno}"
|
| 44 |
+
return source
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def parse_namespace(qualname: str) -> Tuple[str, str]:
|
| 48 |
+
splits = qualname.split("::")
|
| 49 |
+
if len(splits) != 2:
|
| 50 |
+
raise ValueError(
|
| 51 |
+
f"Expected `qualname` to be of the form "
|
| 52 |
+
f'"namespace::name", but got {qualname}. '
|
| 53 |
+
f"The qualname passed to the torch.library APIs must consist "
|
| 54 |
+
f"of a namespace and a name, e.g. aten::sin"
|
| 55 |
+
)
|
| 56 |
+
return splits[0], splits[1]
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def lookup_op(qualname: str) -> OpOverload:
|
| 60 |
+
namespace, name = parse_namespace(qualname)
|
| 61 |
+
if "." in name:
|
| 62 |
+
name, overload = name.split(".")
|
| 63 |
+
else:
|
| 64 |
+
overload = "default"
|
| 65 |
+
ns = getattr(torch.ops, namespace)
|
| 66 |
+
packet = getattr(ns, name)
|
| 67 |
+
return getattr(packet, overload)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def is_builtin(op: OpOverload) -> bool:
|
| 71 |
+
assert isinstance(op, OpOverload)
|
| 72 |
+
return op.namespace in {"aten", "prim", "prims"}
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def is_functional_schema(schema: Any) -> bool:
|
| 76 |
+
"""Check if the schema is functional.
|
| 77 |
+
|
| 78 |
+
An operator is functional if:
|
| 79 |
+
- it does not mutate any of its inputs
|
| 80 |
+
- it does not return a view on any of its inputs
|
| 81 |
+
- it has at least one return
|
| 82 |
+
"""
|
| 83 |
+
|
| 84 |
+
def is_functional(schema):
|
| 85 |
+
if schema.is_mutable:
|
| 86 |
+
return False
|
| 87 |
+
rets = schema.returns
|
| 88 |
+
is_non_mutating_view = len(rets) > 0 and any(
|
| 89 |
+
r.alias_info is not None and not r.alias_info.is_write for r in rets
|
| 90 |
+
)
|
| 91 |
+
if is_non_mutating_view:
|
| 92 |
+
return False
|
| 93 |
+
if not schema.returns:
|
| 94 |
+
return False
|
| 95 |
+
return True
|
| 96 |
+
|
| 97 |
+
if isinstance(schema, torch._C.FunctionSchema):
|
| 98 |
+
return is_functional(schema)
|
| 99 |
+
|
| 100 |
+
# Lazy import because not all PyTorch builds have torchgen
|
| 101 |
+
from torchgen.model import FunctionSchema
|
| 102 |
+
|
| 103 |
+
if isinstance(schema, str):
|
| 104 |
+
schema = FunctionSchema.parse(schema)
|
| 105 |
+
assert isinstance(schema, FunctionSchema)
|
| 106 |
+
return is_functional(schema)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
# should be torch._C.JitType but that annotation is busted
|
| 110 |
+
def is_tensorlist_like_type(typ: Any) -> bool:
|
| 111 |
+
return (
|
| 112 |
+
typ == _C.ListType(_C.TensorType.get())
|
| 113 |
+
or typ == _C.ListType(_C.OptionalType(_C.TensorType.get()))
|
| 114 |
+
or typ == _C.OptionalType(_C.ListType(_C.TensorType.get()))
|
| 115 |
+
or typ == _C.OptionalType(_C.ListType(_C.OptionalType(_C.TensorType.get())))
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
# should be torch._C.JitType but that annotation is busted
|
| 120 |
+
def is_tensor_like_type(typ: Any) -> bool:
|
| 121 |
+
return typ == _C.TensorType.get() or typ == _C.OptionalType(_C.TensorType.get())
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def mutates_and_returns_first_arg(op: OpOverload):
|
| 125 |
+
"""Check if an op is an inplace aten op, i.e. it mutates and returns the first arg.
|
| 126 |
+
|
| 127 |
+
TODO: torchgen/model.py's FunctionSchema.parse is the source of truth for this,
|
| 128 |
+
but not all PyTorch builds have torchgen (due to the yaml dependency being weird).
|
| 129 |
+
Figure this out.
|
| 130 |
+
|
| 131 |
+
Example: add_(Tensor(a!) x, Tensor y) -> Tensor(a)
|
| 132 |
+
"""
|
| 133 |
+
if op.namespace != "aten":
|
| 134 |
+
return False
|
| 135 |
+
schema = op._schema
|
| 136 |
+
if not len(schema.returns) == 1:
|
| 137 |
+
return False
|
| 138 |
+
if schema.returns[0].alias_info is None:
|
| 139 |
+
return False
|
| 140 |
+
alias_set = schema.returns[0].alias_info.after_set
|
| 141 |
+
if len(alias_set) != 1:
|
| 142 |
+
return False
|
| 143 |
+
loc = next(iter(alias_set))
|
| 144 |
+
if len(schema.arguments) < 1:
|
| 145 |
+
return False
|
| 146 |
+
first_arg = schema.arguments[0]
|
| 147 |
+
if first_arg.alias_info is None:
|
| 148 |
+
return False
|
| 149 |
+
if not first_arg.alias_info.is_write:
|
| 150 |
+
return False
|
| 151 |
+
alias_set = first_arg.alias_info.after_set
|
| 152 |
+
if len(alias_set) != 1:
|
| 153 |
+
return False
|
| 154 |
+
if loc != next(iter(alias_set)):
|
| 155 |
+
return False
|
| 156 |
+
for arg in schema.arguments[1:]:
|
| 157 |
+
if arg.alias_info is not None:
|
| 158 |
+
return False
|
| 159 |
+
return True
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def fill_defaults(schema, args, kwargs):
|
| 163 |
+
new_args = []
|
| 164 |
+
new_kwargs = {}
|
| 165 |
+
for i in range(len(schema.arguments)):
|
| 166 |
+
info = schema.arguments[i]
|
| 167 |
+
if info.kwarg_only:
|
| 168 |
+
if info.name in kwargs:
|
| 169 |
+
new_kwargs[info.name] = kwargs[info.name]
|
| 170 |
+
else:
|
| 171 |
+
new_kwargs[info.name] = info.default_value
|
| 172 |
+
else:
|
| 173 |
+
if i < len(args):
|
| 174 |
+
new_args.append(args[i])
|
| 175 |
+
else:
|
| 176 |
+
new_args.append(info.default_value)
|
| 177 |
+
return tuple(new_args), new_kwargs
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def zip_schema(
|
| 181 |
+
schema: _C.FunctionSchema, args: Tuple[Any, ...], kwargs: Dict[str, Any]
|
| 182 |
+
) -> Iterable[Tuple[_C.Argument, Any]]:
|
| 183 |
+
"""zips schema.arguments and (args, kwargs) together.
|
| 184 |
+
|
| 185 |
+
Assumes that (args, kwargs) were the inputs to some torch._ops.OpOverload:
|
| 186 |
+
that is, kwargs must be keyword-only arguments and default values may be omitted.
|
| 187 |
+
"""
|
| 188 |
+
assert len(schema.arguments) >= len(args) + len(kwargs)
|
| 189 |
+
for i in range(len(schema.arguments)):
|
| 190 |
+
info = schema.arguments[i]
|
| 191 |
+
if info.kwarg_only:
|
| 192 |
+
if info.name in kwargs:
|
| 193 |
+
yield info, kwargs[info.name]
|
| 194 |
+
continue
|
| 195 |
+
if i >= len(args):
|
| 196 |
+
# args that are equal to their default values are not populated
|
| 197 |
+
# if they are followed by args that are equal to their defaults.
|
| 198 |
+
# Skip these.
|
| 199 |
+
continue
|
| 200 |
+
yield info, args[i]
|
| 201 |
+
return
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def hop_schema_from_fx_node(node):
|
| 205 |
+
from torchgen.gen_schema_utils import FunctionSchemaGen
|
| 206 |
+
|
| 207 |
+
hop = node.target
|
| 208 |
+
if not isinstance(hop, torch._ops.HigherOrderOperator):
|
| 209 |
+
raise RuntimeError("fx_node's target must be a hop.")
|
| 210 |
+
|
| 211 |
+
def _collect_example_val(node):
|
| 212 |
+
meta_val = node.meta.get("val", None)
|
| 213 |
+
if meta_val is None:
|
| 214 |
+
assert node.op == "get_attr"
|
| 215 |
+
meta_val = getattr(node.graph.owning_module, node.target)
|
| 216 |
+
return meta_val
|
| 217 |
+
|
| 218 |
+
example_inputs = []
|
| 219 |
+
for arg in node.args:
|
| 220 |
+
if isinstance(arg, (torch.fx.Node, torch.fx.node.Node)):
|
| 221 |
+
example_inputs.append(_collect_example_val(arg))
|
| 222 |
+
elif isinstance(
|
| 223 |
+
arg, (torch.fx.immutable_collections.immutable_list, list, tuple)
|
| 224 |
+
):
|
| 225 |
+
example_inputs.append([_collect_example_val(x) for x in arg])
|
| 226 |
+
else:
|
| 227 |
+
raise RuntimeError(f"Unsupported arg type {type(arg)}")
|
| 228 |
+
|
| 229 |
+
# Bound the arguments to make sure number of inputs are correct
|
| 230 |
+
bound_args: inspect.BoundArguments = inspect.signature(hop.__call__).bind(
|
| 231 |
+
*example_inputs
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
# We treat example_output as a single value in return. This is to differentiate 1. return a single val
|
| 235 |
+
# vs 2. return a tuple with one element.
|
| 236 |
+
example_output = _collect_example_val(node)
|
| 237 |
+
return FunctionSchemaGen.from_example(
|
| 238 |
+
hop._name, tuple(bound_args.arguments.items()), (list(example_output),)
|
| 239 |
+
)
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
def can_generate_trivial_fake_impl(op: OpOverload) -> bool:
|
| 243 |
+
assert isinstance(op, OpOverload)
|
| 244 |
+
if is_builtin(op):
|
| 245 |
+
# We control the built-ins. These may (in rare cases)
|
| 246 |
+
# do input metadata mutation (which we have banned on custom ops)
|
| 247 |
+
return False
|
| 248 |
+
schema = op._schema
|
| 249 |
+
# It's suspicious if the op is not mutable but returns nothing, so we return False out of an abundance of caution
|
| 250 |
+
if not schema.is_mutable:
|
| 251 |
+
return False
|
| 252 |
+
if len(schema.returns) > 0:
|
| 253 |
+
return False
|
| 254 |
+
# If the op returns nothing, then it has a trivial fake impl.
|
| 255 |
+
return True
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def requires_set_python_module() -> bool:
|
| 259 |
+
"""If an op was defined in C++ and extended from Python using the
|
| 260 |
+
torch.library APIs, returns if we require that there have been a
|
| 261 |
+
m.set_python_module("mylib.ops") call from C++ that associates
|
| 262 |
+
the C++ op with a python module.
|
| 263 |
+
"""
|
| 264 |
+
return getattr(_utils_internal, "REQUIRES_SET_PYTHON_MODULE", True)
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
def handle_dispatch_mode(curr_mode, op_overload, *args, **kwargs):
|
| 268 |
+
assert isinstance(curr_mode, torch.utils._python_dispatch.TorchDispatchMode)
|
| 269 |
+
overload_types = []
|
| 270 |
+
args_flattened, _ = torch.utils._pytree.tree_flatten((args, kwargs.values()))
|
| 271 |
+
for a in args_flattened:
|
| 272 |
+
# TODO: need to double check the semantics of the "types" argument to torch_dispatch.
|
| 273 |
+
# It's generated in PyInterpreter.cpp, but seems to be generated in two places,
|
| 274 |
+
# where in one case we only include tensors with the python key, and in another
|
| 275 |
+
# we include **all** tensors.
|
| 276 |
+
if isinstance(a, torch.Tensor) and torch._C._dispatch_keys(a).has(
|
| 277 |
+
torch._C.DispatchKey.Python
|
| 278 |
+
):
|
| 279 |
+
overload_types.append(type(a))
|
| 280 |
+
# TODO: check that I got these args correct (in C++, we pass in "0000"??)
|
| 281 |
+
|
| 282 |
+
return curr_mode.__torch_dispatch__(op_overload, overload_types, args, kwargs)
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
def has_kwarg_only_args(schema: _C.FunctionSchema):
|
| 286 |
+
return any(a.kwarg_only for a in schema.arguments)
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
def has_kwarg_only_tensors(schema: _C.FunctionSchema):
|
| 290 |
+
for a in schema.arguments:
|
| 291 |
+
if not (is_tensor_like_type(a.type) or is_tensorlist_like_type(a.type)):
|
| 292 |
+
continue
|
| 293 |
+
if not a.kwarg_only:
|
| 294 |
+
continue
|
| 295 |
+
return True
|
| 296 |
+
return False
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
def has_tensor_arg(schema: _C.FunctionSchema) -> bool:
|
| 300 |
+
"""
|
| 301 |
+
Given a schema, returns True if the schema has a Tensor arg.
|
| 302 |
+
A Tensor arg is any arg with a type annotation that might involve Tensor.
|
| 303 |
+
"""
|
| 304 |
+
return any(
|
| 305 |
+
(is_tensor_like_type(a.type) or is_tensorlist_like_type(a.type))
|
| 306 |
+
for a in schema.arguments
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
def get_device_arg_index(schema: _C.FunctionSchema) -> Union[int, None]:
|
| 311 |
+
"""
|
| 312 |
+
Given a schema, returns the id of the `device: torch.device` argument.
|
| 313 |
+
If it does not exist, returns None.
|
| 314 |
+
"""
|
| 315 |
+
for index, arg in enumerate(schema.arguments):
|
| 316 |
+
if arg.type is _C.DeviceObjType.get() and arg.name == "device":
|
| 317 |
+
return index
|
| 318 |
+
return None
|
infer_4_47_1/lib/python3.10/site-packages/torch/_logging/__init__.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Top level logging module for torch logging
|
| 2 |
+
# Design doc: https://docs.google.com/document/d/1ZRfTWKa8eaPq1AxaiHrq4ASTPouzzlPiuquSBEJYwS8/edit#
|
| 3 |
+
# Simple setup for onboarding (see above doc for more detail):
|
| 4 |
+
# 1. register any top-level log qualified name for your module in torch._logging._registrations (see there for examples)
|
| 5 |
+
# 2. register any artifacts (<artifact_name> below) in torch._logging._registrations
|
| 6 |
+
# a. call getArtifactLogger(__name__, <artifact_name>) at your logging site instead of the standard logger to log your artifact
|
| 7 |
+
import torch._logging._registrations
|
| 8 |
+
|
| 9 |
+
from ._internal import (
|
| 10 |
+
_init_logs,
|
| 11 |
+
DEFAULT_LOGGING,
|
| 12 |
+
getArtifactLogger,
|
| 13 |
+
LazyString,
|
| 14 |
+
set_logs,
|
| 15 |
+
trace_structured,
|
| 16 |
+
warning_once,
|
| 17 |
+
)
|
infer_4_47_1/lib/python3.10/site-packages/torch/_logging/__pycache__/_internal.cpython-310.pyc
ADDED
|
Binary file (33.5 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_logging/__pycache__/_registrations.cpython-310.pyc
ADDED
|
Binary file (5.49 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_logging/__pycache__/scribe.cpython-310.pyc
ADDED
|
Binary file (2.86 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_logging/__pycache__/structured.cpython-310.pyc
ADDED
|
Binary file (1.8 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_logging/_internal.py
ADDED
|
@@ -0,0 +1,1162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: allow-untyped-defs
|
| 2 |
+
import functools
|
| 3 |
+
import hashlib
|
| 4 |
+
import itertools
|
| 5 |
+
import json
|
| 6 |
+
import logging
|
| 7 |
+
import os
|
| 8 |
+
import os.path
|
| 9 |
+
import pathlib
|
| 10 |
+
import re
|
| 11 |
+
import sys
|
| 12 |
+
import tempfile
|
| 13 |
+
from dataclasses import dataclass, field
|
| 14 |
+
from importlib import __import__
|
| 15 |
+
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
|
| 16 |
+
from weakref import WeakSet
|
| 17 |
+
|
| 18 |
+
import torch._logging.structured
|
| 19 |
+
from torch._utils_internal import log_trace_structured_event
|
| 20 |
+
from torch.utils._traceback import CapturedTraceback
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
log = logging.getLogger(__name__)
|
| 24 |
+
|
| 25 |
+
# This is a synthetic logger which doesn't correspond to an actual logger,
|
| 26 |
+
# but handles all of our "tracing" logging, which is structured and doesn't go
|
| 27 |
+
# to stderr but always goes to a dedicated log file. We don't put these
|
| 28 |
+
# loggers in the classic module hierarchy, because we don't want a suppression
|
| 29 |
+
# of logs to also cause a trace to get suppressed (traces typically are not
|
| 30 |
+
# collected, unless we are in prod, in which case they always are collected.)
|
| 31 |
+
#
|
| 32 |
+
# TODO: Maybe we should allow for some sub-hierarchy so you can control which
|
| 33 |
+
# traces you want to collect, for performance reasons.
|
| 34 |
+
#
|
| 35 |
+
# See https://docs.google.com/document/d/1CX_hJ0PNy9f3R1y8TJrfkSeLkvGjjjLU84BSXgS2AZ8/edit
|
| 36 |
+
trace_log = logging.getLogger("torch.__trace")
|
| 37 |
+
|
| 38 |
+
DEFAULT_LOG_LEVEL = logging.WARNING
|
| 39 |
+
LOG_ENV_VAR = "TORCH_LOGS"
|
| 40 |
+
LOG_OUT_ENV_VAR = "TORCH_LOGS_OUT"
|
| 41 |
+
LOG_FORMAT_ENV_VAR = "TORCH_LOGS_FORMAT"
|
| 42 |
+
TRACE_ENV_VAR = "TORCH_TRACE"
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
@dataclass
|
| 46 |
+
class LogRegistry:
|
| 47 |
+
# shorthand name to log qualified name
|
| 48 |
+
# Note: this only contains loggers registered
|
| 49 |
+
# from register_log
|
| 50 |
+
# e.g. "dynamo" -> "torch._dynamo"
|
| 51 |
+
log_alias_to_log_qnames: Dict[str, List[str]] = field(default_factory=dict)
|
| 52 |
+
|
| 53 |
+
# artifact logger qualified names,
|
| 54 |
+
# this is populated lazily, as calls to getArtifactLogger
|
| 55 |
+
# currently formatted as <module>.__<artifact_name>
|
| 56 |
+
# e.g. "torch._dynamo.convert_frame.__guards"
|
| 57 |
+
artifact_log_qnames: Set[str] = field(default_factory=set)
|
| 58 |
+
|
| 59 |
+
# child logs of registered logs if specified via open
|
| 60 |
+
# registration by the user (ie placing "torch._dynamo.output_graph" in the env var)
|
| 61 |
+
# these need to be tracked so their levels can be reset properly
|
| 62 |
+
# e.g. "torch._dynamo.output_graph"
|
| 63 |
+
child_log_qnames: Set[str] = field(default_factory=set)
|
| 64 |
+
|
| 65 |
+
# artifact names, populated by register_artifact
|
| 66 |
+
# e.g. "guards"
|
| 67 |
+
artifact_names: Set[str] = field(default_factory=set)
|
| 68 |
+
|
| 69 |
+
# Artifacts that should be visible by default in the error message
|
| 70 |
+
visible_artifacts: Set[str] = field(default_factory=set)
|
| 71 |
+
|
| 72 |
+
# A short description of each artifact
|
| 73 |
+
artifact_descriptions: Dict[str, str] = field(default_factory=dict)
|
| 74 |
+
|
| 75 |
+
# artifacts which are not displayed unless explicitly named in the
|
| 76 |
+
# settings. Ex. output_code is NOT displayed even if the inductor
|
| 77 |
+
# log level is set to DEBUG. It must be explicitly named in the settings
|
| 78 |
+
off_by_default_artifact_names: Set[str] = field(default_factory=set)
|
| 79 |
+
|
| 80 |
+
# logging format string for artifacts
|
| 81 |
+
artifact_log_formatters: Dict[str, logging.Formatter] = field(default_factory=dict)
|
| 82 |
+
|
| 83 |
+
def is_artifact(self, name):
|
| 84 |
+
return name in self.artifact_names
|
| 85 |
+
|
| 86 |
+
def is_log(self, alias):
|
| 87 |
+
return alias in self.log_alias_to_log_qnames
|
| 88 |
+
|
| 89 |
+
# register a log with an alias
|
| 90 |
+
def register_log(self, alias, log_qnames: Union[str, List[str]]):
|
| 91 |
+
if isinstance(log_qnames, str):
|
| 92 |
+
log_qnames = [log_qnames]
|
| 93 |
+
self.log_alias_to_log_qnames[alias] = log_qnames
|
| 94 |
+
|
| 95 |
+
# register an artifact name
|
| 96 |
+
def register_artifact_name(
|
| 97 |
+
self, name, description, visible, off_by_default, log_format
|
| 98 |
+
):
|
| 99 |
+
self.artifact_names.add(name)
|
| 100 |
+
if visible:
|
| 101 |
+
self.visible_artifacts.add(name)
|
| 102 |
+
self.artifact_descriptions[name] = description
|
| 103 |
+
|
| 104 |
+
# if off by default, don't enable it
|
| 105 |
+
# when log_name's log_level is set to DEBUG
|
| 106 |
+
if off_by_default:
|
| 107 |
+
self.off_by_default_artifact_names.add(name)
|
| 108 |
+
|
| 109 |
+
if log_format is not None:
|
| 110 |
+
self.artifact_log_formatters[name] = logging.Formatter(log_format)
|
| 111 |
+
|
| 112 |
+
# register the qualified name of an artifact log
|
| 113 |
+
# this is needed to know which logs need to be reset
|
| 114 |
+
# whenever the log_state is changed
|
| 115 |
+
def register_artifact_log(self, artifact_log_qname):
|
| 116 |
+
self.artifact_log_qnames.add(artifact_log_qname)
|
| 117 |
+
|
| 118 |
+
def register_child_log(self, log_qname):
|
| 119 |
+
self.child_log_qnames.add(log_qname)
|
| 120 |
+
|
| 121 |
+
# flattens all the qnames together (TODO: consider memoizing?)
|
| 122 |
+
def get_log_qnames(self) -> Set[str]:
|
| 123 |
+
return {
|
| 124 |
+
qname
|
| 125 |
+
for qnames in self.log_alias_to_log_qnames.values()
|
| 126 |
+
for qname in qnames
|
| 127 |
+
}
|
| 128 |
+
|
| 129 |
+
def get_artifact_log_qnames(self):
|
| 130 |
+
return set(self.artifact_log_qnames)
|
| 131 |
+
|
| 132 |
+
def get_child_log_qnames(self):
|
| 133 |
+
return set(self.child_log_qnames)
|
| 134 |
+
|
| 135 |
+
def is_off_by_default(self, artifact_qname):
|
| 136 |
+
return artifact_qname in self.off_by_default_artifact_names
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
@dataclass
|
| 140 |
+
class LogState:
|
| 141 |
+
# qualified log names -> currently set log level
|
| 142 |
+
log_qname_to_level: Dict[str, str] = field(default_factory=dict)
|
| 143 |
+
|
| 144 |
+
# the set of currently enabled artifacts
|
| 145 |
+
artifact_names: Set[str] = field(default_factory=set)
|
| 146 |
+
|
| 147 |
+
def enable_artifact(self, artifact_name):
|
| 148 |
+
self.artifact_names.add(artifact_name)
|
| 149 |
+
|
| 150 |
+
def is_artifact_enabled(self, name):
|
| 151 |
+
return name in self.artifact_names
|
| 152 |
+
|
| 153 |
+
def enable_log(self, log_qnames, log_level):
|
| 154 |
+
if isinstance(log_qnames, str):
|
| 155 |
+
log_qnames = [log_qnames]
|
| 156 |
+
for log_qname in log_qnames:
|
| 157 |
+
self.log_qname_to_level[log_qname] = log_level
|
| 158 |
+
|
| 159 |
+
def get_log_level_pairs(self):
|
| 160 |
+
"""Returns all qualified module names for which the user requested
|
| 161 |
+
explicit logging settings.
|
| 162 |
+
|
| 163 |
+
.. warning:
|
| 164 |
+
|
| 165 |
+
This function used to return all loggers, regardless of whether
|
| 166 |
+
or not the user specified them or not; it now only returns logs
|
| 167 |
+
which were explicitly mentioned by the user (and torch, which
|
| 168 |
+
always is implicitly requested when we initialize our logging
|
| 169 |
+
subsystem.)
|
| 170 |
+
"""
|
| 171 |
+
return self.log_qname_to_level.items()
|
| 172 |
+
|
| 173 |
+
def clear(self):
|
| 174 |
+
self.log_qname_to_level.clear()
|
| 175 |
+
self.artifact_names.clear()
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
log_registry = LogRegistry()
|
| 179 |
+
log_state = LogState()
|
| 180 |
+
|
| 181 |
+
# sample usage: torch._logging.set_logs(**torch._logging.DEFAULT_LOGGING)
|
| 182 |
+
DEFAULT_LOGGING = {
|
| 183 |
+
"dynamo": logging.INFO,
|
| 184 |
+
"aot": logging.INFO,
|
| 185 |
+
"inductor": logging.INFO,
|
| 186 |
+
"fsdp": logging.INFO,
|
| 187 |
+
"ddp_graphs": True,
|
| 188 |
+
"graph_breaks": True,
|
| 189 |
+
"guards": True,
|
| 190 |
+
"recompiles": True,
|
| 191 |
+
"dynamic": logging.INFO,
|
| 192 |
+
}
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
def set_logs(
|
| 196 |
+
*,
|
| 197 |
+
all: Optional[int] = None,
|
| 198 |
+
dynamo: Optional[int] = None,
|
| 199 |
+
aot: Optional[int] = None,
|
| 200 |
+
autograd: Optional[int] = None,
|
| 201 |
+
dynamic: Optional[int] = None,
|
| 202 |
+
inductor: Optional[int] = None,
|
| 203 |
+
distributed: Optional[int] = None,
|
| 204 |
+
c10d: Optional[int] = None,
|
| 205 |
+
ddp: Optional[int] = None,
|
| 206 |
+
fsdp: Optional[int] = None,
|
| 207 |
+
dtensor: Optional[int] = None,
|
| 208 |
+
onnx: Optional[int] = None,
|
| 209 |
+
bytecode: bool = False,
|
| 210 |
+
aot_graphs: bool = False,
|
| 211 |
+
aot_joint_graph: bool = False,
|
| 212 |
+
ddp_graphs: bool = False,
|
| 213 |
+
graph: bool = False,
|
| 214 |
+
graph_code: bool = False,
|
| 215 |
+
graph_breaks: bool = False,
|
| 216 |
+
graph_sizes: bool = False,
|
| 217 |
+
guards: bool = False,
|
| 218 |
+
recompiles: bool = False,
|
| 219 |
+
recompiles_verbose: bool = False,
|
| 220 |
+
trace_source: bool = False,
|
| 221 |
+
trace_call: bool = False,
|
| 222 |
+
trace_bytecode: bool = False,
|
| 223 |
+
output_code: bool = False,
|
| 224 |
+
kernel_code: bool = False,
|
| 225 |
+
schedule: bool = False,
|
| 226 |
+
perf_hints: bool = False,
|
| 227 |
+
post_grad_graphs: bool = False,
|
| 228 |
+
onnx_diagnostics: bool = False,
|
| 229 |
+
fusion: bool = False,
|
| 230 |
+
overlap: bool = False,
|
| 231 |
+
export: Optional[int] = None,
|
| 232 |
+
modules: Optional[Dict[str, Union[int, bool]]] = None,
|
| 233 |
+
cudagraphs: bool = False,
|
| 234 |
+
sym_node: bool = False,
|
| 235 |
+
compiled_autograd: bool = False,
|
| 236 |
+
compiled_autograd_verbose: bool = False,
|
| 237 |
+
cudagraph_static_inputs: bool = False,
|
| 238 |
+
benchmarking: bool = False,
|
| 239 |
+
):
|
| 240 |
+
"""
|
| 241 |
+
Sets the log level for individual components and toggles individual log
|
| 242 |
+
artifact types.
|
| 243 |
+
|
| 244 |
+
.. warning:: This feature is a prototype and may have compatibility
|
| 245 |
+
breaking changes in the future.
|
| 246 |
+
|
| 247 |
+
.. note:: The ``TORCH_LOGS`` environment variable has complete precedence
|
| 248 |
+
over this function, so if it was set, this function does nothing.
|
| 249 |
+
|
| 250 |
+
A component is a set of related features in PyTorch. All of the log
|
| 251 |
+
messages emitted from a given component have their own log levels. If the
|
| 252 |
+
log level of a particular message has priority greater than or equal to its
|
| 253 |
+
component's log level setting, it is emitted. Otherwise, it is suppressed.
|
| 254 |
+
This allows you to, for instance, silence large groups of log messages that
|
| 255 |
+
are not relevant to you and increase verbosity of logs for components that
|
| 256 |
+
are relevant. The expected log level values, ordered from highest to lowest
|
| 257 |
+
priority, are:
|
| 258 |
+
|
| 259 |
+
* ``logging.CRITICAL``
|
| 260 |
+
* ``logging.ERROR``
|
| 261 |
+
* ``logging.WARNING``
|
| 262 |
+
* ``logging.INFO``
|
| 263 |
+
* ``logging.DEBUG``
|
| 264 |
+
* ``logging.NOTSET``
|
| 265 |
+
|
| 266 |
+
See documentation for the Python ``logging`` module for more information on
|
| 267 |
+
log levels: `<https://docs.python.org/3/library/logging.html#logging-levels>`_
|
| 268 |
+
|
| 269 |
+
An artifact is a particular type of log message. Each artifact is assigned
|
| 270 |
+
to a parent component. A component can emit many different kinds of
|
| 271 |
+
artifacts. In general, an artifact is emitted if either its corresponding
|
| 272 |
+
setting in the argument list below is turned on or if its parent component
|
| 273 |
+
is set to a log level less than or equal to the log level of the artifact.
|
| 274 |
+
|
| 275 |
+
Keyword args:
|
| 276 |
+
all (:class:`Optional[int]`):
|
| 277 |
+
The default log level for all components. Default: ``logging.WARN``
|
| 278 |
+
|
| 279 |
+
dynamo (:class:`Optional[int]`):
|
| 280 |
+
The log level for the TorchDynamo component. Default: ``logging.WARN``
|
| 281 |
+
|
| 282 |
+
aot (:class:`Optional[int]`):
|
| 283 |
+
The log level for the AOTAutograd component. Default: ``logging.WARN``
|
| 284 |
+
|
| 285 |
+
autograd (:class:`Optional[int]`):
|
| 286 |
+
The log level for autograd. Default: ``logging.WARN``
|
| 287 |
+
|
| 288 |
+
inductor (:class:`Optional[int]`):
|
| 289 |
+
The log level for the TorchInductor component. Default: ``logging.WARN``
|
| 290 |
+
|
| 291 |
+
dynamic (:class:`Optional[int]`):
|
| 292 |
+
The log level for dynamic shapes. Default: ``logging.WARN``
|
| 293 |
+
|
| 294 |
+
distributed (:class:`Optional[int]`):
|
| 295 |
+
Whether to log c10d communication operations and other debug info from PyTorch Distributed components.
|
| 296 |
+
Default: ``logging.WARN``
|
| 297 |
+
|
| 298 |
+
c10d (:class:`Optional[int]`):
|
| 299 |
+
Whether to log c10d communication operations related debug info in PyTorch Distributed components.
|
| 300 |
+
Default: ``logging.WARN``
|
| 301 |
+
|
| 302 |
+
ddp (:class:`Optional[int]`):
|
| 303 |
+
Whether to log debug info related to ``DistributedDataParallel``(DDP) from PyTorch Distributed components.
|
| 304 |
+
Default: ``logging.WARN``
|
| 305 |
+
|
| 306 |
+
fsdp (:class:`Optional[int]`):
|
| 307 |
+
Whether to log debug info related to ``FullyShardedDataParallel``(FSDP) in PyTorch Distributed components.
|
| 308 |
+
Default: ``logging.WARN``
|
| 309 |
+
|
| 310 |
+
dtensor (:class:`Optional[int]`):
|
| 311 |
+
Whether to log debug info related to ``DTensor``(DTensor) in PyTorch Distributed components.
|
| 312 |
+
Default: ``logging.WARN``
|
| 313 |
+
|
| 314 |
+
onnx (:class:`Optional[int]`):
|
| 315 |
+
The log level for the ONNX exporter component. Default: ``logging.WARN``
|
| 316 |
+
|
| 317 |
+
bytecode (:class:`bool`):
|
| 318 |
+
Whether to emit the original and generated bytecode from TorchDynamo.
|
| 319 |
+
Default: ``False``
|
| 320 |
+
|
| 321 |
+
aot_graphs (:class:`bool`):
|
| 322 |
+
Whether to emit the graphs generated by AOTAutograd. Default: ``False``
|
| 323 |
+
|
| 324 |
+
aot_joint_graph (:class:`bool`):
|
| 325 |
+
Whether to emit the joint forward-backward graph generated by AOTAutograd. Default: ``False``
|
| 326 |
+
|
| 327 |
+
ddp_graphs (:class:`bool`):
|
| 328 |
+
Whether to emit graphs generated by DDPOptimizer. Default: ``False``
|
| 329 |
+
|
| 330 |
+
graph (:class:`bool`):
|
| 331 |
+
Whether to emit the graph captured by TorchDynamo in tabular format.
|
| 332 |
+
Default: ``False``
|
| 333 |
+
|
| 334 |
+
graph_code (:class:`bool`):
|
| 335 |
+
Whether to emit the python source of the graph captured by TorchDynamo.
|
| 336 |
+
Default: ``False``
|
| 337 |
+
|
| 338 |
+
graph_breaks (:class:`bool`):
|
| 339 |
+
Whether to emit the graph breaks encountered by TorchDynamo.
|
| 340 |
+
Default: ``False``
|
| 341 |
+
|
| 342 |
+
graph_sizes (:class:`bool`):
|
| 343 |
+
Whether to emit tensor sizes of the graph captured by TorchDynamo.
|
| 344 |
+
Default: ``False``
|
| 345 |
+
|
| 346 |
+
guards (:class:`bool`):
|
| 347 |
+
Whether to emit the guards generated by TorchDynamo for each compiled
|
| 348 |
+
function. Default: ``False``
|
| 349 |
+
|
| 350 |
+
recompiles (:class:`bool`):
|
| 351 |
+
Whether to emit a guard failure reason and message every time
|
| 352 |
+
TorchDynamo recompiles a function. Default: ``False``
|
| 353 |
+
|
| 354 |
+
recompiles_verbose (:class:`bool`):
|
| 355 |
+
Whether to emit all guard failure reasons when TorchDynamo recompiles
|
| 356 |
+
a function, even those that are not actually run. Default: ``False``
|
| 357 |
+
|
| 358 |
+
trace_source (:class:`bool`):
|
| 359 |
+
Whether to emit when TorchDynamo begins tracing a new line. Default: ``False``
|
| 360 |
+
|
| 361 |
+
trace_call (:class:`bool`):
|
| 362 |
+
Whether to emit detailed line location when TorchDynamo creates an FX node
|
| 363 |
+
corresponding to function call. Python 3.11+ only. Default: ``False``
|
| 364 |
+
|
| 365 |
+
trace_bytecode (:class:`bool`):
|
| 366 |
+
Whether to emit bytecode instructions and traced stack state as TorchDynamo
|
| 367 |
+
traces bytecode. Default: ``False``
|
| 368 |
+
|
| 369 |
+
output_code (:class:`bool`):
|
| 370 |
+
Whether to emit the TorchInductor output code on a per-graph basis. Default: ``False``
|
| 371 |
+
|
| 372 |
+
kernel_code (:class:`bool`):
|
| 373 |
+
Whether to emit the TorchInductor output code on a per-kernel bases. Default: ``False``
|
| 374 |
+
|
| 375 |
+
schedule (:class:`bool`):
|
| 376 |
+
Whether to emit the TorchInductor schedule. Default: ``False``
|
| 377 |
+
|
| 378 |
+
perf_hints (:class:`bool`):
|
| 379 |
+
Whether to emit the TorchInductor perf hints. Default: ``False``
|
| 380 |
+
|
| 381 |
+
post_grad_graphs (:class:`bool`):
|
| 382 |
+
Whether to emit the graphs generated by after post grad passes. Default: ``False``
|
| 383 |
+
|
| 384 |
+
onnx_diagnostics (:class:`bool`):
|
| 385 |
+
Whether to emit the ONNX exporter diagnostics in logging. Default: ``False``
|
| 386 |
+
|
| 387 |
+
fusion (:class:`bool`):
|
| 388 |
+
Whether to emit detailed Inductor fusion decisions. Default: ``False``
|
| 389 |
+
|
| 390 |
+
overlap (:class:`bool`):
|
| 391 |
+
Whether to emit detailed Inductor compute/comm overlap decisions. Default: ``False``
|
| 392 |
+
|
| 393 |
+
sym_node (:class:`bool`):
|
| 394 |
+
Whether to emit debug info for various SymNode opterations. Default: ``False``
|
| 395 |
+
|
| 396 |
+
export (:class:`Optional[int]`):
|
| 397 |
+
The log level for export. Default: ``logging.WARN``
|
| 398 |
+
|
| 399 |
+
benchmarking (:class:`bool`):
|
| 400 |
+
Whether to emit detailed Inductor benchmarking information. Default: ``False``
|
| 401 |
+
|
| 402 |
+
modules (dict):
|
| 403 |
+
This argument provides an alternate way to specify the above log
|
| 404 |
+
component and artifact settings, in the format of a keyword args
|
| 405 |
+
dictionary given as a single argument. There are two cases
|
| 406 |
+
where this is useful (1) if a new log component or artifact has
|
| 407 |
+
been registered but a keyword argument for it has not been added
|
| 408 |
+
to this function and (2) if the log level for an unregistered module
|
| 409 |
+
needs to be set. This can be done by providing the fully-qualified module
|
| 410 |
+
name as the key, with the log level as the value. Default: ``None``
|
| 411 |
+
|
| 412 |
+
cudagraph_static_inputs (:class:`bool`):
|
| 413 |
+
Whether to emit debug info for cudagraph static input detection. Default: ``False``
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
Example::
|
| 417 |
+
|
| 418 |
+
>>> # xdoctest: +SKIP
|
| 419 |
+
>>> import logging
|
| 420 |
+
|
| 421 |
+
# The following changes the "dynamo" component to emit DEBUG-level
|
| 422 |
+
# logs, and to emit "graph_code" artifacts.
|
| 423 |
+
|
| 424 |
+
>>> torch._logging.set_logs(dynamo=logging.DEBUG, graph_code=True)
|
| 425 |
+
|
| 426 |
+
# The following enables the logs for a different module
|
| 427 |
+
|
| 428 |
+
>>> torch._logging.set_logs(modules={"unregistered.module.name": logging.DEBUG})
|
| 429 |
+
"""
|
| 430 |
+
# ignore if env var is set
|
| 431 |
+
if LOG_ENV_VAR in os.environ:
|
| 432 |
+
log.warning(
|
| 433 |
+
"Using TORCH_LOGS environment variable for log settings, ignoring call to set_logs"
|
| 434 |
+
)
|
| 435 |
+
return
|
| 436 |
+
|
| 437 |
+
log_state.clear()
|
| 438 |
+
|
| 439 |
+
modules = modules or {}
|
| 440 |
+
|
| 441 |
+
def _set_logs(**kwargs):
|
| 442 |
+
for alias, val in itertools.chain(kwargs.items(), modules.items()): # type: ignore[union-attr]
|
| 443 |
+
if val is None:
|
| 444 |
+
continue
|
| 445 |
+
|
| 446 |
+
if log_registry.is_artifact(alias):
|
| 447 |
+
if not isinstance(val, bool):
|
| 448 |
+
raise ValueError(
|
| 449 |
+
f"Expected bool to enable artifact {alias}, received {val}"
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
if val:
|
| 453 |
+
log_state.enable_artifact(alias)
|
| 454 |
+
elif log_registry.is_log(alias) or alias in log_registry.child_log_qnames:
|
| 455 |
+
if val not in logging._levelToName:
|
| 456 |
+
raise ValueError(
|
| 457 |
+
f"Unrecognized log level for log {alias}: {val}, valid level values "
|
| 458 |
+
f"are: {','.join([str(k) for k in logging._levelToName.keys()])}"
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
log_state.enable_log(
|
| 462 |
+
log_registry.log_alias_to_log_qnames.get(alias, alias), val
|
| 463 |
+
)
|
| 464 |
+
else:
|
| 465 |
+
raise ValueError(
|
| 466 |
+
f"Unrecognized log or artifact name passed to set_logs: {alias}"
|
| 467 |
+
)
|
| 468 |
+
|
| 469 |
+
_init_logs()
|
| 470 |
+
|
| 471 |
+
_set_logs(
|
| 472 |
+
torch=all,
|
| 473 |
+
dynamo=dynamo,
|
| 474 |
+
aot=aot,
|
| 475 |
+
autograd=autograd,
|
| 476 |
+
inductor=inductor,
|
| 477 |
+
dynamic=dynamic,
|
| 478 |
+
bytecode=bytecode,
|
| 479 |
+
aot_graphs=aot_graphs,
|
| 480 |
+
aot_joint_graph=aot_joint_graph,
|
| 481 |
+
ddp_graphs=ddp_graphs,
|
| 482 |
+
distributed=distributed,
|
| 483 |
+
c10d=c10d,
|
| 484 |
+
ddp=ddp,
|
| 485 |
+
fsdp=fsdp,
|
| 486 |
+
dtensor=dtensor,
|
| 487 |
+
graph=graph,
|
| 488 |
+
graph_code=graph_code,
|
| 489 |
+
graph_breaks=graph_breaks,
|
| 490 |
+
graph_sizes=graph_sizes,
|
| 491 |
+
guards=guards,
|
| 492 |
+
recompiles=recompiles,
|
| 493 |
+
recompiles_verbose=recompiles_verbose,
|
| 494 |
+
trace_source=trace_source,
|
| 495 |
+
trace_call=trace_call,
|
| 496 |
+
trace_bytecode=trace_bytecode,
|
| 497 |
+
output_code=output_code,
|
| 498 |
+
kernel_code=kernel_code,
|
| 499 |
+
schedule=schedule,
|
| 500 |
+
perf_hints=perf_hints,
|
| 501 |
+
post_grad_graphs=post_grad_graphs,
|
| 502 |
+
onnx=onnx,
|
| 503 |
+
onnx_diagnostics=onnx_diagnostics,
|
| 504 |
+
fusion=fusion,
|
| 505 |
+
overlap=overlap,
|
| 506 |
+
sym_node=sym_node,
|
| 507 |
+
export=export,
|
| 508 |
+
cudagraphs=cudagraphs,
|
| 509 |
+
compiled_autograd=compiled_autograd,
|
| 510 |
+
compiled_autograd_verbose=compiled_autograd_verbose,
|
| 511 |
+
cudagraph_static_inputs=cudagraph_static_inputs,
|
| 512 |
+
benchmarking=benchmarking,
|
| 513 |
+
)
|
| 514 |
+
|
| 515 |
+
|
| 516 |
+
def get_loggers():
|
| 517 |
+
"""
|
| 518 |
+
Returns: a list of all registered loggers
|
| 519 |
+
"""
|
| 520 |
+
return [logging.getLogger(qname) for qname in log_registry.get_log_qnames()]
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
def register_log(setting_name, log_name):
|
| 524 |
+
"""
|
| 525 |
+
Enables a log to be controlled by the env var and user API with the setting_name
|
| 526 |
+
Args:
|
| 527 |
+
setting_name: the shorthand name used in the env var and user API
|
| 528 |
+
log_name: the log name that the setting_name is associated with
|
| 529 |
+
"""
|
| 530 |
+
log_registry.register_log(setting_name, log_name)
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def register_artifact(
|
| 534 |
+
setting_name, description, visible=False, off_by_default=False, log_format=None
|
| 535 |
+
):
|
| 536 |
+
"""
|
| 537 |
+
Enables an artifact to be controlled by the env var and user API with name
|
| 538 |
+
Args:
|
| 539 |
+
setting_name: the shorthand name used in the env var and user API
|
| 540 |
+
description: A description of what this outputs
|
| 541 |
+
visible: Whether it gets suggested to users by default
|
| 542 |
+
off_by_default: whether this artifact should be logged when the ancestor loggers
|
| 543 |
+
are enabled at level DEBUG
|
| 544 |
+
"""
|
| 545 |
+
log_registry.register_artifact_name(
|
| 546 |
+
setting_name, description, visible, off_by_default, log_format
|
| 547 |
+
)
|
| 548 |
+
|
| 549 |
+
|
| 550 |
+
def getArtifactLogger(module_qname, artifact_name):
|
| 551 |
+
if artifact_name not in log_registry.artifact_names:
|
| 552 |
+
raise ValueError(
|
| 553 |
+
f"Artifact name: {repr(artifact_name)} not registered,"
|
| 554 |
+
f"please call register_artifact({repr(artifact_name)}) in torch._logging.registrations."
|
| 555 |
+
)
|
| 556 |
+
qname = module_qname + f".__{artifact_name}"
|
| 557 |
+
log = logging.getLogger(qname)
|
| 558 |
+
log.artifact_name = artifact_name # type: ignore[attr-defined]
|
| 559 |
+
log_registry.register_artifact_log(qname)
|
| 560 |
+
configure_artifact_log(log)
|
| 561 |
+
return log
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
INCR_VERBOSITY_CHAR = "+"
|
| 565 |
+
DECR_VERBOSITY_CHAR = "-"
|
| 566 |
+
VERBOSITY_REGEX = (
|
| 567 |
+
"("
|
| 568 |
+
+ "|".join([re.escape(INCR_VERBOSITY_CHAR), re.escape(DECR_VERBOSITY_CHAR)])
|
| 569 |
+
+ "?)"
|
| 570 |
+
)
|
| 571 |
+
|
| 572 |
+
|
| 573 |
+
def configure_artifact_log(log):
|
| 574 |
+
# If the artifact is off by default, then it should only be logged when explicitly
|
| 575 |
+
# enabled; set propagate to False so that this artifact is not propagated
|
| 576 |
+
# to its ancestor logger
|
| 577 |
+
if log_registry.is_off_by_default(log.artifact_name):
|
| 578 |
+
log.propagate = False
|
| 579 |
+
|
| 580 |
+
# enable artifact logging when explicitly enabled
|
| 581 |
+
if log_state.is_artifact_enabled(log.artifact_name):
|
| 582 |
+
log.setLevel(logging.DEBUG)
|
| 583 |
+
log.propagate = True
|
| 584 |
+
|
| 585 |
+
|
| 586 |
+
# match a comma separated list of loggable names (whitespace allowed after commas)
|
| 587 |
+
def _gen_settings_regex():
|
| 588 |
+
return re.compile(r"((\+|-)?[\w\.]+,\s*)*(\+|-)?[\w\.]+?")
|
| 589 |
+
|
| 590 |
+
|
| 591 |
+
def _validate_settings(settings):
|
| 592 |
+
return re.fullmatch(_gen_settings_regex(), settings) is not None
|
| 593 |
+
|
| 594 |
+
|
| 595 |
+
def help_message(verbose=False):
|
| 596 |
+
def pad_to(s, length=30):
|
| 597 |
+
assert len(s) <= length
|
| 598 |
+
return s + " " * (length - len(s))
|
| 599 |
+
|
| 600 |
+
if verbose:
|
| 601 |
+
printed_artifacts = log_registry.artifact_names
|
| 602 |
+
else:
|
| 603 |
+
printed_artifacts = log_registry.visible_artifacts
|
| 604 |
+
|
| 605 |
+
if verbose:
|
| 606 |
+
heading = "All registered names"
|
| 607 |
+
else:
|
| 608 |
+
heading = "Visible registered names (use TORCH_LOGS='+help' for full list)"
|
| 609 |
+
lines = (
|
| 610 |
+
["all"]
|
| 611 |
+
+ sorted(log_registry.log_alias_to_log_qnames.keys())
|
| 612 |
+
+ sorted(
|
| 613 |
+
[
|
| 614 |
+
f"{pad_to(name)}\t{log_registry.artifact_descriptions[name]}"
|
| 615 |
+
for name in printed_artifacts
|
| 616 |
+
]
|
| 617 |
+
)
|
| 618 |
+
)
|
| 619 |
+
setting_info = " " + "\n ".join(lines)
|
| 620 |
+
examples = """
|
| 621 |
+
Examples:
|
| 622 |
+
TORCH_LOGS="+dynamo,aot" will set the log level of TorchDynamo to
|
| 623 |
+
logging.DEBUG and AOT to logging.INFO
|
| 624 |
+
|
| 625 |
+
TORCH_LOGS="-dynamo,+inductor" will set the log level of TorchDynamo to
|
| 626 |
+
logging.ERROR and TorchInductor to logging.DEBUG
|
| 627 |
+
|
| 628 |
+
TORCH_LOGS="aot_graphs" will enable the aot_graphs artifact
|
| 629 |
+
|
| 630 |
+
TORCH_LOGS="+dynamo,schedule" will enable set the log level of TorchDynamo
|
| 631 |
+
to logging.DEBUG and enable the schedule artifact
|
| 632 |
+
|
| 633 |
+
TORCH_LOGS="+some.random.module,schedule" will set the log level of
|
| 634 |
+
some.random.module to logging.DEBUG and enable the schedule artifact
|
| 635 |
+
|
| 636 |
+
TORCH_LOGS_FORMAT="%(levelname)s: %(message)s" or any provided format
|
| 637 |
+
string will set the output format
|
| 638 |
+
Valid keys are "levelname", "message", "pathname", "levelno", "lineno",
|
| 639 |
+
"filename" and "name".
|
| 640 |
+
|
| 641 |
+
TORCH_LOGS_OUT=/tmp/output.txt will output the logs to /tmp/output.txt as
|
| 642 |
+
well. This is useful when the output is long.
|
| 643 |
+
""" # flake8: noqa: B950
|
| 644 |
+
msg = f"""
|
| 645 |
+
TORCH_LOGS Info
|
| 646 |
+
{examples}
|
| 647 |
+
|
| 648 |
+
{heading}
|
| 649 |
+
{setting_info}
|
| 650 |
+
"""
|
| 651 |
+
return msg
|
| 652 |
+
|
| 653 |
+
|
| 654 |
+
def _invalid_settings_err_msg(settings, verbose=False):
|
| 655 |
+
valid_settings = ", ".join(
|
| 656 |
+
["all"]
|
| 657 |
+
+ list(log_registry.log_alias_to_log_qnames.keys())
|
| 658 |
+
+ list(log_registry.artifact_names)
|
| 659 |
+
)
|
| 660 |
+
msg = f"""
|
| 661 |
+
Invalid log settings: {settings}, must be a comma separated list of fully
|
| 662 |
+
qualified module names, registered log names or registered artifact names.
|
| 663 |
+
For more info on various settings, try TORCH_LOGS="help"
|
| 664 |
+
Valid settings:
|
| 665 |
+
{valid_settings}
|
| 666 |
+
"""
|
| 667 |
+
return msg
|
| 668 |
+
|
| 669 |
+
|
| 670 |
+
@functools.lru_cache
|
| 671 |
+
def _parse_log_settings(settings):
|
| 672 |
+
if settings == "":
|
| 673 |
+
return {}
|
| 674 |
+
|
| 675 |
+
if settings == "help":
|
| 676 |
+
raise ValueError(help_message(verbose=False))
|
| 677 |
+
elif settings == "+help":
|
| 678 |
+
raise ValueError(help_message(verbose=True))
|
| 679 |
+
if not _validate_settings(settings):
|
| 680 |
+
raise ValueError(_invalid_settings_err_msg(settings))
|
| 681 |
+
|
| 682 |
+
settings = re.sub(r"\s+", "", settings)
|
| 683 |
+
log_names = settings.split(",")
|
| 684 |
+
|
| 685 |
+
def get_name_level_pair(name):
|
| 686 |
+
clean_name = name.replace(INCR_VERBOSITY_CHAR, "")
|
| 687 |
+
clean_name = clean_name.replace(DECR_VERBOSITY_CHAR, "")
|
| 688 |
+
|
| 689 |
+
if name[0] == INCR_VERBOSITY_CHAR:
|
| 690 |
+
level = logging.DEBUG
|
| 691 |
+
elif name[0] == DECR_VERBOSITY_CHAR:
|
| 692 |
+
level = logging.ERROR
|
| 693 |
+
else:
|
| 694 |
+
level = logging.INFO
|
| 695 |
+
|
| 696 |
+
return clean_name, level
|
| 697 |
+
|
| 698 |
+
log_state = LogState()
|
| 699 |
+
|
| 700 |
+
for name in log_names:
|
| 701 |
+
name, level = get_name_level_pair(name)
|
| 702 |
+
|
| 703 |
+
if name == "all":
|
| 704 |
+
name = "torch"
|
| 705 |
+
|
| 706 |
+
if log_registry.is_log(name):
|
| 707 |
+
assert level is not None
|
| 708 |
+
log_qnames = log_registry.log_alias_to_log_qnames[name]
|
| 709 |
+
log_state.enable_log(log_qnames, level)
|
| 710 |
+
elif log_registry.is_artifact(name):
|
| 711 |
+
log_state.enable_artifact(name)
|
| 712 |
+
elif _is_valid_module(name):
|
| 713 |
+
if not _has_registered_parent(name):
|
| 714 |
+
log_registry.register_log(name, name)
|
| 715 |
+
else:
|
| 716 |
+
log_registry.register_child_log(name)
|
| 717 |
+
log_state.enable_log(name, level)
|
| 718 |
+
else:
|
| 719 |
+
raise ValueError(_invalid_settings_err_msg(settings))
|
| 720 |
+
|
| 721 |
+
return log_state
|
| 722 |
+
|
| 723 |
+
|
| 724 |
+
def _is_valid_module(qname):
|
| 725 |
+
try:
|
| 726 |
+
__import__(qname)
|
| 727 |
+
return True
|
| 728 |
+
except ImportError:
|
| 729 |
+
return False
|
| 730 |
+
|
| 731 |
+
|
| 732 |
+
def _update_log_state_from_env():
|
| 733 |
+
global log_state
|
| 734 |
+
log_setting = os.environ.get(LOG_ENV_VAR, None)
|
| 735 |
+
if log_setting is not None:
|
| 736 |
+
log_state = _parse_log_settings(log_setting)
|
| 737 |
+
|
| 738 |
+
|
| 739 |
+
def _has_registered_parent(log_qname):
|
| 740 |
+
cur_log = logging.getLogger(log_qname)
|
| 741 |
+
|
| 742 |
+
registered_log_qnames = log_registry.get_log_qnames()
|
| 743 |
+
|
| 744 |
+
while cur_log.parent:
|
| 745 |
+
if cur_log.name in registered_log_qnames:
|
| 746 |
+
return True
|
| 747 |
+
cur_log = cur_log.parent
|
| 748 |
+
|
| 749 |
+
return False
|
| 750 |
+
|
| 751 |
+
|
| 752 |
+
def make_module_path_relative(abs_path):
|
| 753 |
+
"""
|
| 754 |
+
Given an absolute filepath corresponding to a Python module which was
|
| 755 |
+
loaded via normal import mechanisms using sys.path, convert it into
|
| 756 |
+
a relative path relative to one of the Python search paths.
|
| 757 |
+
"""
|
| 758 |
+
|
| 759 |
+
abs_path = pathlib.Path(abs_path).resolve()
|
| 760 |
+
|
| 761 |
+
for path in sys.path:
|
| 762 |
+
try:
|
| 763 |
+
rel_path = abs_path.relative_to(path)
|
| 764 |
+
except ValueError:
|
| 765 |
+
continue
|
| 766 |
+
else:
|
| 767 |
+
return str(rel_path)
|
| 768 |
+
|
| 769 |
+
return str(abs_path)
|
| 770 |
+
|
| 771 |
+
|
| 772 |
+
# apply custom formats to artifacts when necessary
|
| 773 |
+
class TorchLogsFormatter(logging.Formatter):
|
| 774 |
+
def __init__(self, *, trace: bool = False):
|
| 775 |
+
super().__init__()
|
| 776 |
+
self._is_trace = trace
|
| 777 |
+
|
| 778 |
+
def format(self, record):
|
| 779 |
+
artifact_name = getattr(logging.getLogger(record.name), "artifact_name", None)
|
| 780 |
+
if artifact_name is not None:
|
| 781 |
+
artifact_formatter = log_registry.artifact_log_formatters.get(
|
| 782 |
+
artifact_name, None
|
| 783 |
+
)
|
| 784 |
+
if artifact_formatter is not None:
|
| 785 |
+
return artifact_formatter.format(record)
|
| 786 |
+
|
| 787 |
+
record.message = record.getMessage()
|
| 788 |
+
record.asctime = self.formatTime(record, "%m%d %H:%M:%S")
|
| 789 |
+
|
| 790 |
+
# exception handling - copied from logging.Formatter.format
|
| 791 |
+
s = record.message
|
| 792 |
+
if record.exc_info:
|
| 793 |
+
# Cache the traceback text to avoid converting it multiple times
|
| 794 |
+
# (it's constant anyway)
|
| 795 |
+
if not record.exc_text:
|
| 796 |
+
record.exc_text = self.formatException(record.exc_info)
|
| 797 |
+
if record.exc_text:
|
| 798 |
+
if s[-1:] != "\n":
|
| 799 |
+
s = s + "\n"
|
| 800 |
+
s = s + record.exc_text
|
| 801 |
+
if record.stack_info:
|
| 802 |
+
if s[-1:] != "\n":
|
| 803 |
+
s = s + "\n"
|
| 804 |
+
s = s + self.formatStack(record.stack_info)
|
| 805 |
+
|
| 806 |
+
record.rankprefix = ""
|
| 807 |
+
if not self._is_trace and dist.is_available() and dist.is_initialized():
|
| 808 |
+
record.rankprefix = f"[rank{dist.get_rank()}]:"
|
| 809 |
+
|
| 810 |
+
record.traceid = ""
|
| 811 |
+
if (
|
| 812 |
+
not self._is_trace
|
| 813 |
+
and (trace_id := torch._guards.CompileContext.current_trace_id())
|
| 814 |
+
is not None
|
| 815 |
+
):
|
| 816 |
+
record.traceid = f" [{trace_id}]"
|
| 817 |
+
|
| 818 |
+
glog_level_to_abbr = {
|
| 819 |
+
"DEBUG": "V", # V is for VERBOSE in glog
|
| 820 |
+
"INFO": "I",
|
| 821 |
+
"WARNING": "W",
|
| 822 |
+
"ERROR": "E",
|
| 823 |
+
"CRITICAL": "C",
|
| 824 |
+
}
|
| 825 |
+
|
| 826 |
+
shortlevel = glog_level_to_abbr.get(record.levelname, record.levelname)
|
| 827 |
+
|
| 828 |
+
record.artifactprefix = ""
|
| 829 |
+
if artifact_name is not None:
|
| 830 |
+
record.artifactprefix = f" [__{artifact_name}]"
|
| 831 |
+
|
| 832 |
+
filepath = make_module_path_relative(record.pathname)
|
| 833 |
+
|
| 834 |
+
prefix = (
|
| 835 |
+
f"{record.rankprefix}{shortlevel}{record.asctime}.{int(record.msecs*1000):06d} {record.process} "
|
| 836 |
+
f"{filepath}:"
|
| 837 |
+
f"{record.lineno}]{record.traceid}{record.artifactprefix}"
|
| 838 |
+
)
|
| 839 |
+
if self._is_trace:
|
| 840 |
+
assert s == ""
|
| 841 |
+
try:
|
| 842 |
+
r = f"{prefix} {json.dumps(record.metadata)}"
|
| 843 |
+
except TypeError:
|
| 844 |
+
log.warning("failing metadata: %r", record.metadata)
|
| 845 |
+
raise
|
| 846 |
+
if record.payload is not None:
|
| 847 |
+
r += "".join(f"\n\t{l}" for l in record.payload.split("\n"))
|
| 848 |
+
return r
|
| 849 |
+
else:
|
| 850 |
+
lines = s.split("\n")
|
| 851 |
+
return "\n".join(f"{prefix} {l}" for l in lines)
|
| 852 |
+
|
| 853 |
+
|
| 854 |
+
def _default_formatter():
|
| 855 |
+
fmt = os.environ.get(LOG_FORMAT_ENV_VAR, None)
|
| 856 |
+
if fmt is None:
|
| 857 |
+
return TorchLogsFormatter()
|
| 858 |
+
else:
|
| 859 |
+
if fmt in ("short", "basic"):
|
| 860 |
+
fmt = logging.BASIC_FORMAT
|
| 861 |
+
return logging.Formatter(fmt)
|
| 862 |
+
|
| 863 |
+
|
| 864 |
+
DEFAULT_FORMATTER = _default_formatter()
|
| 865 |
+
|
| 866 |
+
|
| 867 |
+
def _setup_handlers(create_handler_fn, log):
|
| 868 |
+
debug_handler = _track_handler(create_handler_fn())
|
| 869 |
+
debug_handler.setFormatter(DEFAULT_FORMATTER)
|
| 870 |
+
debug_handler.setLevel(logging.DEBUG)
|
| 871 |
+
log.addHandler(debug_handler)
|
| 872 |
+
|
| 873 |
+
|
| 874 |
+
handlers = WeakSet() # type: ignore[var-annotated]
|
| 875 |
+
|
| 876 |
+
|
| 877 |
+
# mark handlers that we've created
|
| 878 |
+
# so we don't modify user handlers
|
| 879 |
+
def _track_handler(handler):
|
| 880 |
+
handlers.add(handler)
|
| 881 |
+
return handler
|
| 882 |
+
|
| 883 |
+
|
| 884 |
+
def _is_torch_handler(handler):
|
| 885 |
+
return handler in handlers
|
| 886 |
+
|
| 887 |
+
|
| 888 |
+
# clears all torch handlers on specified loggers
|
| 889 |
+
def _clear_handlers(log):
|
| 890 |
+
to_remove = [handler for handler in log.handlers if _is_torch_handler(handler)]
|
| 891 |
+
for handler in to_remove:
|
| 892 |
+
log.removeHandler(handler)
|
| 893 |
+
|
| 894 |
+
|
| 895 |
+
def _reset_logs():
|
| 896 |
+
# reset all registered logs
|
| 897 |
+
for log_qname in log_registry.get_log_qnames():
|
| 898 |
+
log = logging.getLogger(log_qname)
|
| 899 |
+
log.setLevel(logging.WARNING)
|
| 900 |
+
log.propagate = False
|
| 901 |
+
_clear_handlers(log)
|
| 902 |
+
|
| 903 |
+
# reset all artifact and child logs
|
| 904 |
+
for artifact_log_qname in itertools.chain(
|
| 905 |
+
log_registry.get_artifact_log_qnames(), log_registry.get_child_log_qnames()
|
| 906 |
+
):
|
| 907 |
+
log = logging.getLogger(artifact_log_qname)
|
| 908 |
+
log.setLevel(logging.NOTSET)
|
| 909 |
+
log.propagate = True
|
| 910 |
+
|
| 911 |
+
trace_log.propagate = False
|
| 912 |
+
_clear_handlers(trace_log)
|
| 913 |
+
|
| 914 |
+
|
| 915 |
+
def _get_log_state():
|
| 916 |
+
return log_state
|
| 917 |
+
|
| 918 |
+
|
| 919 |
+
def _set_log_state(state):
|
| 920 |
+
global log_state
|
| 921 |
+
log_state = state
|
| 922 |
+
|
| 923 |
+
|
| 924 |
+
def _init_logs(log_file_name=None):
|
| 925 |
+
_reset_logs()
|
| 926 |
+
_update_log_state_from_env()
|
| 927 |
+
|
| 928 |
+
out = os.environ.get(LOG_OUT_ENV_VAR, None)
|
| 929 |
+
if out is not None:
|
| 930 |
+
log_file_name = out
|
| 931 |
+
|
| 932 |
+
# First, reset all known (registered) loggers to NOTSET, so that they
|
| 933 |
+
# respect their parent log level
|
| 934 |
+
for log_qname in log_registry.get_log_qnames():
|
| 935 |
+
# But not the top level torch level: this defaults to WARNING so
|
| 936 |
+
# that our log messages don't leak to the lower levels
|
| 937 |
+
if log_qname == "torch":
|
| 938 |
+
continue
|
| 939 |
+
log = logging.getLogger(log_qname)
|
| 940 |
+
log.setLevel(logging.NOTSET)
|
| 941 |
+
|
| 942 |
+
# Now, for all loggers which the user requested to have non-standard
|
| 943 |
+
# logging behavior, modify their log levels
|
| 944 |
+
for log_qname, level in log_state.get_log_level_pairs():
|
| 945 |
+
log = logging.getLogger(log_qname)
|
| 946 |
+
log.setLevel(level)
|
| 947 |
+
|
| 948 |
+
# Finally, setup handlers for all registered loggers
|
| 949 |
+
for log_qname in log_registry.get_log_qnames():
|
| 950 |
+
log = logging.getLogger(log_qname)
|
| 951 |
+
_setup_handlers(
|
| 952 |
+
logging.StreamHandler,
|
| 953 |
+
log,
|
| 954 |
+
)
|
| 955 |
+
|
| 956 |
+
if log_file_name is not None:
|
| 957 |
+
_setup_handlers(
|
| 958 |
+
lambda: logging.FileHandler(log_file_name),
|
| 959 |
+
log,
|
| 960 |
+
)
|
| 961 |
+
|
| 962 |
+
# configure artifact loggers, note: this must happen last
|
| 963 |
+
# since the levels of ancestor loggers are taken into account
|
| 964 |
+
for artifact_log_qname in log_registry.get_artifact_log_qnames():
|
| 965 |
+
log = logging.getLogger(artifact_log_qname)
|
| 966 |
+
configure_artifact_log(log)
|
| 967 |
+
|
| 968 |
+
# Setup handler for the special trace_log, with different default
|
| 969 |
+
# configuration
|
| 970 |
+
trace_dir_name = os.environ.get(TRACE_ENV_VAR, None)
|
| 971 |
+
# This handler may remove itself if trace_dir_name is None and we are not
|
| 972 |
+
# actually in an FB environment. This allows us to defer actually
|
| 973 |
+
# initializing it until we actually need to log anything. This is
|
| 974 |
+
# important because JK initializes a C++ singleton, which will pork our
|
| 975 |
+
# process if we subsequently fork.
|
| 976 |
+
handler = LazyTraceHandler(trace_dir_name)
|
| 977 |
+
# This log is ALWAYS at debug level. We will additionally test if there
|
| 978 |
+
# are any handlers before deciding to actually call logging on this. Do
|
| 979 |
+
# not manually call
|
| 980 |
+
trace_log.setLevel(logging.DEBUG)
|
| 981 |
+
trace_log_handler = _track_handler(handler)
|
| 982 |
+
trace_log_handler.setFormatter(TorchLogsFormatter(trace=True))
|
| 983 |
+
trace_log.addHandler(trace_log_handler)
|
| 984 |
+
|
| 985 |
+
|
| 986 |
+
class LazyTraceHandler(logging.StreamHandler):
|
| 987 |
+
"""Like FileHandler, but the file is allocated lazily only upon the first log message"""
|
| 988 |
+
|
| 989 |
+
def __init__(self, root_dir: Optional[str]):
|
| 990 |
+
# This is implemented in the same way that delay is implemented on
|
| 991 |
+
# FileHandler
|
| 992 |
+
self.root_dir = root_dir
|
| 993 |
+
logging.Handler.__init__(self)
|
| 994 |
+
self.stream = None
|
| 995 |
+
self._builtin_open = open
|
| 996 |
+
|
| 997 |
+
# cloned from FileHandler in cpython
|
| 998 |
+
def close(self):
|
| 999 |
+
self.acquire()
|
| 1000 |
+
try:
|
| 1001 |
+
try:
|
| 1002 |
+
if self.stream:
|
| 1003 |
+
try:
|
| 1004 |
+
self.flush()
|
| 1005 |
+
finally:
|
| 1006 |
+
stream = self.stream
|
| 1007 |
+
self.stream = None
|
| 1008 |
+
if hasattr(stream, "close"):
|
| 1009 |
+
stream.close()
|
| 1010 |
+
finally:
|
| 1011 |
+
# Issue #19523: call unconditionally to
|
| 1012 |
+
# prevent a handler leak when delay is set
|
| 1013 |
+
# Also see Issue #42378: we also rely on
|
| 1014 |
+
# self._closed being set to True there
|
| 1015 |
+
logging.StreamHandler.close(self)
|
| 1016 |
+
finally:
|
| 1017 |
+
self.release()
|
| 1018 |
+
|
| 1019 |
+
def emit(self, record):
|
| 1020 |
+
if self.stream is None:
|
| 1021 |
+
ok = False
|
| 1022 |
+
if self.root_dir is None:
|
| 1023 |
+
TRACE_LOG_DIR = "/logs"
|
| 1024 |
+
open_func = self._builtin_open
|
| 1025 |
+
|
| 1026 |
+
import torch.version as torch_version
|
| 1027 |
+
|
| 1028 |
+
if (
|
| 1029 |
+
hasattr(torch_version, "git_version")
|
| 1030 |
+
and os.getenv("MAST_HPC_JOB_NAME") is None
|
| 1031 |
+
):
|
| 1032 |
+
log.info(
|
| 1033 |
+
"LazyTraceHandler: disabled because not fbcode or conda on mast"
|
| 1034 |
+
)
|
| 1035 |
+
elif not torch._utils_internal.justknobs_check("pytorch/trace:enable"):
|
| 1036 |
+
log.info(
|
| 1037 |
+
"LazyTraceHandler: disabled because justknobs_check('pytorch/trace:enable') returned False"
|
| 1038 |
+
)
|
| 1039 |
+
elif not os.path.exists(TRACE_LOG_DIR):
|
| 1040 |
+
log.info(
|
| 1041 |
+
"LazyTraceHandler: disabled because %s does not exist",
|
| 1042 |
+
TRACE_LOG_DIR,
|
| 1043 |
+
)
|
| 1044 |
+
elif not os.access(TRACE_LOG_DIR, os.W_OK):
|
| 1045 |
+
log.info(
|
| 1046 |
+
"LazyTraceHandler: disabled because %s is not writeable",
|
| 1047 |
+
TRACE_LOG_DIR,
|
| 1048 |
+
)
|
| 1049 |
+
else:
|
| 1050 |
+
self.root_dir = TRACE_LOG_DIR
|
| 1051 |
+
|
| 1052 |
+
if self.root_dir is not None:
|
| 1053 |
+
os.makedirs(self.root_dir, exist_ok=True)
|
| 1054 |
+
ranksuffix = ""
|
| 1055 |
+
if dist.is_available() and dist.is_initialized():
|
| 1056 |
+
ranksuffix = f"rank_{dist.get_rank()}_"
|
| 1057 |
+
self.stream = tempfile.NamedTemporaryFile(
|
| 1058 |
+
mode="w+",
|
| 1059 |
+
suffix=".log",
|
| 1060 |
+
prefix=f"dedicated_log_torch_trace_{ranksuffix}",
|
| 1061 |
+
dir=self.root_dir,
|
| 1062 |
+
delete=False,
|
| 1063 |
+
)
|
| 1064 |
+
log.info("LazyTraceHandler: logging to %s", self.stream.name)
|
| 1065 |
+
else:
|
| 1066 |
+
# We go poof, remove and no-op
|
| 1067 |
+
trace_log.removeHandler(self)
|
| 1068 |
+
return
|
| 1069 |
+
if self.stream:
|
| 1070 |
+
super().emit(record)
|
| 1071 |
+
|
| 1072 |
+
|
| 1073 |
+
@functools.lru_cache(None)
|
| 1074 |
+
def warning_once(logger_obj, *args, **kwargs):
|
| 1075 |
+
"""
|
| 1076 |
+
This function is similar to `logger.warning()`, but will emit the warning with the same message only once
|
| 1077 |
+
Note: The cache is for the function arguments, so 2 different callers using the same arguments will hit the cache.
|
| 1078 |
+
The assumption here is that all warning messages are unique across the code. If they aren't then need to switch to
|
| 1079 |
+
another type of cache that includes the caller frame information in the hashing function.
|
| 1080 |
+
"""
|
| 1081 |
+
logger_obj.warning(*args, **kwargs)
|
| 1082 |
+
|
| 1083 |
+
|
| 1084 |
+
class LazyString:
|
| 1085 |
+
def __init__(self, func, *args, **kwargs):
|
| 1086 |
+
self.func = func
|
| 1087 |
+
self.args = args
|
| 1088 |
+
self.kwargs = kwargs
|
| 1089 |
+
|
| 1090 |
+
def __str__(self):
|
| 1091 |
+
return self.func(*self.args, **self.kwargs)
|
| 1092 |
+
|
| 1093 |
+
|
| 1094 |
+
def trace_structured(
|
| 1095 |
+
name: str,
|
| 1096 |
+
# NB: metadata expected to be dict so adding more info is forward compatible
|
| 1097 |
+
# Tuple[str, int] is a special case for string interning
|
| 1098 |
+
metadata_fn: Callable[[], Union[Dict[str, Any], Tuple[str, int]]] = dict,
|
| 1099 |
+
*,
|
| 1100 |
+
payload_fn: Callable[[], Optional[Union[str, object]]] = lambda: None,
|
| 1101 |
+
suppress_context: bool = False,
|
| 1102 |
+
expect_trace_id: bool = True, # Whether or not we expect to have a current trace id
|
| 1103 |
+
):
|
| 1104 |
+
"""
|
| 1105 |
+
metadata is an arbitrary JSON compatible struct, but it's expected to not be
|
| 1106 |
+
too long (e.g., less than 1MB)
|
| 1107 |
+
|
| 1108 |
+
payload is an arbitrary string, which can be arbitrarily long (but expected to have
|
| 1109 |
+
newlines so no lines are too long)
|
| 1110 |
+
"""
|
| 1111 |
+
assert "name" not in ["rank", "frame_id", "frame_compile_id", "attempt"]
|
| 1112 |
+
assert callable(
|
| 1113 |
+
metadata_fn
|
| 1114 |
+
), f"metadata_fn should be callable, but got {type(metadata_fn)}"
|
| 1115 |
+
assert callable(
|
| 1116 |
+
payload_fn
|
| 1117 |
+
), f"payload_fn should be callable, but got {type(payload_fn)}"
|
| 1118 |
+
# trace_log never propagates and is ALWAYS DEBUG, so also check that there
|
| 1119 |
+
# are handlers instead of checking the log level
|
| 1120 |
+
if trace_log.handlers:
|
| 1121 |
+
record: Dict[str, object] = {}
|
| 1122 |
+
record[name] = metadata_fn()
|
| 1123 |
+
if not suppress_context:
|
| 1124 |
+
# TODO: Actually, the rank probably should just be emitted once at
|
| 1125 |
+
# the top, and not repeatedly spammed in all the logs, since it
|
| 1126 |
+
# never changes and we assume no interleaving
|
| 1127 |
+
if dist.is_available() and dist.is_initialized():
|
| 1128 |
+
record["rank"] = dist.get_rank()
|
| 1129 |
+
if (
|
| 1130 |
+
trace_id := torch._guards.CompileContext.current_trace_id()
|
| 1131 |
+
) is not None:
|
| 1132 |
+
record["frame_id"] = trace_id.compile_id.frame_id
|
| 1133 |
+
record["frame_compile_id"] = trace_id.compile_id.frame_compile_id
|
| 1134 |
+
record["attempt"] = trace_id.attempt
|
| 1135 |
+
else:
|
| 1136 |
+
if expect_trace_id:
|
| 1137 |
+
# Record the stack of the log call to better diagnose why we
|
| 1138 |
+
# don't have a frame id for it
|
| 1139 |
+
record["stack"] = torch._logging.structured.from_traceback(
|
| 1140 |
+
CapturedTraceback.extract(skip=1).summary()
|
| 1141 |
+
)
|
| 1142 |
+
payload = payload_fn()
|
| 1143 |
+
if payload is not None:
|
| 1144 |
+
if not isinstance(payload, str):
|
| 1145 |
+
if isinstance(payload, list):
|
| 1146 |
+
# special case to look better
|
| 1147 |
+
payload = "[\n" + ",\n".join(json.dumps(i) for i in payload) + "\n]"
|
| 1148 |
+
else:
|
| 1149 |
+
# force newlines so we are unlikely to overflow line limit
|
| 1150 |
+
payload = json.dumps(payload, indent=0)
|
| 1151 |
+
h = hashlib.md5()
|
| 1152 |
+
h.update(payload.encode("utf-8"))
|
| 1153 |
+
record["has_payload"] = h.hexdigest()
|
| 1154 |
+
trace_log.debug(
|
| 1155 |
+
"", extra={"metadata": record, "payload": payload}, stacklevel=2
|
| 1156 |
+
)
|
| 1157 |
+
log_trace_structured_event(name, record)
|
| 1158 |
+
|
| 1159 |
+
|
| 1160 |
+
import torch._guards
|
| 1161 |
+
import torch._utils_internal
|
| 1162 |
+
import torch.distributed as dist
|
infer_4_47_1/lib/python3.10/site-packages/torch/_logging/_registrations.py
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# flake8: noqa: B950
|
| 2 |
+
from ._internal import register_artifact, register_log
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
DYNAMIC = [
|
| 6 |
+
"torch.fx.experimental.symbolic_shapes",
|
| 7 |
+
"torch.fx.experimental.sym_node",
|
| 8 |
+
"torch.fx.experimental.recording",
|
| 9 |
+
]
|
| 10 |
+
DISTRIBUTED = [
|
| 11 |
+
"torch.distributed",
|
| 12 |
+
"torch._dynamo.backends.distributed",
|
| 13 |
+
"torch.nn.parallel.distributed",
|
| 14 |
+
]
|
| 15 |
+
|
| 16 |
+
register_log("dynamo", ["torch._dynamo", *DYNAMIC])
|
| 17 |
+
register_log("fake_tensor", ["torch._subclasses.fake_tensor"])
|
| 18 |
+
register_log("aot", ["torch._functorch.aot_autograd", "torch._functorch._aot_autograd"])
|
| 19 |
+
register_log("autograd", "torch.autograd")
|
| 20 |
+
register_log("inductor", ["torch._inductor", "torch._inductor.cudagraph_trees"])
|
| 21 |
+
|
| 22 |
+
register_artifact(
|
| 23 |
+
"cudagraphs",
|
| 24 |
+
"Logs information from wrapping inductor generated code with cudagraphs.",
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
register_log("dynamic", DYNAMIC)
|
| 28 |
+
register_log("torch", "torch")
|
| 29 |
+
register_log("distributed", DISTRIBUTED)
|
| 30 |
+
register_log(
|
| 31 |
+
"c10d", ["torch.distributed.distributed_c10d", "torch.distributed.rendezvous"]
|
| 32 |
+
)
|
| 33 |
+
register_log(
|
| 34 |
+
"ddp", ["torch.nn.parallel.distributed", "torch._dynamo.backends.distributed"]
|
| 35 |
+
)
|
| 36 |
+
register_log("pp", ["torch.distributed.pipelining"])
|
| 37 |
+
register_log("fsdp", ["torch.distributed.fsdp", "torch.distributed._composable.fsdp"])
|
| 38 |
+
register_log("dtensor", ["torch.distributed._tensor", "torch.distributed.tensor"])
|
| 39 |
+
register_log("onnx", "torch.onnx")
|
| 40 |
+
register_log(
|
| 41 |
+
"export",
|
| 42 |
+
[
|
| 43 |
+
"torch._dynamo",
|
| 44 |
+
"torch.export",
|
| 45 |
+
"torch.export.dynamic_shapes",
|
| 46 |
+
*DYNAMIC,
|
| 47 |
+
"torch._export.converter",
|
| 48 |
+
"torch._export.non_strict_utils",
|
| 49 |
+
],
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
register_artifact(
|
| 53 |
+
"guards",
|
| 54 |
+
"This prints the guards for every compiled Dynamo frame. It does not tell you where the guards come from.",
|
| 55 |
+
visible=True,
|
| 56 |
+
)
|
| 57 |
+
register_artifact("verbose_guards", "", off_by_default=True)
|
| 58 |
+
register_artifact(
|
| 59 |
+
"bytecode",
|
| 60 |
+
"Prints the original and modified bytecode from Dynamo. Mostly useful if you're debugging our bytecode generation in Dynamo.",
|
| 61 |
+
off_by_default=True,
|
| 62 |
+
)
|
| 63 |
+
register_artifact(
|
| 64 |
+
"graph",
|
| 65 |
+
"Prints the dynamo traced graph (prior to AOTDispatch) in a table. If you prefer python code use `graph_code` instead. ",
|
| 66 |
+
)
|
| 67 |
+
register_artifact("graph_code", "Like `graph`, but gives you the Python code instead.")
|
| 68 |
+
register_artifact(
|
| 69 |
+
"graph_sizes", "Prints the sizes of all FX nodes in the dynamo graph."
|
| 70 |
+
)
|
| 71 |
+
register_artifact(
|
| 72 |
+
"trace_source",
|
| 73 |
+
"As we execute bytecode, prints the file name / line number we are processing and the actual source code. Useful with `bytecode`",
|
| 74 |
+
)
|
| 75 |
+
register_artifact(
|
| 76 |
+
"trace_call",
|
| 77 |
+
"Like trace_source, but it will give you the per-expression blow-by-blow if your Python is recent enough.",
|
| 78 |
+
)
|
| 79 |
+
register_artifact(
|
| 80 |
+
"trace_bytecode",
|
| 81 |
+
"As we trace bytecode, prints the instruction and the current stack.",
|
| 82 |
+
)
|
| 83 |
+
register_artifact(
|
| 84 |
+
"aot_graphs",
|
| 85 |
+
"Prints the FX forward and backward graph generated by AOTDispatch, after partitioning. Useful to understand what's being given to Inductor",
|
| 86 |
+
visible=True,
|
| 87 |
+
)
|
| 88 |
+
register_artifact(
|
| 89 |
+
"aot_joint_graph",
|
| 90 |
+
"Print FX joint graph from AOTAutograd, prior to partitioning. Useful for debugging partitioning",
|
| 91 |
+
)
|
| 92 |
+
register_artifact(
|
| 93 |
+
"aot_graphs_effects",
|
| 94 |
+
"Prints the FX forward and backward graph generated by AOTDispatch, useful for debugging effects processing.",
|
| 95 |
+
visible=True,
|
| 96 |
+
)
|
| 97 |
+
register_artifact(
|
| 98 |
+
"post_grad_graphs",
|
| 99 |
+
"Prints the FX graph generated by post grad passes. Useful to understand what's being given to Inductor after post grad passes",
|
| 100 |
+
)
|
| 101 |
+
register_artifact(
|
| 102 |
+
"compiled_autograd",
|
| 103 |
+
"Prints various logs in compiled_autograd, including but not limited to the graphs. Useful for debugging compiled_autograd.",
|
| 104 |
+
visible=True,
|
| 105 |
+
)
|
| 106 |
+
register_artifact(
|
| 107 |
+
"compiled_autograd_verbose",
|
| 108 |
+
"Will affect performance. Prints compiled_autograd logs with C++ info e.g. autograd node -> fx node mapping",
|
| 109 |
+
off_by_default=True,
|
| 110 |
+
)
|
| 111 |
+
register_artifact(
|
| 112 |
+
"ddp_graphs",
|
| 113 |
+
"Only relevant for compiling DDP. DDP splits into multiple graphs to trigger comms early. This will print each individual graph here.",
|
| 114 |
+
)
|
| 115 |
+
register_artifact(
|
| 116 |
+
"recompiles",
|
| 117 |
+
"Prints the reason why we recompiled a graph. Very, very useful.",
|
| 118 |
+
visible=True,
|
| 119 |
+
)
|
| 120 |
+
register_artifact(
|
| 121 |
+
"recompiles_verbose",
|
| 122 |
+
"Prints all guard checks that fail during a recompilation. "
|
| 123 |
+
"At runtime, Dynamo will stop at the first failed check for each failing guard. "
|
| 124 |
+
"So not all logged failing checks are actually ran by Dynamo.",
|
| 125 |
+
visible=True,
|
| 126 |
+
off_by_default=True,
|
| 127 |
+
)
|
| 128 |
+
register_artifact(
|
| 129 |
+
"graph_breaks",
|
| 130 |
+
"Prints whenever Dynamo decides that it needs to graph break (i.e. create a new graph). Useful for debugging why torch.compile has poor performance",
|
| 131 |
+
visible=True,
|
| 132 |
+
)
|
| 133 |
+
register_artifact(
|
| 134 |
+
"not_implemented",
|
| 135 |
+
"Prints log messages whenever we return NotImplemented in a multi-dispatch, letting you trace through each object we attempted to dispatch to",
|
| 136 |
+
)
|
| 137 |
+
register_artifact(
|
| 138 |
+
"output_code",
|
| 139 |
+
"Prints the code that Inductor generates (either Triton or C++)",
|
| 140 |
+
off_by_default=True,
|
| 141 |
+
visible=True,
|
| 142 |
+
)
|
| 143 |
+
register_artifact(
|
| 144 |
+
"kernel_code",
|
| 145 |
+
"Prints the code that Inductor generates (on a per-kernel basis)",
|
| 146 |
+
off_by_default=True,
|
| 147 |
+
visible=True,
|
| 148 |
+
)
|
| 149 |
+
register_artifact(
|
| 150 |
+
"schedule",
|
| 151 |
+
"Inductor scheduler information. Useful if working on Inductor fusion algo",
|
| 152 |
+
off_by_default=True,
|
| 153 |
+
)
|
| 154 |
+
register_artifact("perf_hints", "", off_by_default=True)
|
| 155 |
+
register_artifact("onnx_diagnostics", "", off_by_default=True)
|
| 156 |
+
register_artifact(
|
| 157 |
+
"fusion",
|
| 158 |
+
"Detailed Inductor fusion decisions. More detailed than 'schedule'",
|
| 159 |
+
off_by_default=True,
|
| 160 |
+
)
|
| 161 |
+
register_artifact(
|
| 162 |
+
"loop_ordering",
|
| 163 |
+
"Logs related to loop ordering",
|
| 164 |
+
off_by_default=True,
|
| 165 |
+
)
|
| 166 |
+
register_artifact(
|
| 167 |
+
"overlap",
|
| 168 |
+
"Detailed Inductor compute/comm overlap decisions",
|
| 169 |
+
off_by_default=True,
|
| 170 |
+
)
|
| 171 |
+
register_artifact(
|
| 172 |
+
"sym_node",
|
| 173 |
+
"Logs extra info for various SymNode operations",
|
| 174 |
+
off_by_default=True,
|
| 175 |
+
)
|
| 176 |
+
register_artifact(
|
| 177 |
+
"trace_shape_events",
|
| 178 |
+
"Logs traces for every ShapeEnv operation that we record for replay",
|
| 179 |
+
off_by_default=True,
|
| 180 |
+
)
|
| 181 |
+
register_artifact(
|
| 182 |
+
"cudagraph_static_inputs",
|
| 183 |
+
"Logs static inputs handling in dynamo, AOT, and cudagraphs",
|
| 184 |
+
off_by_default=True,
|
| 185 |
+
)
|
| 186 |
+
register_artifact(
|
| 187 |
+
"benchmarking",
|
| 188 |
+
"Detailed Inductor benchmarking information.",
|
| 189 |
+
off_by_default=True,
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
register_artifact("custom_format_test_artifact", "Testing only", log_format="")
|
infer_4_47_1/lib/python3.10/site-packages/torch/_logging/structured.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Utilities for converting data types into structured JSON for dumping.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import traceback
|
| 6 |
+
from typing import Any, Dict, List, Sequence, Set
|
| 7 |
+
|
| 8 |
+
import torch._logging._internal
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
INTERN_TABLE: Dict[str, int] = {}
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
DUMPED_FILES: Set[str] = set()
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def intern_string(s: str) -> int:
|
| 18 |
+
r = INTERN_TABLE.get(s, None)
|
| 19 |
+
if r is None:
|
| 20 |
+
r = len(INTERN_TABLE)
|
| 21 |
+
INTERN_TABLE[s] = r
|
| 22 |
+
torch._logging._internal.trace_structured(
|
| 23 |
+
"str", lambda: (s, r), suppress_context=True
|
| 24 |
+
)
|
| 25 |
+
return r
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def dump_file(filename: str) -> None:
|
| 29 |
+
if "eval_with_key" not in filename:
|
| 30 |
+
return
|
| 31 |
+
if filename in DUMPED_FILES:
|
| 32 |
+
return
|
| 33 |
+
DUMPED_FILES.add(filename)
|
| 34 |
+
from torch.fx.graph_module import _loader
|
| 35 |
+
|
| 36 |
+
torch._logging._internal.trace_structured(
|
| 37 |
+
"dump_file",
|
| 38 |
+
metadata_fn=lambda: {
|
| 39 |
+
"name": filename,
|
| 40 |
+
},
|
| 41 |
+
payload_fn=lambda: _loader.get_source(filename),
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def from_traceback(tb: Sequence[traceback.FrameSummary]) -> List[Dict[str, Any]]:
|
| 46 |
+
r = []
|
| 47 |
+
for frame in tb:
|
| 48 |
+
# dict naming convention here coincides with
|
| 49 |
+
# python/combined_traceback.cpp
|
| 50 |
+
r.append(
|
| 51 |
+
{
|
| 52 |
+
"line": frame.lineno,
|
| 53 |
+
"name": frame.name,
|
| 54 |
+
"filename": intern_string(frame.filename),
|
| 55 |
+
}
|
| 56 |
+
)
|
| 57 |
+
return r
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (773 Bytes). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_binary_ufuncs_impl.cpython-310.pyc
ADDED
|
Binary file (1.77 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_casting_dicts.cpython-310.pyc
ADDED
|
Binary file (11.1 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_dtypes.cpython-310.pyc
ADDED
|
Binary file (10.2 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_dtypes_impl.cpython-310.pyc
ADDED
|
Binary file (4.54 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_funcs.cpython-310.pyc
ADDED
|
Binary file (1.65 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_funcs_impl.cpython-310.pyc
ADDED
|
Binary file (42.7 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_getlimits.cpython-310.pyc
ADDED
|
Binary file (504 Bytes). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_ndarray.cpython-310.pyc
ADDED
|
Binary file (16.3 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_normalizations.cpython-310.pyc
ADDED
|
Binary file (6.68 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_reductions_impl.cpython-310.pyc
ADDED
|
Binary file (7.97 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_ufuncs.cpython-310.pyc
ADDED
|
Binary file (6.19 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_unary_ufuncs_impl.cpython-310.pyc
ADDED
|
Binary file (1.51 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/_util.cpython-310.pyc
ADDED
|
Binary file (7.35 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/fft.cpython-310.pyc
ADDED
|
Binary file (3.29 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/linalg.cpython-310.pyc
ADDED
|
Binary file (5.59 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/__pycache__/random.cpython-310.pyc
ADDED
|
Binary file (4.35 kB). View file
|
|
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/_binary_ufuncs_impl.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: ignore-errors
|
| 2 |
+
|
| 3 |
+
"""Export torch work functions for binary ufuncs, rename/tweak to match numpy.
|
| 4 |
+
This listing is further exported to public symbols in the `torch._numpy/_ufuncs.py` module.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
from torch import ( # noqa: F401
|
| 9 |
+
add,
|
| 10 |
+
arctan2,
|
| 11 |
+
bitwise_and,
|
| 12 |
+
bitwise_left_shift as left_shift,
|
| 13 |
+
bitwise_or,
|
| 14 |
+
bitwise_right_shift as right_shift,
|
| 15 |
+
bitwise_xor,
|
| 16 |
+
copysign,
|
| 17 |
+
divide,
|
| 18 |
+
eq as equal,
|
| 19 |
+
float_power,
|
| 20 |
+
floor_divide,
|
| 21 |
+
fmax,
|
| 22 |
+
fmin,
|
| 23 |
+
fmod,
|
| 24 |
+
gcd,
|
| 25 |
+
greater,
|
| 26 |
+
greater_equal,
|
| 27 |
+
heaviside,
|
| 28 |
+
hypot,
|
| 29 |
+
lcm,
|
| 30 |
+
ldexp,
|
| 31 |
+
less,
|
| 32 |
+
less_equal,
|
| 33 |
+
logaddexp,
|
| 34 |
+
logaddexp2,
|
| 35 |
+
logical_and,
|
| 36 |
+
logical_or,
|
| 37 |
+
logical_xor,
|
| 38 |
+
maximum,
|
| 39 |
+
minimum,
|
| 40 |
+
multiply,
|
| 41 |
+
nextafter,
|
| 42 |
+
not_equal,
|
| 43 |
+
pow as power,
|
| 44 |
+
remainder,
|
| 45 |
+
remainder as mod,
|
| 46 |
+
subtract,
|
| 47 |
+
true_divide,
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
from . import _dtypes_impl, _util
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# work around torch limitations w.r.t. numpy
|
| 54 |
+
def matmul(x, y):
|
| 55 |
+
# work around:
|
| 56 |
+
# - RuntimeError: expected scalar type Int but found Double
|
| 57 |
+
# - RuntimeError: "addmm_impl_cpu_" not implemented for 'Bool'
|
| 58 |
+
# - RuntimeError: "addmm_impl_cpu_" not implemented for 'Half'
|
| 59 |
+
dtype = _dtypes_impl.result_type_impl(x, y)
|
| 60 |
+
is_bool = dtype == torch.bool
|
| 61 |
+
is_half = (x.dtype == torch.float16 or y.dtype == torch.float16) and (
|
| 62 |
+
x.is_cpu or y.is_cpu
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
work_dtype = dtype
|
| 66 |
+
if is_bool:
|
| 67 |
+
work_dtype = torch.uint8
|
| 68 |
+
if is_half:
|
| 69 |
+
work_dtype = torch.float32
|
| 70 |
+
|
| 71 |
+
x = _util.cast_if_needed(x, work_dtype)
|
| 72 |
+
y = _util.cast_if_needed(y, work_dtype)
|
| 73 |
+
|
| 74 |
+
result = torch.matmul(x, y)
|
| 75 |
+
|
| 76 |
+
if work_dtype != dtype:
|
| 77 |
+
result = result.to(dtype)
|
| 78 |
+
|
| 79 |
+
return result
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
# a stub implementation of divmod, should be improved after
|
| 83 |
+
# https://github.com/pytorch/pytorch/issues/90820 is fixed in pytorch
|
| 84 |
+
def divmod(x, y):
|
| 85 |
+
return x // y, x % y
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/_casting_dicts.py
ADDED
|
@@ -0,0 +1,1368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: ignore-errors
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
# These two dicts are autogenerated with autogen/gen_dtypes.py,
|
| 7 |
+
# using numpy version 1.24.3.
|
| 8 |
+
|
| 9 |
+
_can_cast_dict = {
|
| 10 |
+
"no": {
|
| 11 |
+
torch.float16: {
|
| 12 |
+
torch.float16: True,
|
| 13 |
+
torch.float32: False,
|
| 14 |
+
torch.float64: False,
|
| 15 |
+
torch.complex64: False,
|
| 16 |
+
torch.complex128: False,
|
| 17 |
+
torch.uint8: False,
|
| 18 |
+
torch.uint16: False,
|
| 19 |
+
torch.uint32: False,
|
| 20 |
+
torch.uint64: False,
|
| 21 |
+
torch.int8: False,
|
| 22 |
+
torch.int16: False,
|
| 23 |
+
torch.int32: False,
|
| 24 |
+
torch.int64: False,
|
| 25 |
+
torch.bool: False,
|
| 26 |
+
},
|
| 27 |
+
torch.float32: {
|
| 28 |
+
torch.float16: False,
|
| 29 |
+
torch.float32: True,
|
| 30 |
+
torch.float64: False,
|
| 31 |
+
torch.complex64: False,
|
| 32 |
+
torch.complex128: False,
|
| 33 |
+
torch.uint8: False,
|
| 34 |
+
torch.uint16: False,
|
| 35 |
+
torch.uint32: False,
|
| 36 |
+
torch.uint64: False,
|
| 37 |
+
torch.int8: False,
|
| 38 |
+
torch.int16: False,
|
| 39 |
+
torch.int32: False,
|
| 40 |
+
torch.int64: False,
|
| 41 |
+
torch.bool: False,
|
| 42 |
+
},
|
| 43 |
+
torch.float64: {
|
| 44 |
+
torch.float16: False,
|
| 45 |
+
torch.float32: False,
|
| 46 |
+
torch.float64: True,
|
| 47 |
+
torch.complex64: False,
|
| 48 |
+
torch.complex128: False,
|
| 49 |
+
torch.uint8: False,
|
| 50 |
+
torch.uint16: False,
|
| 51 |
+
torch.uint32: False,
|
| 52 |
+
torch.uint64: False,
|
| 53 |
+
torch.int8: False,
|
| 54 |
+
torch.int16: False,
|
| 55 |
+
torch.int32: False,
|
| 56 |
+
torch.int64: False,
|
| 57 |
+
torch.bool: False,
|
| 58 |
+
},
|
| 59 |
+
torch.complex64: {
|
| 60 |
+
torch.float16: False,
|
| 61 |
+
torch.float32: False,
|
| 62 |
+
torch.float64: False,
|
| 63 |
+
torch.complex64: True,
|
| 64 |
+
torch.complex128: False,
|
| 65 |
+
torch.uint8: False,
|
| 66 |
+
torch.uint16: False,
|
| 67 |
+
torch.uint32: False,
|
| 68 |
+
torch.uint64: False,
|
| 69 |
+
torch.int8: False,
|
| 70 |
+
torch.int16: False,
|
| 71 |
+
torch.int32: False,
|
| 72 |
+
torch.int64: False,
|
| 73 |
+
torch.bool: False,
|
| 74 |
+
},
|
| 75 |
+
torch.complex128: {
|
| 76 |
+
torch.float16: False,
|
| 77 |
+
torch.float32: False,
|
| 78 |
+
torch.float64: False,
|
| 79 |
+
torch.complex64: False,
|
| 80 |
+
torch.complex128: True,
|
| 81 |
+
torch.uint8: False,
|
| 82 |
+
torch.uint16: False,
|
| 83 |
+
torch.uint32: False,
|
| 84 |
+
torch.uint64: False,
|
| 85 |
+
torch.int8: False,
|
| 86 |
+
torch.int16: False,
|
| 87 |
+
torch.int32: False,
|
| 88 |
+
torch.int64: False,
|
| 89 |
+
torch.bool: False,
|
| 90 |
+
},
|
| 91 |
+
torch.uint8: {
|
| 92 |
+
torch.float16: False,
|
| 93 |
+
torch.float32: False,
|
| 94 |
+
torch.float64: False,
|
| 95 |
+
torch.complex64: False,
|
| 96 |
+
torch.complex128: False,
|
| 97 |
+
torch.uint8: True,
|
| 98 |
+
torch.uint16: False,
|
| 99 |
+
torch.uint32: False,
|
| 100 |
+
torch.uint64: False,
|
| 101 |
+
torch.int8: False,
|
| 102 |
+
torch.int16: False,
|
| 103 |
+
torch.int32: False,
|
| 104 |
+
torch.int64: False,
|
| 105 |
+
torch.bool: False,
|
| 106 |
+
},
|
| 107 |
+
torch.uint16: {
|
| 108 |
+
torch.float16: False,
|
| 109 |
+
torch.float32: False,
|
| 110 |
+
torch.float64: False,
|
| 111 |
+
torch.complex64: False,
|
| 112 |
+
torch.complex128: False,
|
| 113 |
+
torch.uint8: False,
|
| 114 |
+
torch.uint16: True,
|
| 115 |
+
torch.uint32: False,
|
| 116 |
+
torch.uint64: False,
|
| 117 |
+
torch.int8: False,
|
| 118 |
+
torch.int16: False,
|
| 119 |
+
torch.int32: False,
|
| 120 |
+
torch.int64: False,
|
| 121 |
+
torch.bool: False,
|
| 122 |
+
},
|
| 123 |
+
torch.uint32: {
|
| 124 |
+
torch.float16: False,
|
| 125 |
+
torch.float32: False,
|
| 126 |
+
torch.float64: False,
|
| 127 |
+
torch.complex64: False,
|
| 128 |
+
torch.complex128: False,
|
| 129 |
+
torch.uint8: False,
|
| 130 |
+
torch.uint16: False,
|
| 131 |
+
torch.uint32: True,
|
| 132 |
+
torch.uint64: False,
|
| 133 |
+
torch.int8: False,
|
| 134 |
+
torch.int16: False,
|
| 135 |
+
torch.int32: False,
|
| 136 |
+
torch.int64: False,
|
| 137 |
+
torch.bool: False,
|
| 138 |
+
},
|
| 139 |
+
torch.uint64: {
|
| 140 |
+
torch.float16: False,
|
| 141 |
+
torch.float32: False,
|
| 142 |
+
torch.float64: False,
|
| 143 |
+
torch.complex64: False,
|
| 144 |
+
torch.complex128: False,
|
| 145 |
+
torch.uint8: False,
|
| 146 |
+
torch.uint16: False,
|
| 147 |
+
torch.uint32: False,
|
| 148 |
+
torch.uint64: True,
|
| 149 |
+
torch.int8: False,
|
| 150 |
+
torch.int16: False,
|
| 151 |
+
torch.int32: False,
|
| 152 |
+
torch.int64: False,
|
| 153 |
+
torch.bool: False,
|
| 154 |
+
},
|
| 155 |
+
torch.int8: {
|
| 156 |
+
torch.float16: False,
|
| 157 |
+
torch.float32: False,
|
| 158 |
+
torch.float64: False,
|
| 159 |
+
torch.complex64: False,
|
| 160 |
+
torch.complex128: False,
|
| 161 |
+
torch.uint8: False,
|
| 162 |
+
torch.uint16: False,
|
| 163 |
+
torch.uint32: False,
|
| 164 |
+
torch.uint64: False,
|
| 165 |
+
torch.int8: True,
|
| 166 |
+
torch.int16: False,
|
| 167 |
+
torch.int32: False,
|
| 168 |
+
torch.int64: False,
|
| 169 |
+
torch.bool: False,
|
| 170 |
+
},
|
| 171 |
+
torch.int16: {
|
| 172 |
+
torch.float16: False,
|
| 173 |
+
torch.float32: False,
|
| 174 |
+
torch.float64: False,
|
| 175 |
+
torch.complex64: False,
|
| 176 |
+
torch.complex128: False,
|
| 177 |
+
torch.uint8: False,
|
| 178 |
+
torch.uint16: False,
|
| 179 |
+
torch.uint32: False,
|
| 180 |
+
torch.uint64: False,
|
| 181 |
+
torch.int8: False,
|
| 182 |
+
torch.int16: True,
|
| 183 |
+
torch.int32: False,
|
| 184 |
+
torch.int64: False,
|
| 185 |
+
torch.bool: False,
|
| 186 |
+
},
|
| 187 |
+
torch.int32: {
|
| 188 |
+
torch.float16: False,
|
| 189 |
+
torch.float32: False,
|
| 190 |
+
torch.float64: False,
|
| 191 |
+
torch.complex64: False,
|
| 192 |
+
torch.complex128: False,
|
| 193 |
+
torch.uint8: False,
|
| 194 |
+
torch.uint16: False,
|
| 195 |
+
torch.uint32: False,
|
| 196 |
+
torch.uint64: False,
|
| 197 |
+
torch.int8: False,
|
| 198 |
+
torch.int16: False,
|
| 199 |
+
torch.int32: True,
|
| 200 |
+
torch.int64: False,
|
| 201 |
+
torch.bool: False,
|
| 202 |
+
},
|
| 203 |
+
torch.int64: {
|
| 204 |
+
torch.float16: False,
|
| 205 |
+
torch.float32: False,
|
| 206 |
+
torch.float64: False,
|
| 207 |
+
torch.complex64: False,
|
| 208 |
+
torch.complex128: False,
|
| 209 |
+
torch.uint8: False,
|
| 210 |
+
torch.uint16: False,
|
| 211 |
+
torch.uint32: False,
|
| 212 |
+
torch.uint64: False,
|
| 213 |
+
torch.int8: False,
|
| 214 |
+
torch.int16: False,
|
| 215 |
+
torch.int32: False,
|
| 216 |
+
torch.int64: True,
|
| 217 |
+
torch.bool: False,
|
| 218 |
+
},
|
| 219 |
+
torch.bool: {
|
| 220 |
+
torch.float16: False,
|
| 221 |
+
torch.float32: False,
|
| 222 |
+
torch.float64: False,
|
| 223 |
+
torch.complex64: False,
|
| 224 |
+
torch.complex128: False,
|
| 225 |
+
torch.uint8: False,
|
| 226 |
+
torch.uint16: False,
|
| 227 |
+
torch.uint32: False,
|
| 228 |
+
torch.uint64: False,
|
| 229 |
+
torch.int8: False,
|
| 230 |
+
torch.int16: False,
|
| 231 |
+
torch.int32: False,
|
| 232 |
+
torch.int64: False,
|
| 233 |
+
torch.bool: True,
|
| 234 |
+
},
|
| 235 |
+
},
|
| 236 |
+
"equiv": {
|
| 237 |
+
torch.float16: {
|
| 238 |
+
torch.float16: True,
|
| 239 |
+
torch.float32: False,
|
| 240 |
+
torch.float64: False,
|
| 241 |
+
torch.complex64: False,
|
| 242 |
+
torch.complex128: False,
|
| 243 |
+
torch.uint8: False,
|
| 244 |
+
torch.uint16: False,
|
| 245 |
+
torch.uint32: False,
|
| 246 |
+
torch.uint64: False,
|
| 247 |
+
torch.int8: False,
|
| 248 |
+
torch.int16: False,
|
| 249 |
+
torch.int32: False,
|
| 250 |
+
torch.int64: False,
|
| 251 |
+
torch.bool: False,
|
| 252 |
+
},
|
| 253 |
+
torch.float32: {
|
| 254 |
+
torch.float16: False,
|
| 255 |
+
torch.float32: True,
|
| 256 |
+
torch.float64: False,
|
| 257 |
+
torch.complex64: False,
|
| 258 |
+
torch.complex128: False,
|
| 259 |
+
torch.uint8: False,
|
| 260 |
+
torch.uint16: False,
|
| 261 |
+
torch.uint32: False,
|
| 262 |
+
torch.uint64: False,
|
| 263 |
+
torch.int8: False,
|
| 264 |
+
torch.int16: False,
|
| 265 |
+
torch.int32: False,
|
| 266 |
+
torch.int64: False,
|
| 267 |
+
torch.bool: False,
|
| 268 |
+
},
|
| 269 |
+
torch.float64: {
|
| 270 |
+
torch.float16: False,
|
| 271 |
+
torch.float32: False,
|
| 272 |
+
torch.float64: True,
|
| 273 |
+
torch.complex64: False,
|
| 274 |
+
torch.complex128: False,
|
| 275 |
+
torch.uint8: False,
|
| 276 |
+
torch.uint16: False,
|
| 277 |
+
torch.uint32: False,
|
| 278 |
+
torch.uint64: False,
|
| 279 |
+
torch.int8: False,
|
| 280 |
+
torch.int16: False,
|
| 281 |
+
torch.int32: False,
|
| 282 |
+
torch.int64: False,
|
| 283 |
+
torch.bool: False,
|
| 284 |
+
},
|
| 285 |
+
torch.complex64: {
|
| 286 |
+
torch.float16: False,
|
| 287 |
+
torch.float32: False,
|
| 288 |
+
torch.float64: False,
|
| 289 |
+
torch.complex64: True,
|
| 290 |
+
torch.complex128: False,
|
| 291 |
+
torch.uint8: False,
|
| 292 |
+
torch.uint16: False,
|
| 293 |
+
torch.uint32: False,
|
| 294 |
+
torch.uint64: False,
|
| 295 |
+
torch.int8: False,
|
| 296 |
+
torch.int16: False,
|
| 297 |
+
torch.int32: False,
|
| 298 |
+
torch.int64: False,
|
| 299 |
+
torch.bool: False,
|
| 300 |
+
},
|
| 301 |
+
torch.complex128: {
|
| 302 |
+
torch.float16: False,
|
| 303 |
+
torch.float32: False,
|
| 304 |
+
torch.float64: False,
|
| 305 |
+
torch.complex64: False,
|
| 306 |
+
torch.complex128: True,
|
| 307 |
+
torch.uint8: False,
|
| 308 |
+
torch.uint16: False,
|
| 309 |
+
torch.uint32: False,
|
| 310 |
+
torch.uint64: False,
|
| 311 |
+
torch.int8: False,
|
| 312 |
+
torch.int16: False,
|
| 313 |
+
torch.int32: False,
|
| 314 |
+
torch.int64: False,
|
| 315 |
+
torch.bool: False,
|
| 316 |
+
},
|
| 317 |
+
torch.uint8: {
|
| 318 |
+
torch.float16: False,
|
| 319 |
+
torch.float32: False,
|
| 320 |
+
torch.float64: False,
|
| 321 |
+
torch.complex64: False,
|
| 322 |
+
torch.complex128: False,
|
| 323 |
+
torch.uint8: True,
|
| 324 |
+
torch.uint16: False,
|
| 325 |
+
torch.uint32: False,
|
| 326 |
+
torch.uint64: False,
|
| 327 |
+
torch.int8: False,
|
| 328 |
+
torch.int16: False,
|
| 329 |
+
torch.int32: False,
|
| 330 |
+
torch.int64: False,
|
| 331 |
+
torch.bool: False,
|
| 332 |
+
},
|
| 333 |
+
torch.uint16: {
|
| 334 |
+
torch.float16: False,
|
| 335 |
+
torch.float32: False,
|
| 336 |
+
torch.float64: False,
|
| 337 |
+
torch.complex64: False,
|
| 338 |
+
torch.complex128: False,
|
| 339 |
+
torch.uint8: False,
|
| 340 |
+
torch.uint16: True,
|
| 341 |
+
torch.uint32: False,
|
| 342 |
+
torch.uint64: False,
|
| 343 |
+
torch.int8: False,
|
| 344 |
+
torch.int16: False,
|
| 345 |
+
torch.int32: False,
|
| 346 |
+
torch.int64: False,
|
| 347 |
+
torch.bool: False,
|
| 348 |
+
},
|
| 349 |
+
torch.uint32: {
|
| 350 |
+
torch.float16: False,
|
| 351 |
+
torch.float32: False,
|
| 352 |
+
torch.float64: False,
|
| 353 |
+
torch.complex64: False,
|
| 354 |
+
torch.complex128: False,
|
| 355 |
+
torch.uint8: False,
|
| 356 |
+
torch.uint16: False,
|
| 357 |
+
torch.uint32: True,
|
| 358 |
+
torch.uint64: False,
|
| 359 |
+
torch.int8: False,
|
| 360 |
+
torch.int16: False,
|
| 361 |
+
torch.int32: False,
|
| 362 |
+
torch.int64: False,
|
| 363 |
+
torch.bool: False,
|
| 364 |
+
},
|
| 365 |
+
torch.uint64: {
|
| 366 |
+
torch.float16: False,
|
| 367 |
+
torch.float32: False,
|
| 368 |
+
torch.float64: False,
|
| 369 |
+
torch.complex64: False,
|
| 370 |
+
torch.complex128: False,
|
| 371 |
+
torch.uint8: False,
|
| 372 |
+
torch.uint16: False,
|
| 373 |
+
torch.uint32: False,
|
| 374 |
+
torch.uint64: True,
|
| 375 |
+
torch.int8: False,
|
| 376 |
+
torch.int16: False,
|
| 377 |
+
torch.int32: False,
|
| 378 |
+
torch.int64: False,
|
| 379 |
+
torch.bool: False,
|
| 380 |
+
},
|
| 381 |
+
torch.int8: {
|
| 382 |
+
torch.float16: False,
|
| 383 |
+
torch.float32: False,
|
| 384 |
+
torch.float64: False,
|
| 385 |
+
torch.complex64: False,
|
| 386 |
+
torch.complex128: False,
|
| 387 |
+
torch.uint8: False,
|
| 388 |
+
torch.uint16: False,
|
| 389 |
+
torch.uint32: False,
|
| 390 |
+
torch.uint64: False,
|
| 391 |
+
torch.int8: True,
|
| 392 |
+
torch.int16: False,
|
| 393 |
+
torch.int32: False,
|
| 394 |
+
torch.int64: False,
|
| 395 |
+
torch.bool: False,
|
| 396 |
+
},
|
| 397 |
+
torch.int16: {
|
| 398 |
+
torch.float16: False,
|
| 399 |
+
torch.float32: False,
|
| 400 |
+
torch.float64: False,
|
| 401 |
+
torch.complex64: False,
|
| 402 |
+
torch.complex128: False,
|
| 403 |
+
torch.uint8: False,
|
| 404 |
+
torch.uint16: False,
|
| 405 |
+
torch.uint32: False,
|
| 406 |
+
torch.uint64: False,
|
| 407 |
+
torch.int8: False,
|
| 408 |
+
torch.int16: True,
|
| 409 |
+
torch.int32: False,
|
| 410 |
+
torch.int64: False,
|
| 411 |
+
torch.bool: False,
|
| 412 |
+
},
|
| 413 |
+
torch.int32: {
|
| 414 |
+
torch.float16: False,
|
| 415 |
+
torch.float32: False,
|
| 416 |
+
torch.float64: False,
|
| 417 |
+
torch.complex64: False,
|
| 418 |
+
torch.complex128: False,
|
| 419 |
+
torch.uint8: False,
|
| 420 |
+
torch.uint16: False,
|
| 421 |
+
torch.uint32: False,
|
| 422 |
+
torch.uint64: False,
|
| 423 |
+
torch.int8: False,
|
| 424 |
+
torch.int16: False,
|
| 425 |
+
torch.int32: True,
|
| 426 |
+
torch.int64: False,
|
| 427 |
+
torch.bool: False,
|
| 428 |
+
},
|
| 429 |
+
torch.int64: {
|
| 430 |
+
torch.float16: False,
|
| 431 |
+
torch.float32: False,
|
| 432 |
+
torch.float64: False,
|
| 433 |
+
torch.complex64: False,
|
| 434 |
+
torch.complex128: False,
|
| 435 |
+
torch.uint8: False,
|
| 436 |
+
torch.uint16: False,
|
| 437 |
+
torch.uint32: False,
|
| 438 |
+
torch.uint64: False,
|
| 439 |
+
torch.int8: False,
|
| 440 |
+
torch.int16: False,
|
| 441 |
+
torch.int32: False,
|
| 442 |
+
torch.int64: True,
|
| 443 |
+
torch.bool: False,
|
| 444 |
+
},
|
| 445 |
+
torch.bool: {
|
| 446 |
+
torch.float16: False,
|
| 447 |
+
torch.float32: False,
|
| 448 |
+
torch.float64: False,
|
| 449 |
+
torch.complex64: False,
|
| 450 |
+
torch.complex128: False,
|
| 451 |
+
torch.uint8: False,
|
| 452 |
+
torch.uint16: False,
|
| 453 |
+
torch.uint32: False,
|
| 454 |
+
torch.uint64: False,
|
| 455 |
+
torch.int8: False,
|
| 456 |
+
torch.int16: False,
|
| 457 |
+
torch.int32: False,
|
| 458 |
+
torch.int64: False,
|
| 459 |
+
torch.bool: True,
|
| 460 |
+
},
|
| 461 |
+
},
|
| 462 |
+
"safe": {
|
| 463 |
+
torch.float16: {
|
| 464 |
+
torch.float16: True,
|
| 465 |
+
torch.float32: True,
|
| 466 |
+
torch.float64: True,
|
| 467 |
+
torch.complex64: True,
|
| 468 |
+
torch.complex128: True,
|
| 469 |
+
torch.uint8: False,
|
| 470 |
+
torch.uint16: False,
|
| 471 |
+
torch.uint32: False,
|
| 472 |
+
torch.uint64: False,
|
| 473 |
+
torch.int8: False,
|
| 474 |
+
torch.int16: False,
|
| 475 |
+
torch.int32: False,
|
| 476 |
+
torch.int64: False,
|
| 477 |
+
torch.bool: False,
|
| 478 |
+
},
|
| 479 |
+
torch.float32: {
|
| 480 |
+
torch.float16: False,
|
| 481 |
+
torch.float32: True,
|
| 482 |
+
torch.float64: True,
|
| 483 |
+
torch.complex64: True,
|
| 484 |
+
torch.complex128: True,
|
| 485 |
+
torch.uint8: False,
|
| 486 |
+
torch.uint16: False,
|
| 487 |
+
torch.uint32: False,
|
| 488 |
+
torch.uint64: False,
|
| 489 |
+
torch.int8: False,
|
| 490 |
+
torch.int16: False,
|
| 491 |
+
torch.int32: False,
|
| 492 |
+
torch.int64: False,
|
| 493 |
+
torch.bool: False,
|
| 494 |
+
},
|
| 495 |
+
torch.float64: {
|
| 496 |
+
torch.float16: False,
|
| 497 |
+
torch.float32: False,
|
| 498 |
+
torch.float64: True,
|
| 499 |
+
torch.complex64: False,
|
| 500 |
+
torch.complex128: True,
|
| 501 |
+
torch.uint8: False,
|
| 502 |
+
torch.uint16: False,
|
| 503 |
+
torch.uint32: False,
|
| 504 |
+
torch.uint64: False,
|
| 505 |
+
torch.int8: False,
|
| 506 |
+
torch.int16: False,
|
| 507 |
+
torch.int32: False,
|
| 508 |
+
torch.int64: False,
|
| 509 |
+
torch.bool: False,
|
| 510 |
+
},
|
| 511 |
+
torch.complex64: {
|
| 512 |
+
torch.float16: False,
|
| 513 |
+
torch.float32: False,
|
| 514 |
+
torch.float64: False,
|
| 515 |
+
torch.complex64: True,
|
| 516 |
+
torch.complex128: True,
|
| 517 |
+
torch.uint8: False,
|
| 518 |
+
torch.uint16: False,
|
| 519 |
+
torch.uint32: False,
|
| 520 |
+
torch.uint64: False,
|
| 521 |
+
torch.int8: False,
|
| 522 |
+
torch.int16: False,
|
| 523 |
+
torch.int32: False,
|
| 524 |
+
torch.int64: False,
|
| 525 |
+
torch.bool: False,
|
| 526 |
+
},
|
| 527 |
+
torch.complex128: {
|
| 528 |
+
torch.float16: False,
|
| 529 |
+
torch.float32: False,
|
| 530 |
+
torch.float64: False,
|
| 531 |
+
torch.complex64: False,
|
| 532 |
+
torch.complex128: True,
|
| 533 |
+
torch.uint8: False,
|
| 534 |
+
torch.uint16: False,
|
| 535 |
+
torch.uint32: False,
|
| 536 |
+
torch.uint64: False,
|
| 537 |
+
torch.int8: False,
|
| 538 |
+
torch.int16: False,
|
| 539 |
+
torch.int32: False,
|
| 540 |
+
torch.int64: False,
|
| 541 |
+
torch.bool: False,
|
| 542 |
+
},
|
| 543 |
+
torch.uint8: {
|
| 544 |
+
torch.float16: True,
|
| 545 |
+
torch.float32: True,
|
| 546 |
+
torch.float64: True,
|
| 547 |
+
torch.complex64: True,
|
| 548 |
+
torch.complex128: True,
|
| 549 |
+
torch.uint8: True,
|
| 550 |
+
torch.uint16: True,
|
| 551 |
+
torch.uint32: True,
|
| 552 |
+
torch.uint64: True,
|
| 553 |
+
torch.int8: False,
|
| 554 |
+
torch.int16: True,
|
| 555 |
+
torch.int32: True,
|
| 556 |
+
torch.int64: True,
|
| 557 |
+
torch.bool: False,
|
| 558 |
+
},
|
| 559 |
+
torch.uint16: {
|
| 560 |
+
torch.float16: False,
|
| 561 |
+
torch.float32: True,
|
| 562 |
+
torch.float64: True,
|
| 563 |
+
torch.complex64: True,
|
| 564 |
+
torch.complex128: True,
|
| 565 |
+
torch.uint8: False,
|
| 566 |
+
torch.uint16: True,
|
| 567 |
+
torch.uint32: True,
|
| 568 |
+
torch.uint64: True,
|
| 569 |
+
torch.int8: False,
|
| 570 |
+
torch.int16: False,
|
| 571 |
+
torch.int32: True,
|
| 572 |
+
torch.int64: True,
|
| 573 |
+
torch.bool: False,
|
| 574 |
+
},
|
| 575 |
+
torch.uint32: {
|
| 576 |
+
torch.float16: False,
|
| 577 |
+
torch.float32: False,
|
| 578 |
+
torch.float64: True,
|
| 579 |
+
torch.complex64: False,
|
| 580 |
+
torch.complex128: True,
|
| 581 |
+
torch.uint8: False,
|
| 582 |
+
torch.uint16: False,
|
| 583 |
+
torch.uint32: True,
|
| 584 |
+
torch.uint64: True,
|
| 585 |
+
torch.int8: False,
|
| 586 |
+
torch.int16: False,
|
| 587 |
+
torch.int32: False,
|
| 588 |
+
torch.int64: True,
|
| 589 |
+
torch.bool: False,
|
| 590 |
+
},
|
| 591 |
+
torch.uint64: {
|
| 592 |
+
torch.float16: False,
|
| 593 |
+
torch.float32: False,
|
| 594 |
+
torch.float64: True,
|
| 595 |
+
torch.complex64: False,
|
| 596 |
+
torch.complex128: True,
|
| 597 |
+
torch.uint8: False,
|
| 598 |
+
torch.uint16: False,
|
| 599 |
+
torch.uint32: False,
|
| 600 |
+
torch.uint64: True,
|
| 601 |
+
torch.int8: False,
|
| 602 |
+
torch.int16: False,
|
| 603 |
+
torch.int32: False,
|
| 604 |
+
torch.int64: False,
|
| 605 |
+
torch.bool: False,
|
| 606 |
+
},
|
| 607 |
+
torch.int8: {
|
| 608 |
+
torch.float16: True,
|
| 609 |
+
torch.float32: True,
|
| 610 |
+
torch.float64: True,
|
| 611 |
+
torch.complex64: True,
|
| 612 |
+
torch.complex128: True,
|
| 613 |
+
torch.uint8: False,
|
| 614 |
+
torch.uint16: False,
|
| 615 |
+
torch.uint32: False,
|
| 616 |
+
torch.uint64: False,
|
| 617 |
+
torch.int8: True,
|
| 618 |
+
torch.int16: True,
|
| 619 |
+
torch.int32: True,
|
| 620 |
+
torch.int64: True,
|
| 621 |
+
torch.bool: False,
|
| 622 |
+
},
|
| 623 |
+
torch.int16: {
|
| 624 |
+
torch.float16: False,
|
| 625 |
+
torch.float32: True,
|
| 626 |
+
torch.float64: True,
|
| 627 |
+
torch.complex64: True,
|
| 628 |
+
torch.complex128: True,
|
| 629 |
+
torch.uint8: False,
|
| 630 |
+
torch.uint16: False,
|
| 631 |
+
torch.uint32: False,
|
| 632 |
+
torch.uint64: False,
|
| 633 |
+
torch.int8: False,
|
| 634 |
+
torch.int16: True,
|
| 635 |
+
torch.int32: True,
|
| 636 |
+
torch.int64: True,
|
| 637 |
+
torch.bool: False,
|
| 638 |
+
},
|
| 639 |
+
torch.int32: {
|
| 640 |
+
torch.float16: False,
|
| 641 |
+
torch.float32: False,
|
| 642 |
+
torch.float64: True,
|
| 643 |
+
torch.complex64: False,
|
| 644 |
+
torch.complex128: True,
|
| 645 |
+
torch.uint8: False,
|
| 646 |
+
torch.uint16: False,
|
| 647 |
+
torch.uint32: False,
|
| 648 |
+
torch.uint64: False,
|
| 649 |
+
torch.int8: False,
|
| 650 |
+
torch.int16: False,
|
| 651 |
+
torch.int32: True,
|
| 652 |
+
torch.int64: True,
|
| 653 |
+
torch.bool: False,
|
| 654 |
+
},
|
| 655 |
+
torch.int64: {
|
| 656 |
+
torch.float16: False,
|
| 657 |
+
torch.float32: False,
|
| 658 |
+
torch.float64: True,
|
| 659 |
+
torch.complex64: False,
|
| 660 |
+
torch.complex128: True,
|
| 661 |
+
torch.uint8: False,
|
| 662 |
+
torch.uint16: False,
|
| 663 |
+
torch.uint32: False,
|
| 664 |
+
torch.uint64: False,
|
| 665 |
+
torch.int8: False,
|
| 666 |
+
torch.int16: False,
|
| 667 |
+
torch.int32: False,
|
| 668 |
+
torch.int64: True,
|
| 669 |
+
torch.bool: False,
|
| 670 |
+
},
|
| 671 |
+
torch.bool: {
|
| 672 |
+
torch.float16: True,
|
| 673 |
+
torch.float32: True,
|
| 674 |
+
torch.float64: True,
|
| 675 |
+
torch.complex64: True,
|
| 676 |
+
torch.complex128: True,
|
| 677 |
+
torch.uint8: True,
|
| 678 |
+
torch.uint16: True,
|
| 679 |
+
torch.uint32: True,
|
| 680 |
+
torch.uint64: True,
|
| 681 |
+
torch.int8: True,
|
| 682 |
+
torch.int16: True,
|
| 683 |
+
torch.int32: True,
|
| 684 |
+
torch.int64: True,
|
| 685 |
+
torch.bool: True,
|
| 686 |
+
},
|
| 687 |
+
},
|
| 688 |
+
"same_kind": {
|
| 689 |
+
torch.float16: {
|
| 690 |
+
torch.float16: True,
|
| 691 |
+
torch.float32: True,
|
| 692 |
+
torch.float64: True,
|
| 693 |
+
torch.complex64: True,
|
| 694 |
+
torch.complex128: True,
|
| 695 |
+
torch.uint8: False,
|
| 696 |
+
torch.uint16: False,
|
| 697 |
+
torch.uint32: False,
|
| 698 |
+
torch.uint64: False,
|
| 699 |
+
torch.int8: False,
|
| 700 |
+
torch.int16: False,
|
| 701 |
+
torch.int32: False,
|
| 702 |
+
torch.int64: False,
|
| 703 |
+
torch.bool: False,
|
| 704 |
+
},
|
| 705 |
+
torch.float32: {
|
| 706 |
+
torch.float16: True,
|
| 707 |
+
torch.float32: True,
|
| 708 |
+
torch.float64: True,
|
| 709 |
+
torch.complex64: True,
|
| 710 |
+
torch.complex128: True,
|
| 711 |
+
torch.uint8: False,
|
| 712 |
+
torch.uint16: False,
|
| 713 |
+
torch.uint32: False,
|
| 714 |
+
torch.uint64: False,
|
| 715 |
+
torch.int8: False,
|
| 716 |
+
torch.int16: False,
|
| 717 |
+
torch.int32: False,
|
| 718 |
+
torch.int64: False,
|
| 719 |
+
torch.bool: False,
|
| 720 |
+
},
|
| 721 |
+
torch.float64: {
|
| 722 |
+
torch.float16: True,
|
| 723 |
+
torch.float32: True,
|
| 724 |
+
torch.float64: True,
|
| 725 |
+
torch.complex64: True,
|
| 726 |
+
torch.complex128: True,
|
| 727 |
+
torch.uint8: False,
|
| 728 |
+
torch.uint16: False,
|
| 729 |
+
torch.uint32: False,
|
| 730 |
+
torch.uint64: False,
|
| 731 |
+
torch.int8: False,
|
| 732 |
+
torch.int16: False,
|
| 733 |
+
torch.int32: False,
|
| 734 |
+
torch.int64: False,
|
| 735 |
+
torch.bool: False,
|
| 736 |
+
},
|
| 737 |
+
torch.complex64: {
|
| 738 |
+
torch.float16: False,
|
| 739 |
+
torch.float32: False,
|
| 740 |
+
torch.float64: False,
|
| 741 |
+
torch.complex64: True,
|
| 742 |
+
torch.complex128: True,
|
| 743 |
+
torch.uint8: False,
|
| 744 |
+
torch.uint16: False,
|
| 745 |
+
torch.uint32: False,
|
| 746 |
+
torch.uint64: False,
|
| 747 |
+
torch.int8: False,
|
| 748 |
+
torch.int16: False,
|
| 749 |
+
torch.int32: False,
|
| 750 |
+
torch.int64: False,
|
| 751 |
+
torch.bool: False,
|
| 752 |
+
},
|
| 753 |
+
torch.complex128: {
|
| 754 |
+
torch.float16: False,
|
| 755 |
+
torch.float32: False,
|
| 756 |
+
torch.float64: False,
|
| 757 |
+
torch.complex64: True,
|
| 758 |
+
torch.complex128: True,
|
| 759 |
+
torch.uint8: False,
|
| 760 |
+
torch.uint16: False,
|
| 761 |
+
torch.uint32: False,
|
| 762 |
+
torch.uint64: False,
|
| 763 |
+
torch.int8: False,
|
| 764 |
+
torch.int16: False,
|
| 765 |
+
torch.int32: False,
|
| 766 |
+
torch.int64: False,
|
| 767 |
+
torch.bool: False,
|
| 768 |
+
},
|
| 769 |
+
torch.uint8: {
|
| 770 |
+
torch.float16: True,
|
| 771 |
+
torch.float32: True,
|
| 772 |
+
torch.float64: True,
|
| 773 |
+
torch.complex64: True,
|
| 774 |
+
torch.complex128: True,
|
| 775 |
+
torch.uint8: True,
|
| 776 |
+
torch.uint16: True,
|
| 777 |
+
torch.uint32: True,
|
| 778 |
+
torch.uint64: True,
|
| 779 |
+
torch.int8: True,
|
| 780 |
+
torch.int16: True,
|
| 781 |
+
torch.int32: True,
|
| 782 |
+
torch.int64: True,
|
| 783 |
+
torch.bool: False,
|
| 784 |
+
},
|
| 785 |
+
torch.uint16: {
|
| 786 |
+
torch.float16: True,
|
| 787 |
+
torch.float32: True,
|
| 788 |
+
torch.float64: True,
|
| 789 |
+
torch.complex64: True,
|
| 790 |
+
torch.complex128: True,
|
| 791 |
+
torch.uint8: True,
|
| 792 |
+
torch.uint16: True,
|
| 793 |
+
torch.uint32: True,
|
| 794 |
+
torch.uint64: True,
|
| 795 |
+
torch.int8: True,
|
| 796 |
+
torch.int16: True,
|
| 797 |
+
torch.int32: True,
|
| 798 |
+
torch.int64: True,
|
| 799 |
+
torch.bool: False,
|
| 800 |
+
},
|
| 801 |
+
torch.uint32: {
|
| 802 |
+
torch.float16: True,
|
| 803 |
+
torch.float32: True,
|
| 804 |
+
torch.float64: True,
|
| 805 |
+
torch.complex64: True,
|
| 806 |
+
torch.complex128: True,
|
| 807 |
+
torch.uint8: True,
|
| 808 |
+
torch.uint16: True,
|
| 809 |
+
torch.uint32: True,
|
| 810 |
+
torch.uint64: True,
|
| 811 |
+
torch.int8: True,
|
| 812 |
+
torch.int16: True,
|
| 813 |
+
torch.int32: True,
|
| 814 |
+
torch.int64: True,
|
| 815 |
+
torch.bool: False,
|
| 816 |
+
},
|
| 817 |
+
torch.uint64: {
|
| 818 |
+
torch.float16: True,
|
| 819 |
+
torch.float32: True,
|
| 820 |
+
torch.float64: True,
|
| 821 |
+
torch.complex64: True,
|
| 822 |
+
torch.complex128: True,
|
| 823 |
+
torch.uint8: True,
|
| 824 |
+
torch.uint16: True,
|
| 825 |
+
torch.uint32: True,
|
| 826 |
+
torch.uint64: True,
|
| 827 |
+
torch.int8: True,
|
| 828 |
+
torch.int16: True,
|
| 829 |
+
torch.int32: True,
|
| 830 |
+
torch.int64: True,
|
| 831 |
+
torch.bool: False,
|
| 832 |
+
},
|
| 833 |
+
torch.int8: {
|
| 834 |
+
torch.float16: True,
|
| 835 |
+
torch.float32: True,
|
| 836 |
+
torch.float64: True,
|
| 837 |
+
torch.complex64: True,
|
| 838 |
+
torch.complex128: True,
|
| 839 |
+
torch.uint8: False,
|
| 840 |
+
torch.uint16: False,
|
| 841 |
+
torch.uint32: False,
|
| 842 |
+
torch.uint64: False,
|
| 843 |
+
torch.int8: True,
|
| 844 |
+
torch.int16: True,
|
| 845 |
+
torch.int32: True,
|
| 846 |
+
torch.int64: True,
|
| 847 |
+
torch.bool: False,
|
| 848 |
+
},
|
| 849 |
+
torch.int16: {
|
| 850 |
+
torch.float16: True,
|
| 851 |
+
torch.float32: True,
|
| 852 |
+
torch.float64: True,
|
| 853 |
+
torch.complex64: True,
|
| 854 |
+
torch.complex128: True,
|
| 855 |
+
torch.uint8: False,
|
| 856 |
+
torch.uint16: False,
|
| 857 |
+
torch.uint32: False,
|
| 858 |
+
torch.uint64: False,
|
| 859 |
+
torch.int8: True,
|
| 860 |
+
torch.int16: True,
|
| 861 |
+
torch.int32: True,
|
| 862 |
+
torch.int64: True,
|
| 863 |
+
torch.bool: False,
|
| 864 |
+
},
|
| 865 |
+
torch.int32: {
|
| 866 |
+
torch.float16: True,
|
| 867 |
+
torch.float32: True,
|
| 868 |
+
torch.float64: True,
|
| 869 |
+
torch.complex64: True,
|
| 870 |
+
torch.complex128: True,
|
| 871 |
+
torch.uint8: False,
|
| 872 |
+
torch.uint16: False,
|
| 873 |
+
torch.uint32: False,
|
| 874 |
+
torch.uint64: False,
|
| 875 |
+
torch.int8: True,
|
| 876 |
+
torch.int16: True,
|
| 877 |
+
torch.int32: True,
|
| 878 |
+
torch.int64: True,
|
| 879 |
+
torch.bool: False,
|
| 880 |
+
},
|
| 881 |
+
torch.int64: {
|
| 882 |
+
torch.float16: True,
|
| 883 |
+
torch.float32: True,
|
| 884 |
+
torch.float64: True,
|
| 885 |
+
torch.complex64: True,
|
| 886 |
+
torch.complex128: True,
|
| 887 |
+
torch.uint8: False,
|
| 888 |
+
torch.uint16: False,
|
| 889 |
+
torch.uint32: False,
|
| 890 |
+
torch.uint64: False,
|
| 891 |
+
torch.int8: True,
|
| 892 |
+
torch.int16: True,
|
| 893 |
+
torch.int32: True,
|
| 894 |
+
torch.int64: True,
|
| 895 |
+
torch.bool: False,
|
| 896 |
+
},
|
| 897 |
+
torch.bool: {
|
| 898 |
+
torch.float16: True,
|
| 899 |
+
torch.float32: True,
|
| 900 |
+
torch.float64: True,
|
| 901 |
+
torch.complex64: True,
|
| 902 |
+
torch.complex128: True,
|
| 903 |
+
torch.uint8: True,
|
| 904 |
+
torch.uint16: True,
|
| 905 |
+
torch.uint32: True,
|
| 906 |
+
torch.uint64: True,
|
| 907 |
+
torch.int8: True,
|
| 908 |
+
torch.int16: True,
|
| 909 |
+
torch.int32: True,
|
| 910 |
+
torch.int64: True,
|
| 911 |
+
torch.bool: True,
|
| 912 |
+
},
|
| 913 |
+
},
|
| 914 |
+
"unsafe": {
|
| 915 |
+
torch.float16: {
|
| 916 |
+
torch.float16: True,
|
| 917 |
+
torch.float32: True,
|
| 918 |
+
torch.float64: True,
|
| 919 |
+
torch.complex64: True,
|
| 920 |
+
torch.complex128: True,
|
| 921 |
+
torch.uint8: True,
|
| 922 |
+
torch.uint16: True,
|
| 923 |
+
torch.uint32: True,
|
| 924 |
+
torch.uint64: True,
|
| 925 |
+
torch.int8: True,
|
| 926 |
+
torch.int16: True,
|
| 927 |
+
torch.int32: True,
|
| 928 |
+
torch.int64: True,
|
| 929 |
+
torch.bool: True,
|
| 930 |
+
},
|
| 931 |
+
torch.float32: {
|
| 932 |
+
torch.float16: True,
|
| 933 |
+
torch.float32: True,
|
| 934 |
+
torch.float64: True,
|
| 935 |
+
torch.complex64: True,
|
| 936 |
+
torch.complex128: True,
|
| 937 |
+
torch.uint8: True,
|
| 938 |
+
torch.uint16: True,
|
| 939 |
+
torch.uint32: True,
|
| 940 |
+
torch.uint64: True,
|
| 941 |
+
torch.int8: True,
|
| 942 |
+
torch.int16: True,
|
| 943 |
+
torch.int32: True,
|
| 944 |
+
torch.int64: True,
|
| 945 |
+
torch.bool: True,
|
| 946 |
+
},
|
| 947 |
+
torch.float64: {
|
| 948 |
+
torch.float16: True,
|
| 949 |
+
torch.float32: True,
|
| 950 |
+
torch.float64: True,
|
| 951 |
+
torch.complex64: True,
|
| 952 |
+
torch.complex128: True,
|
| 953 |
+
torch.uint8: True,
|
| 954 |
+
torch.uint16: True,
|
| 955 |
+
torch.uint32: True,
|
| 956 |
+
torch.uint64: True,
|
| 957 |
+
torch.int8: True,
|
| 958 |
+
torch.int16: True,
|
| 959 |
+
torch.int32: True,
|
| 960 |
+
torch.int64: True,
|
| 961 |
+
torch.bool: True,
|
| 962 |
+
},
|
| 963 |
+
torch.complex64: {
|
| 964 |
+
torch.float16: True,
|
| 965 |
+
torch.float32: True,
|
| 966 |
+
torch.float64: True,
|
| 967 |
+
torch.complex64: True,
|
| 968 |
+
torch.complex128: True,
|
| 969 |
+
torch.uint8: True,
|
| 970 |
+
torch.uint16: True,
|
| 971 |
+
torch.uint32: True,
|
| 972 |
+
torch.uint64: True,
|
| 973 |
+
torch.int8: True,
|
| 974 |
+
torch.int16: True,
|
| 975 |
+
torch.int32: True,
|
| 976 |
+
torch.int64: True,
|
| 977 |
+
torch.bool: True,
|
| 978 |
+
},
|
| 979 |
+
torch.complex128: {
|
| 980 |
+
torch.float16: True,
|
| 981 |
+
torch.float32: True,
|
| 982 |
+
torch.float64: True,
|
| 983 |
+
torch.complex64: True,
|
| 984 |
+
torch.complex128: True,
|
| 985 |
+
torch.uint8: True,
|
| 986 |
+
torch.uint16: True,
|
| 987 |
+
torch.uint32: True,
|
| 988 |
+
torch.uint64: True,
|
| 989 |
+
torch.int8: True,
|
| 990 |
+
torch.int16: True,
|
| 991 |
+
torch.int32: True,
|
| 992 |
+
torch.int64: True,
|
| 993 |
+
torch.bool: True,
|
| 994 |
+
},
|
| 995 |
+
torch.uint8: {
|
| 996 |
+
torch.float16: True,
|
| 997 |
+
torch.float32: True,
|
| 998 |
+
torch.float64: True,
|
| 999 |
+
torch.complex64: True,
|
| 1000 |
+
torch.complex128: True,
|
| 1001 |
+
torch.uint8: True,
|
| 1002 |
+
torch.uint16: True,
|
| 1003 |
+
torch.uint32: True,
|
| 1004 |
+
torch.uint64: True,
|
| 1005 |
+
torch.int8: True,
|
| 1006 |
+
torch.int16: True,
|
| 1007 |
+
torch.int32: True,
|
| 1008 |
+
torch.int64: True,
|
| 1009 |
+
torch.bool: True,
|
| 1010 |
+
},
|
| 1011 |
+
torch.uint16: {
|
| 1012 |
+
torch.float16: True,
|
| 1013 |
+
torch.float32: True,
|
| 1014 |
+
torch.float64: True,
|
| 1015 |
+
torch.complex64: True,
|
| 1016 |
+
torch.complex128: True,
|
| 1017 |
+
torch.uint8: True,
|
| 1018 |
+
torch.uint16: True,
|
| 1019 |
+
torch.uint32: True,
|
| 1020 |
+
torch.uint64: True,
|
| 1021 |
+
torch.int8: True,
|
| 1022 |
+
torch.int16: True,
|
| 1023 |
+
torch.int32: True,
|
| 1024 |
+
torch.int64: True,
|
| 1025 |
+
torch.bool: True,
|
| 1026 |
+
},
|
| 1027 |
+
torch.uint32: {
|
| 1028 |
+
torch.float16: True,
|
| 1029 |
+
torch.float32: True,
|
| 1030 |
+
torch.float64: True,
|
| 1031 |
+
torch.complex64: True,
|
| 1032 |
+
torch.complex128: True,
|
| 1033 |
+
torch.uint8: True,
|
| 1034 |
+
torch.uint16: True,
|
| 1035 |
+
torch.uint32: True,
|
| 1036 |
+
torch.uint64: True,
|
| 1037 |
+
torch.int8: True,
|
| 1038 |
+
torch.int16: True,
|
| 1039 |
+
torch.int32: True,
|
| 1040 |
+
torch.int64: True,
|
| 1041 |
+
torch.bool: True,
|
| 1042 |
+
},
|
| 1043 |
+
torch.uint64: {
|
| 1044 |
+
torch.float16: True,
|
| 1045 |
+
torch.float32: True,
|
| 1046 |
+
torch.float64: True,
|
| 1047 |
+
torch.complex64: True,
|
| 1048 |
+
torch.complex128: True,
|
| 1049 |
+
torch.uint8: True,
|
| 1050 |
+
torch.uint16: True,
|
| 1051 |
+
torch.uint32: True,
|
| 1052 |
+
torch.uint64: True,
|
| 1053 |
+
torch.int8: True,
|
| 1054 |
+
torch.int16: True,
|
| 1055 |
+
torch.int32: True,
|
| 1056 |
+
torch.int64: True,
|
| 1057 |
+
torch.bool: True,
|
| 1058 |
+
},
|
| 1059 |
+
torch.int8: {
|
| 1060 |
+
torch.float16: True,
|
| 1061 |
+
torch.float32: True,
|
| 1062 |
+
torch.float64: True,
|
| 1063 |
+
torch.complex64: True,
|
| 1064 |
+
torch.complex128: True,
|
| 1065 |
+
torch.uint8: True,
|
| 1066 |
+
torch.uint16: True,
|
| 1067 |
+
torch.uint32: True,
|
| 1068 |
+
torch.uint64: True,
|
| 1069 |
+
torch.int8: True,
|
| 1070 |
+
torch.int16: True,
|
| 1071 |
+
torch.int32: True,
|
| 1072 |
+
torch.int64: True,
|
| 1073 |
+
torch.bool: True,
|
| 1074 |
+
},
|
| 1075 |
+
torch.int16: {
|
| 1076 |
+
torch.float16: True,
|
| 1077 |
+
torch.float32: True,
|
| 1078 |
+
torch.float64: True,
|
| 1079 |
+
torch.complex64: True,
|
| 1080 |
+
torch.complex128: True,
|
| 1081 |
+
torch.uint8: True,
|
| 1082 |
+
torch.uint16: True,
|
| 1083 |
+
torch.uint32: True,
|
| 1084 |
+
torch.uint64: True,
|
| 1085 |
+
torch.int8: True,
|
| 1086 |
+
torch.int16: True,
|
| 1087 |
+
torch.int32: True,
|
| 1088 |
+
torch.int64: True,
|
| 1089 |
+
torch.bool: True,
|
| 1090 |
+
},
|
| 1091 |
+
torch.int32: {
|
| 1092 |
+
torch.float16: True,
|
| 1093 |
+
torch.float32: True,
|
| 1094 |
+
torch.float64: True,
|
| 1095 |
+
torch.complex64: True,
|
| 1096 |
+
torch.complex128: True,
|
| 1097 |
+
torch.uint8: True,
|
| 1098 |
+
torch.uint16: True,
|
| 1099 |
+
torch.uint32: True,
|
| 1100 |
+
torch.uint64: True,
|
| 1101 |
+
torch.int8: True,
|
| 1102 |
+
torch.int16: True,
|
| 1103 |
+
torch.int32: True,
|
| 1104 |
+
torch.int64: True,
|
| 1105 |
+
torch.bool: True,
|
| 1106 |
+
},
|
| 1107 |
+
torch.int64: {
|
| 1108 |
+
torch.float16: True,
|
| 1109 |
+
torch.float32: True,
|
| 1110 |
+
torch.float64: True,
|
| 1111 |
+
torch.complex64: True,
|
| 1112 |
+
torch.complex128: True,
|
| 1113 |
+
torch.uint8: True,
|
| 1114 |
+
torch.uint16: True,
|
| 1115 |
+
torch.uint32: True,
|
| 1116 |
+
torch.uint64: True,
|
| 1117 |
+
torch.int8: True,
|
| 1118 |
+
torch.int16: True,
|
| 1119 |
+
torch.int32: True,
|
| 1120 |
+
torch.int64: True,
|
| 1121 |
+
torch.bool: True,
|
| 1122 |
+
},
|
| 1123 |
+
torch.bool: {
|
| 1124 |
+
torch.float16: True,
|
| 1125 |
+
torch.float32: True,
|
| 1126 |
+
torch.float64: True,
|
| 1127 |
+
torch.complex64: True,
|
| 1128 |
+
torch.complex128: True,
|
| 1129 |
+
torch.uint8: True,
|
| 1130 |
+
torch.uint16: True,
|
| 1131 |
+
torch.uint32: True,
|
| 1132 |
+
torch.uint64: True,
|
| 1133 |
+
torch.int8: True,
|
| 1134 |
+
torch.int16: True,
|
| 1135 |
+
torch.int32: True,
|
| 1136 |
+
torch.int64: True,
|
| 1137 |
+
torch.bool: True,
|
| 1138 |
+
},
|
| 1139 |
+
},
|
| 1140 |
+
}
|
| 1141 |
+
|
| 1142 |
+
|
| 1143 |
+
_result_type_dict = {
|
| 1144 |
+
torch.float16: {
|
| 1145 |
+
torch.float16: torch.float16,
|
| 1146 |
+
torch.float32: torch.float32,
|
| 1147 |
+
torch.float64: torch.float64,
|
| 1148 |
+
torch.complex64: torch.complex64,
|
| 1149 |
+
torch.complex128: torch.complex128,
|
| 1150 |
+
torch.uint8: torch.float16,
|
| 1151 |
+
torch.uint16: torch.float32,
|
| 1152 |
+
torch.uint32: torch.float64,
|
| 1153 |
+
torch.uint64: torch.float64,
|
| 1154 |
+
torch.int8: torch.float16,
|
| 1155 |
+
torch.int16: torch.float32,
|
| 1156 |
+
torch.int32: torch.float64,
|
| 1157 |
+
torch.int64: torch.float64,
|
| 1158 |
+
torch.bool: torch.float16,
|
| 1159 |
+
},
|
| 1160 |
+
torch.float32: {
|
| 1161 |
+
torch.float16: torch.float32,
|
| 1162 |
+
torch.float32: torch.float32,
|
| 1163 |
+
torch.float64: torch.float64,
|
| 1164 |
+
torch.complex64: torch.complex64,
|
| 1165 |
+
torch.complex128: torch.complex128,
|
| 1166 |
+
torch.uint8: torch.float32,
|
| 1167 |
+
torch.uint16: torch.float32,
|
| 1168 |
+
torch.uint32: torch.float64,
|
| 1169 |
+
torch.uint64: torch.float64,
|
| 1170 |
+
torch.int8: torch.float32,
|
| 1171 |
+
torch.int16: torch.float32,
|
| 1172 |
+
torch.int32: torch.float64,
|
| 1173 |
+
torch.int64: torch.float64,
|
| 1174 |
+
torch.bool: torch.float32,
|
| 1175 |
+
},
|
| 1176 |
+
torch.float64: {
|
| 1177 |
+
torch.float16: torch.float64,
|
| 1178 |
+
torch.float32: torch.float64,
|
| 1179 |
+
torch.float64: torch.float64,
|
| 1180 |
+
torch.complex64: torch.complex128,
|
| 1181 |
+
torch.complex128: torch.complex128,
|
| 1182 |
+
torch.uint8: torch.float64,
|
| 1183 |
+
torch.uint16: torch.float64,
|
| 1184 |
+
torch.uint32: torch.float64,
|
| 1185 |
+
torch.uint64: torch.float64,
|
| 1186 |
+
torch.int8: torch.float64,
|
| 1187 |
+
torch.int16: torch.float64,
|
| 1188 |
+
torch.int32: torch.float64,
|
| 1189 |
+
torch.int64: torch.float64,
|
| 1190 |
+
torch.bool: torch.float64,
|
| 1191 |
+
},
|
| 1192 |
+
torch.complex64: {
|
| 1193 |
+
torch.float16: torch.complex64,
|
| 1194 |
+
torch.float32: torch.complex64,
|
| 1195 |
+
torch.float64: torch.complex128,
|
| 1196 |
+
torch.complex64: torch.complex64,
|
| 1197 |
+
torch.complex128: torch.complex128,
|
| 1198 |
+
torch.uint8: torch.complex64,
|
| 1199 |
+
torch.uint16: torch.complex64,
|
| 1200 |
+
torch.uint32: torch.complex128,
|
| 1201 |
+
torch.uint64: torch.complex128,
|
| 1202 |
+
torch.int8: torch.complex64,
|
| 1203 |
+
torch.int16: torch.complex64,
|
| 1204 |
+
torch.int32: torch.complex128,
|
| 1205 |
+
torch.int64: torch.complex128,
|
| 1206 |
+
torch.bool: torch.complex64,
|
| 1207 |
+
},
|
| 1208 |
+
torch.complex128: {
|
| 1209 |
+
torch.float16: torch.complex128,
|
| 1210 |
+
torch.float32: torch.complex128,
|
| 1211 |
+
torch.float64: torch.complex128,
|
| 1212 |
+
torch.complex64: torch.complex128,
|
| 1213 |
+
torch.complex128: torch.complex128,
|
| 1214 |
+
torch.uint8: torch.complex128,
|
| 1215 |
+
torch.uint16: torch.complex128,
|
| 1216 |
+
torch.uint32: torch.complex128,
|
| 1217 |
+
torch.uint64: torch.complex128,
|
| 1218 |
+
torch.int8: torch.complex128,
|
| 1219 |
+
torch.int16: torch.complex128,
|
| 1220 |
+
torch.int32: torch.complex128,
|
| 1221 |
+
torch.int64: torch.complex128,
|
| 1222 |
+
torch.bool: torch.complex128,
|
| 1223 |
+
},
|
| 1224 |
+
torch.uint8: {
|
| 1225 |
+
torch.float16: torch.float16,
|
| 1226 |
+
torch.float32: torch.float32,
|
| 1227 |
+
torch.float64: torch.float64,
|
| 1228 |
+
torch.complex64: torch.complex64,
|
| 1229 |
+
torch.complex128: torch.complex128,
|
| 1230 |
+
torch.uint8: torch.uint8,
|
| 1231 |
+
torch.uint16: torch.uint16,
|
| 1232 |
+
torch.uint32: torch.uint32,
|
| 1233 |
+
torch.uint64: torch.uint64,
|
| 1234 |
+
torch.int8: torch.int16,
|
| 1235 |
+
torch.int16: torch.int16,
|
| 1236 |
+
torch.int32: torch.int32,
|
| 1237 |
+
torch.int64: torch.int64,
|
| 1238 |
+
torch.bool: torch.uint8,
|
| 1239 |
+
},
|
| 1240 |
+
torch.uint16: {
|
| 1241 |
+
torch.float16: torch.float32,
|
| 1242 |
+
torch.float32: torch.float32,
|
| 1243 |
+
torch.float64: torch.float64,
|
| 1244 |
+
torch.complex64: torch.complex64,
|
| 1245 |
+
torch.complex128: torch.complex128,
|
| 1246 |
+
torch.uint8: torch.uint16,
|
| 1247 |
+
torch.uint16: torch.uint16,
|
| 1248 |
+
torch.uint32: torch.uint32,
|
| 1249 |
+
torch.uint64: torch.uint64,
|
| 1250 |
+
torch.int8: torch.int32,
|
| 1251 |
+
torch.int16: torch.int32,
|
| 1252 |
+
torch.int32: torch.int32,
|
| 1253 |
+
torch.int64: torch.int64,
|
| 1254 |
+
torch.bool: torch.uint16,
|
| 1255 |
+
},
|
| 1256 |
+
torch.uint32: {
|
| 1257 |
+
torch.float16: torch.float64,
|
| 1258 |
+
torch.float32: torch.float64,
|
| 1259 |
+
torch.float64: torch.float64,
|
| 1260 |
+
torch.complex64: torch.complex128,
|
| 1261 |
+
torch.complex128: torch.complex128,
|
| 1262 |
+
torch.uint8: torch.uint32,
|
| 1263 |
+
torch.uint16: torch.uint32,
|
| 1264 |
+
torch.uint32: torch.uint32,
|
| 1265 |
+
torch.uint64: torch.uint64,
|
| 1266 |
+
torch.int8: torch.int64,
|
| 1267 |
+
torch.int16: torch.int64,
|
| 1268 |
+
torch.int32: torch.int64,
|
| 1269 |
+
torch.int64: torch.int64,
|
| 1270 |
+
torch.bool: torch.uint32,
|
| 1271 |
+
},
|
| 1272 |
+
torch.uint64: {
|
| 1273 |
+
torch.float16: torch.float64,
|
| 1274 |
+
torch.float32: torch.float64,
|
| 1275 |
+
torch.float64: torch.float64,
|
| 1276 |
+
torch.complex64: torch.complex128,
|
| 1277 |
+
torch.complex128: torch.complex128,
|
| 1278 |
+
torch.uint8: torch.uint64,
|
| 1279 |
+
torch.uint16: torch.uint64,
|
| 1280 |
+
torch.uint32: torch.uint64,
|
| 1281 |
+
torch.uint64: torch.uint64,
|
| 1282 |
+
torch.int8: torch.float64,
|
| 1283 |
+
torch.int16: torch.float64,
|
| 1284 |
+
torch.int32: torch.float64,
|
| 1285 |
+
torch.int64: torch.float64,
|
| 1286 |
+
torch.bool: torch.uint64,
|
| 1287 |
+
},
|
| 1288 |
+
torch.int8: {
|
| 1289 |
+
torch.float16: torch.float16,
|
| 1290 |
+
torch.float32: torch.float32,
|
| 1291 |
+
torch.float64: torch.float64,
|
| 1292 |
+
torch.complex64: torch.complex64,
|
| 1293 |
+
torch.complex128: torch.complex128,
|
| 1294 |
+
torch.uint8: torch.int16,
|
| 1295 |
+
torch.uint16: torch.int32,
|
| 1296 |
+
torch.uint32: torch.int64,
|
| 1297 |
+
torch.uint64: torch.float64,
|
| 1298 |
+
torch.int8: torch.int8,
|
| 1299 |
+
torch.int16: torch.int16,
|
| 1300 |
+
torch.int32: torch.int32,
|
| 1301 |
+
torch.int64: torch.int64,
|
| 1302 |
+
torch.bool: torch.int8,
|
| 1303 |
+
},
|
| 1304 |
+
torch.int16: {
|
| 1305 |
+
torch.float16: torch.float32,
|
| 1306 |
+
torch.float32: torch.float32,
|
| 1307 |
+
torch.float64: torch.float64,
|
| 1308 |
+
torch.complex64: torch.complex64,
|
| 1309 |
+
torch.complex128: torch.complex128,
|
| 1310 |
+
torch.uint8: torch.int16,
|
| 1311 |
+
torch.uint16: torch.int32,
|
| 1312 |
+
torch.uint32: torch.int64,
|
| 1313 |
+
torch.uint64: torch.float64,
|
| 1314 |
+
torch.int8: torch.int16,
|
| 1315 |
+
torch.int16: torch.int16,
|
| 1316 |
+
torch.int32: torch.int32,
|
| 1317 |
+
torch.int64: torch.int64,
|
| 1318 |
+
torch.bool: torch.int16,
|
| 1319 |
+
},
|
| 1320 |
+
torch.int32: {
|
| 1321 |
+
torch.float16: torch.float64,
|
| 1322 |
+
torch.float32: torch.float64,
|
| 1323 |
+
torch.float64: torch.float64,
|
| 1324 |
+
torch.complex64: torch.complex128,
|
| 1325 |
+
torch.complex128: torch.complex128,
|
| 1326 |
+
torch.uint8: torch.int32,
|
| 1327 |
+
torch.uint16: torch.int32,
|
| 1328 |
+
torch.uint32: torch.int64,
|
| 1329 |
+
torch.uint64: torch.float64,
|
| 1330 |
+
torch.int8: torch.int32,
|
| 1331 |
+
torch.int16: torch.int32,
|
| 1332 |
+
torch.int32: torch.int32,
|
| 1333 |
+
torch.int64: torch.int64,
|
| 1334 |
+
torch.bool: torch.int32,
|
| 1335 |
+
},
|
| 1336 |
+
torch.int64: {
|
| 1337 |
+
torch.float16: torch.float64,
|
| 1338 |
+
torch.float32: torch.float64,
|
| 1339 |
+
torch.float64: torch.float64,
|
| 1340 |
+
torch.complex64: torch.complex128,
|
| 1341 |
+
torch.complex128: torch.complex128,
|
| 1342 |
+
torch.uint8: torch.int64,
|
| 1343 |
+
torch.uint16: torch.int64,
|
| 1344 |
+
torch.uint32: torch.int64,
|
| 1345 |
+
torch.uint64: torch.float64,
|
| 1346 |
+
torch.int8: torch.int64,
|
| 1347 |
+
torch.int16: torch.int64,
|
| 1348 |
+
torch.int32: torch.int64,
|
| 1349 |
+
torch.int64: torch.int64,
|
| 1350 |
+
torch.bool: torch.int64,
|
| 1351 |
+
},
|
| 1352 |
+
torch.bool: {
|
| 1353 |
+
torch.float16: torch.float16,
|
| 1354 |
+
torch.float32: torch.float32,
|
| 1355 |
+
torch.float64: torch.float64,
|
| 1356 |
+
torch.complex64: torch.complex64,
|
| 1357 |
+
torch.complex128: torch.complex128,
|
| 1358 |
+
torch.uint8: torch.uint8,
|
| 1359 |
+
torch.uint16: torch.uint16,
|
| 1360 |
+
torch.uint32: torch.uint32,
|
| 1361 |
+
torch.uint64: torch.uint64,
|
| 1362 |
+
torch.int8: torch.int8,
|
| 1363 |
+
torch.int16: torch.int16,
|
| 1364 |
+
torch.int32: torch.int32,
|
| 1365 |
+
torch.int64: torch.int64,
|
| 1366 |
+
torch.bool: torch.bool,
|
| 1367 |
+
},
|
| 1368 |
+
}
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/_dtypes.py
ADDED
|
@@ -0,0 +1,453 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: ignore-errors
|
| 2 |
+
|
| 3 |
+
""" Define analogs of numpy dtypes supported by pytorch.
|
| 4 |
+
Define the scalar types and supported dtypes and numpy <--> torch dtype mappings.
|
| 5 |
+
"""
|
| 6 |
+
import builtins
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
from . import _dtypes_impl
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# ### Scalar types ###
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class generic:
|
| 17 |
+
name = "generic"
|
| 18 |
+
|
| 19 |
+
def __new__(cls, value):
|
| 20 |
+
# NumPy scalars are modelled as 0-D arrays
|
| 21 |
+
# so a call to np.float32(4) produces a 0-D array.
|
| 22 |
+
|
| 23 |
+
from ._ndarray import asarray, ndarray
|
| 24 |
+
|
| 25 |
+
if isinstance(value, str) and value in ["inf", "nan"]:
|
| 26 |
+
value = {"inf": torch.inf, "nan": torch.nan}[value]
|
| 27 |
+
|
| 28 |
+
if isinstance(value, ndarray):
|
| 29 |
+
return value.astype(cls)
|
| 30 |
+
else:
|
| 31 |
+
return asarray(value, dtype=cls)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
##################
|
| 35 |
+
# abstract types #
|
| 36 |
+
##################
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
class number(generic):
|
| 40 |
+
name = "number"
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class integer(number):
|
| 44 |
+
name = "integer"
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class inexact(number):
|
| 48 |
+
name = "inexact"
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class signedinteger(integer):
|
| 52 |
+
name = "signedinteger"
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
class unsignedinteger(integer):
|
| 56 |
+
name = "unsignedinteger"
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class floating(inexact):
|
| 60 |
+
name = "floating"
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
class complexfloating(inexact):
|
| 64 |
+
name = "complexfloating"
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
_abstract_dtypes = [
|
| 68 |
+
"generic",
|
| 69 |
+
"number",
|
| 70 |
+
"integer",
|
| 71 |
+
"signedinteger",
|
| 72 |
+
"unsignedinteger",
|
| 73 |
+
"inexact",
|
| 74 |
+
"floating",
|
| 75 |
+
"complexfloating",
|
| 76 |
+
]
|
| 77 |
+
|
| 78 |
+
# ##### concrete types
|
| 79 |
+
|
| 80 |
+
# signed integers
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
class int8(signedinteger):
|
| 84 |
+
name = "int8"
|
| 85 |
+
typecode = "b"
|
| 86 |
+
torch_dtype = torch.int8
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
class int16(signedinteger):
|
| 90 |
+
name = "int16"
|
| 91 |
+
typecode = "h"
|
| 92 |
+
torch_dtype = torch.int16
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class int32(signedinteger):
|
| 96 |
+
name = "int32"
|
| 97 |
+
typecode = "i"
|
| 98 |
+
torch_dtype = torch.int32
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
class int64(signedinteger):
|
| 102 |
+
name = "int64"
|
| 103 |
+
typecode = "l"
|
| 104 |
+
torch_dtype = torch.int64
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
# unsigned integers
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
class uint8(unsignedinteger):
|
| 111 |
+
name = "uint8"
|
| 112 |
+
typecode = "B"
|
| 113 |
+
torch_dtype = torch.uint8
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
class uint16(unsignedinteger):
|
| 117 |
+
name = "uint16"
|
| 118 |
+
typecode = "H"
|
| 119 |
+
torch_dtype = torch.uint16
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
class uint32(signedinteger):
|
| 123 |
+
name = "uint32"
|
| 124 |
+
typecode = "I"
|
| 125 |
+
torch_dtype = torch.uint32
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
class uint64(signedinteger):
|
| 129 |
+
name = "uint64"
|
| 130 |
+
typecode = "L"
|
| 131 |
+
torch_dtype = torch.uint64
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
# floating point
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
class float16(floating):
|
| 138 |
+
name = "float16"
|
| 139 |
+
typecode = "e"
|
| 140 |
+
torch_dtype = torch.float16
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
class float32(floating):
|
| 144 |
+
name = "float32"
|
| 145 |
+
typecode = "f"
|
| 146 |
+
torch_dtype = torch.float32
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
class float64(floating):
|
| 150 |
+
name = "float64"
|
| 151 |
+
typecode = "d"
|
| 152 |
+
torch_dtype = torch.float64
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
class complex64(complexfloating):
|
| 156 |
+
name = "complex64"
|
| 157 |
+
typecode = "F"
|
| 158 |
+
torch_dtype = torch.complex64
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
class complex128(complexfloating):
|
| 162 |
+
name = "complex128"
|
| 163 |
+
typecode = "D"
|
| 164 |
+
torch_dtype = torch.complex128
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
class bool_(generic):
|
| 168 |
+
name = "bool_"
|
| 169 |
+
typecode = "?"
|
| 170 |
+
torch_dtype = torch.bool
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
# name aliases
|
| 174 |
+
_name_aliases = {
|
| 175 |
+
"intp": int64,
|
| 176 |
+
"int_": int64,
|
| 177 |
+
"intc": int32,
|
| 178 |
+
"byte": int8,
|
| 179 |
+
"short": int16,
|
| 180 |
+
"longlong": int64, # XXX: is this correct?
|
| 181 |
+
"ulonglong": uint64,
|
| 182 |
+
"ubyte": uint8,
|
| 183 |
+
"half": float16,
|
| 184 |
+
"single": float32,
|
| 185 |
+
"double": float64,
|
| 186 |
+
"float_": float64,
|
| 187 |
+
"csingle": complex64,
|
| 188 |
+
"singlecomplex": complex64,
|
| 189 |
+
"cdouble": complex128,
|
| 190 |
+
"cfloat": complex128,
|
| 191 |
+
"complex_": complex128,
|
| 192 |
+
}
|
| 193 |
+
# We register float_ = float32 and so on
|
| 194 |
+
for name, obj in _name_aliases.items():
|
| 195 |
+
vars()[name] = obj
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
# Replicate this NumPy-defined way of grouping scalar types,
|
| 199 |
+
# cf tests/core/test_scalar_methods.py
|
| 200 |
+
sctypes = {
|
| 201 |
+
"int": [int8, int16, int32, int64],
|
| 202 |
+
"uint": [uint8, uint16, uint32, uint64],
|
| 203 |
+
"float": [float16, float32, float64],
|
| 204 |
+
"complex": [complex64, complex128],
|
| 205 |
+
"others": [bool_],
|
| 206 |
+
}
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
# Support mappings/functions
|
| 210 |
+
|
| 211 |
+
_names = {st.name: st for cat in sctypes for st in sctypes[cat]}
|
| 212 |
+
_typecodes = {st.typecode: st for cat in sctypes for st in sctypes[cat]}
|
| 213 |
+
_torch_dtypes = {st.torch_dtype: st for cat in sctypes for st in sctypes[cat]}
|
| 214 |
+
|
| 215 |
+
|
| 216 |
+
_aliases = {
|
| 217 |
+
"u1": uint8,
|
| 218 |
+
"i1": int8,
|
| 219 |
+
"i2": int16,
|
| 220 |
+
"i4": int32,
|
| 221 |
+
"i8": int64,
|
| 222 |
+
"b": int8, # XXX: srsly?
|
| 223 |
+
"f2": float16,
|
| 224 |
+
"f4": float32,
|
| 225 |
+
"f8": float64,
|
| 226 |
+
"c8": complex64,
|
| 227 |
+
"c16": complex128,
|
| 228 |
+
# numpy-specific trailing underscore
|
| 229 |
+
"bool_": bool_,
|
| 230 |
+
}
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
_python_types = {
|
| 234 |
+
int: int64,
|
| 235 |
+
float: float64,
|
| 236 |
+
complex: complex128,
|
| 237 |
+
builtins.bool: bool_,
|
| 238 |
+
# also allow stringified names of python types
|
| 239 |
+
int.__name__: int64,
|
| 240 |
+
float.__name__: float64,
|
| 241 |
+
complex.__name__: complex128,
|
| 242 |
+
builtins.bool.__name__: bool_,
|
| 243 |
+
}
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
def sctype_from_string(s):
|
| 247 |
+
"""Normalize a string value: a type 'name' or a typecode or a width alias."""
|
| 248 |
+
if s in _names:
|
| 249 |
+
return _names[s]
|
| 250 |
+
if s in _name_aliases.keys():
|
| 251 |
+
return _name_aliases[s]
|
| 252 |
+
if s in _typecodes:
|
| 253 |
+
return _typecodes[s]
|
| 254 |
+
if s in _aliases:
|
| 255 |
+
return _aliases[s]
|
| 256 |
+
if s in _python_types:
|
| 257 |
+
return _python_types[s]
|
| 258 |
+
raise TypeError(f"data type {s!r} not understood")
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
def sctype_from_torch_dtype(torch_dtype):
|
| 262 |
+
return _torch_dtypes[torch_dtype]
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
# ### DTypes. ###
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
def dtype(arg):
|
| 269 |
+
if arg is None:
|
| 270 |
+
arg = _dtypes_impl.default_dtypes().float_dtype
|
| 271 |
+
return DType(arg)
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
class DType:
|
| 275 |
+
def __init__(self, arg):
|
| 276 |
+
# a pytorch object?
|
| 277 |
+
if isinstance(arg, torch.dtype):
|
| 278 |
+
sctype = _torch_dtypes[arg]
|
| 279 |
+
elif isinstance(arg, torch.Tensor):
|
| 280 |
+
sctype = _torch_dtypes[arg.dtype]
|
| 281 |
+
# a scalar type?
|
| 282 |
+
elif issubclass_(arg, generic):
|
| 283 |
+
sctype = arg
|
| 284 |
+
# a dtype already?
|
| 285 |
+
elif isinstance(arg, DType):
|
| 286 |
+
sctype = arg._scalar_type
|
| 287 |
+
# a has a right attribute?
|
| 288 |
+
elif hasattr(arg, "dtype"):
|
| 289 |
+
sctype = arg.dtype._scalar_type
|
| 290 |
+
else:
|
| 291 |
+
sctype = sctype_from_string(arg)
|
| 292 |
+
self._scalar_type = sctype
|
| 293 |
+
|
| 294 |
+
@property
|
| 295 |
+
def name(self):
|
| 296 |
+
return self._scalar_type.name
|
| 297 |
+
|
| 298 |
+
@property
|
| 299 |
+
def type(self):
|
| 300 |
+
return self._scalar_type
|
| 301 |
+
|
| 302 |
+
@property
|
| 303 |
+
def kind(self):
|
| 304 |
+
# https://numpy.org/doc/stable/reference/generated/numpy.dtype.kind.html
|
| 305 |
+
return _torch_dtypes[self.torch_dtype].name[0]
|
| 306 |
+
|
| 307 |
+
@property
|
| 308 |
+
def typecode(self):
|
| 309 |
+
return self._scalar_type.typecode
|
| 310 |
+
|
| 311 |
+
def __eq__(self, other):
|
| 312 |
+
if isinstance(other, DType):
|
| 313 |
+
return self._scalar_type == other._scalar_type
|
| 314 |
+
try:
|
| 315 |
+
other_instance = DType(other)
|
| 316 |
+
except TypeError:
|
| 317 |
+
return False
|
| 318 |
+
return self._scalar_type == other_instance._scalar_type
|
| 319 |
+
|
| 320 |
+
@property
|
| 321 |
+
def torch_dtype(self):
|
| 322 |
+
return self._scalar_type.torch_dtype
|
| 323 |
+
|
| 324 |
+
def __hash__(self):
|
| 325 |
+
return hash(self._scalar_type.name)
|
| 326 |
+
|
| 327 |
+
def __repr__(self):
|
| 328 |
+
return f'dtype("{self.name}")'
|
| 329 |
+
|
| 330 |
+
__str__ = __repr__
|
| 331 |
+
|
| 332 |
+
@property
|
| 333 |
+
def itemsize(self):
|
| 334 |
+
elem = self.type(1)
|
| 335 |
+
return elem.tensor.element_size()
|
| 336 |
+
|
| 337 |
+
def __getstate__(self):
|
| 338 |
+
return self._scalar_type
|
| 339 |
+
|
| 340 |
+
def __setstate__(self, value):
|
| 341 |
+
self._scalar_type = value
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
typecodes = {
|
| 345 |
+
"All": "efdFDBbhil?",
|
| 346 |
+
"AllFloat": "efdFD",
|
| 347 |
+
"AllInteger": "Bbhil",
|
| 348 |
+
"Integer": "bhil",
|
| 349 |
+
"UnsignedInteger": "B",
|
| 350 |
+
"Float": "efd",
|
| 351 |
+
"Complex": "FD",
|
| 352 |
+
}
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
# ### Defaults and dtype discovery
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def set_default_dtype(fp_dtype="numpy", int_dtype="numpy"):
|
| 359 |
+
"""Set the (global) defaults for fp, complex, and int dtypes.
|
| 360 |
+
|
| 361 |
+
The complex dtype is inferred from the float (fp) dtype. It has
|
| 362 |
+
a width at least twice the width of the float dtype,
|
| 363 |
+
i.e., it's complex128 for float64 and complex64 for float32.
|
| 364 |
+
|
| 365 |
+
Parameters
|
| 366 |
+
----------
|
| 367 |
+
fp_dtype
|
| 368 |
+
Allowed values are "numpy", "pytorch" or dtype_like things which
|
| 369 |
+
can be converted into a DType instance.
|
| 370 |
+
Default is "numpy" (i.e. float64).
|
| 371 |
+
int_dtype
|
| 372 |
+
Allowed values are "numpy", "pytorch" or dtype_like things which
|
| 373 |
+
can be converted into a DType instance.
|
| 374 |
+
Default is "numpy" (i.e. int64).
|
| 375 |
+
|
| 376 |
+
Returns
|
| 377 |
+
-------
|
| 378 |
+
The old default dtype state: a namedtuple with attributes ``float_dtype``,
|
| 379 |
+
``complex_dtypes`` and ``int_dtype``. These attributes store *pytorch*
|
| 380 |
+
dtypes.
|
| 381 |
+
|
| 382 |
+
Notes
|
| 383 |
+
------------
|
| 384 |
+
This functions has a side effect: it sets the global state with the provided dtypes.
|
| 385 |
+
|
| 386 |
+
The complex dtype has bit width of at least twice the width of the float
|
| 387 |
+
dtype, i.e. it's complex128 for float64 and complex64 for float32.
|
| 388 |
+
|
| 389 |
+
"""
|
| 390 |
+
if fp_dtype not in ["numpy", "pytorch"]:
|
| 391 |
+
fp_dtype = dtype(fp_dtype).torch_dtype
|
| 392 |
+
if int_dtype not in ["numpy", "pytorch"]:
|
| 393 |
+
int_dtype = dtype(int_dtype).torch_dtype
|
| 394 |
+
|
| 395 |
+
if fp_dtype == "numpy":
|
| 396 |
+
float_dtype = torch.float64
|
| 397 |
+
elif fp_dtype == "pytorch":
|
| 398 |
+
float_dtype = torch.float32
|
| 399 |
+
else:
|
| 400 |
+
float_dtype = fp_dtype
|
| 401 |
+
|
| 402 |
+
complex_dtype = {
|
| 403 |
+
torch.float64: torch.complex128,
|
| 404 |
+
torch.float32: torch.complex64,
|
| 405 |
+
torch.float16: torch.complex64,
|
| 406 |
+
}[float_dtype]
|
| 407 |
+
|
| 408 |
+
if int_dtype in ["numpy", "pytorch"]:
|
| 409 |
+
int_dtype = torch.int64
|
| 410 |
+
else:
|
| 411 |
+
int_dtype = int_dtype
|
| 412 |
+
|
| 413 |
+
new_defaults = _dtypes_impl.DefaultDTypes(
|
| 414 |
+
float_dtype=float_dtype, complex_dtype=complex_dtype, int_dtype=int_dtype
|
| 415 |
+
)
|
| 416 |
+
|
| 417 |
+
# set the new global state and return the old state
|
| 418 |
+
old_defaults = _dtypes_impl.default_dtypes
|
| 419 |
+
_dtypes_impl._default_dtypes = new_defaults
|
| 420 |
+
return old_defaults
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
def issubclass_(arg, klass):
|
| 424 |
+
try:
|
| 425 |
+
return issubclass(arg, klass)
|
| 426 |
+
except TypeError:
|
| 427 |
+
return False
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
def issubdtype(arg1, arg2):
|
| 431 |
+
# cf https://github.com/numpy/numpy/blob/v1.24.0/numpy/core/numerictypes.py#L356-L420
|
| 432 |
+
|
| 433 |
+
# We also accept strings even if NumPy doesn't as dtypes are serialized as their
|
| 434 |
+
# string representation in dynamo's graph
|
| 435 |
+
def str_to_abstract(t):
|
| 436 |
+
if isinstance(t, str) and t in _abstract_dtypes:
|
| 437 |
+
return globals()[t]
|
| 438 |
+
return t
|
| 439 |
+
|
| 440 |
+
arg1 = str_to_abstract(arg1)
|
| 441 |
+
arg2 = str_to_abstract(arg2)
|
| 442 |
+
|
| 443 |
+
if not issubclass_(arg1, generic):
|
| 444 |
+
arg1 = dtype(arg1).type
|
| 445 |
+
if not issubclass_(arg2, generic):
|
| 446 |
+
arg2 = dtype(arg2).type
|
| 447 |
+
return issubclass(arg1, arg2)
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
__all__ = ["dtype", "DType", "typecodes", "issubdtype", "set_default_dtype", "sctypes"]
|
| 451 |
+
__all__ += list(_names.keys()) # noqa: PLE0605
|
| 452 |
+
__all__ += list(_name_aliases.keys()) # noqa: PLE0605
|
| 453 |
+
__all__ += _abstract_dtypes # noqa: PLE0605
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/_dtypes_impl.py
ADDED
|
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: ignore-errors
|
| 2 |
+
|
| 3 |
+
"""Dtypes/scalar type implementaions with torch dtypes.
|
| 4 |
+
|
| 5 |
+
Here `dtype` is always a torch.dtype, this module knows nothing about
|
| 6 |
+
scalar types, wrapper dtypes or anything like that. PyTorch only.
|
| 7 |
+
"""
|
| 8 |
+
from collections import namedtuple
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# defaults : mimic NumPy, allow user control
|
| 14 |
+
DefaultDTypes = namedtuple(
|
| 15 |
+
"DefaultDTypes", ["float_dtype", "complex_dtype", "int_dtype"]
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
# a global state
|
| 19 |
+
# We set it the first time we call default_dtypes() to avoid importing
|
| 20 |
+
# torch._dynamo.config and create a circular reference
|
| 21 |
+
_default_dtypes = None
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def default_dtypes():
|
| 25 |
+
global _default_dtypes
|
| 26 |
+
if _default_dtypes is None:
|
| 27 |
+
import torch._dynamo.config as config
|
| 28 |
+
|
| 29 |
+
_default_dtypes = DefaultDTypes(
|
| 30 |
+
float_dtype=getattr(torch, config.numpy_default_float),
|
| 31 |
+
complex_dtype=getattr(torch, config.numpy_default_complex),
|
| 32 |
+
int_dtype=getattr(torch, config.numpy_default_int),
|
| 33 |
+
)
|
| 34 |
+
assert isinstance(_default_dtypes.float_dtype, torch.dtype)
|
| 35 |
+
assert isinstance(_default_dtypes.complex_dtype, torch.dtype)
|
| 36 |
+
assert isinstance(_default_dtypes.int_dtype, torch.dtype)
|
| 37 |
+
return _default_dtypes
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def get_default_dtype_for(dtype):
|
| 41 |
+
"""Default scalar type given sctype category."""
|
| 42 |
+
if dtype == torch.bool:
|
| 43 |
+
return dtype
|
| 44 |
+
if dtype.is_complex:
|
| 45 |
+
return default_dtypes().complex_dtype
|
| 46 |
+
if dtype.is_floating_point:
|
| 47 |
+
return default_dtypes().float_dtype
|
| 48 |
+
# else, it must be (some) integer
|
| 49 |
+
return default_dtypes().int_dtype
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
from . import _casting_dicts as _cd
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def can_cast_impl(from_torch_dtype, to_torch_dtype, casting):
|
| 56 |
+
return _cd._can_cast_dict[casting][from_torch_dtype][to_torch_dtype]
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def result_type_impl(*tensors):
|
| 60 |
+
# NB: torch dtypes here
|
| 61 |
+
dtyp = tensors[0].dtype
|
| 62 |
+
if len(tensors) == 1:
|
| 63 |
+
return dtyp
|
| 64 |
+
|
| 65 |
+
for curr in tensors[1:]:
|
| 66 |
+
dtyp = _cd._result_type_dict[dtyp][curr.dtype]
|
| 67 |
+
|
| 68 |
+
return dtyp
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def python_type_for_torch(dtyp):
|
| 72 |
+
"""Get a python scalar type a torch dtype"""
|
| 73 |
+
if dtyp.is_floating_point:
|
| 74 |
+
typ = float
|
| 75 |
+
elif dtyp.is_complex:
|
| 76 |
+
typ = complex
|
| 77 |
+
elif dtyp == torch.bool:
|
| 78 |
+
typ = bool
|
| 79 |
+
else:
|
| 80 |
+
typ = int
|
| 81 |
+
return typ
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
# ### NEP 50 helpers ###
|
| 85 |
+
|
| 86 |
+
_SCALAR_TYPES = (int, bool, float, complex)
|
| 87 |
+
|
| 88 |
+
_SCALAR_AND_SYMBOLIC_TYPES = (
|
| 89 |
+
*_SCALAR_TYPES,
|
| 90 |
+
torch.SymInt,
|
| 91 |
+
torch.SymFloat,
|
| 92 |
+
torch.SymBool,
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
_NEP50_FUNCS_TENSOR_ONLY = (
|
| 96 |
+
"minimum",
|
| 97 |
+
"maximum",
|
| 98 |
+
"logaddexp",
|
| 99 |
+
"logaddexp2",
|
| 100 |
+
"lcm",
|
| 101 |
+
"gcd",
|
| 102 |
+
"hypot",
|
| 103 |
+
"heaviside",
|
| 104 |
+
"fmod",
|
| 105 |
+
"fmin",
|
| 106 |
+
"fmax",
|
| 107 |
+
"copysign",
|
| 108 |
+
"arctan2",
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def is_scalar(x):
|
| 113 |
+
return isinstance(x, _SCALAR_TYPES)
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def is_scalar_or_symbolic(x):
|
| 117 |
+
return isinstance(x, _SCALAR_AND_SYMBOLIC_TYPES)
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def _dtype_for_scalar(py_type):
|
| 121 |
+
return {
|
| 122 |
+
bool: torch.bool,
|
| 123 |
+
torch.SymBool: torch.bool,
|
| 124 |
+
int: torch.int64,
|
| 125 |
+
torch.SymInt: torch.int64,
|
| 126 |
+
float: torch.float64,
|
| 127 |
+
torch.SymFloat: torch.float64,
|
| 128 |
+
complex: torch.complex128,
|
| 129 |
+
}[py_type]
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def _dtype_for_scalar_or_tensor(x):
|
| 133 |
+
return x.dtype if isinstance(x, torch.Tensor) else _dtype_for_scalar(type(x))
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def is_float_or_fp_tensor(x):
|
| 137 |
+
return _dtype_for_scalar_or_tensor(x).is_floating_point
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def is_complex_or_complex_tensor(x):
|
| 141 |
+
return _dtype_for_scalar_or_tensor(x).is_complex
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def _category(dtype):
|
| 145 |
+
return {
|
| 146 |
+
torch.bool: 0,
|
| 147 |
+
torch.SymBool: 0,
|
| 148 |
+
# int
|
| 149 |
+
torch.uint8: 1,
|
| 150 |
+
torch.int8: 1,
|
| 151 |
+
torch.int16: 1,
|
| 152 |
+
torch.int32: 1,
|
| 153 |
+
torch.int64: 1,
|
| 154 |
+
torch.SymInt: 1,
|
| 155 |
+
# float
|
| 156 |
+
torch.float16: 2,
|
| 157 |
+
torch.float32: 2,
|
| 158 |
+
torch.float64: 2,
|
| 159 |
+
torch.SymFloat: 2,
|
| 160 |
+
# complex
|
| 161 |
+
torch.complex64: 3,
|
| 162 |
+
torch.complex128: 3,
|
| 163 |
+
}[dtype]
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def nep50_to_tensors(x1, x2, handle_weaks, function_name):
|
| 167 |
+
"""If either of inputs is a python scalar, type-promote with NEP 50."""
|
| 168 |
+
|
| 169 |
+
def to_tensor(scalar, dtype=None):
|
| 170 |
+
if dtype is None:
|
| 171 |
+
dtype = _dtype_for_scalar(type(scalar))
|
| 172 |
+
dtype = get_default_dtype_for(dtype)
|
| 173 |
+
return torch.as_tensor(scalar, dtype=dtype)
|
| 174 |
+
|
| 175 |
+
x1_is_weak = not isinstance(x1, torch.Tensor)
|
| 176 |
+
x2_is_weak = not isinstance(x2, torch.Tensor)
|
| 177 |
+
if not handle_weaks or (x1_is_weak and x2_is_weak):
|
| 178 |
+
x1 = to_tensor(x1) if x1_is_weak else x1
|
| 179 |
+
x2 = to_tensor(x2) if x2_is_weak else x2
|
| 180 |
+
return x1, x2
|
| 181 |
+
|
| 182 |
+
# scalar <op> tensor: NEP 50
|
| 183 |
+
assert x1_is_weak != x2_is_weak
|
| 184 |
+
|
| 185 |
+
weak, not_weak = (x1, x2) if x1_is_weak else (x2, x1)
|
| 186 |
+
|
| 187 |
+
# find the dtype for the weak's type
|
| 188 |
+
weak_dtype = _dtype_for_scalar(type(weak))
|
| 189 |
+
|
| 190 |
+
cat_weak = _category(weak_dtype)
|
| 191 |
+
cat_not_weak = _category(not_weak.dtype)
|
| 192 |
+
|
| 193 |
+
dt = not_weak.dtype if cat_weak <= cat_not_weak else None
|
| 194 |
+
|
| 195 |
+
# special-case complex + float32
|
| 196 |
+
if weak_dtype.is_complex and not_weak.dtype == torch.float32:
|
| 197 |
+
dt = torch.complex64
|
| 198 |
+
|
| 199 |
+
# detect overflows: in PyTorch, uint8(-1) wraps around to 255,
|
| 200 |
+
# while NEP50 mandates an exception.
|
| 201 |
+
#
|
| 202 |
+
# Note that we only check if each element of the binop overflows,
|
| 203 |
+
# not the result. Consider, e.g. `uint8(100) + 200`. Operands are OK
|
| 204 |
+
# in uint8, but the result overflows and wrap around 255.
|
| 205 |
+
# Numpy emits a RuntimeWarning, PyTorch does not, and we do not either.
|
| 206 |
+
if cat_weak == 1 and cat_not_weak == 1:
|
| 207 |
+
# integers
|
| 208 |
+
iinfo = torch.iinfo(not_weak.dtype)
|
| 209 |
+
if not (iinfo.min <= weak <= iinfo.max):
|
| 210 |
+
raise OverflowError(
|
| 211 |
+
f"Python integer {weak} out of bounds for {not_weak.dtype}"
|
| 212 |
+
)
|
| 213 |
+
if weak_dtype != dt or function_name in _NEP50_FUNCS_TENSOR_ONLY:
|
| 214 |
+
# finally, can make `weak` into a 0D tensor, if both parameters are required to be tensor.
|
| 215 |
+
weak = to_tensor(weak, dt)
|
| 216 |
+
|
| 217 |
+
return (weak, not_weak) if x1_is_weak else (not_weak, weak)
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/_funcs.py
ADDED
|
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: ignore-errors
|
| 2 |
+
|
| 3 |
+
import inspect
|
| 4 |
+
import itertools
|
| 5 |
+
|
| 6 |
+
from . import _funcs_impl, _reductions_impl
|
| 7 |
+
from ._normalizations import normalizer
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# _funcs_impl.py contains functions which mimic NumPy's eponymous equivalents,
|
| 11 |
+
# and consume/return PyTorch tensors/dtypes.
|
| 12 |
+
# They are also type annotated.
|
| 13 |
+
# Pull these functions from _funcs_impl and decorate them with @normalizer, which
|
| 14 |
+
# - Converts any input `np.ndarray`, `torch._numpy.ndarray`, list of lists, Python scalars, etc into a `torch.Tensor`.
|
| 15 |
+
# - Maps NumPy dtypes to PyTorch dtypes
|
| 16 |
+
# - If the input to the `axis` kwarg is an ndarray, it maps it into a tuple
|
| 17 |
+
# - Implements the semantics for the `out=` arg
|
| 18 |
+
# - Wraps back the outputs into `torch._numpy.ndarrays`
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def _public_functions(mod):
|
| 22 |
+
def is_public_function(f):
|
| 23 |
+
return inspect.isfunction(f) and not f.__name__.startswith("_")
|
| 24 |
+
|
| 25 |
+
return inspect.getmembers(mod, is_public_function)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# We fill in __all__ in the loop below
|
| 29 |
+
__all__ = []
|
| 30 |
+
|
| 31 |
+
# decorate implementer functions with argument normalizers and export to the top namespace
|
| 32 |
+
for name, func in itertools.chain(
|
| 33 |
+
_public_functions(_funcs_impl), _public_functions(_reductions_impl)
|
| 34 |
+
):
|
| 35 |
+
if name in ["percentile", "quantile", "median"]:
|
| 36 |
+
decorated = normalizer(func, promote_scalar_result=True)
|
| 37 |
+
elif name == "einsum":
|
| 38 |
+
# normalized manually
|
| 39 |
+
decorated = func
|
| 40 |
+
else:
|
| 41 |
+
decorated = normalizer(func)
|
| 42 |
+
|
| 43 |
+
decorated.__qualname__ = name
|
| 44 |
+
decorated.__name__ = name
|
| 45 |
+
vars()[name] = decorated
|
| 46 |
+
__all__.append(name)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
"""
|
| 50 |
+
Vendored objects from numpy.lib.index_tricks
|
| 51 |
+
"""
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class IndexExpression:
|
| 55 |
+
"""
|
| 56 |
+
Written by Konrad Hinsen <[email protected]>
|
| 57 |
+
last revision: 1999-7-23
|
| 58 |
+
|
| 59 |
+
Cosmetic changes by T. Oliphant 2001
|
| 60 |
+
"""
|
| 61 |
+
|
| 62 |
+
def __init__(self, maketuple):
|
| 63 |
+
self.maketuple = maketuple
|
| 64 |
+
|
| 65 |
+
def __getitem__(self, item):
|
| 66 |
+
if self.maketuple and not isinstance(item, tuple):
|
| 67 |
+
return (item,)
|
| 68 |
+
else:
|
| 69 |
+
return item
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
index_exp = IndexExpression(maketuple=True)
|
| 73 |
+
s_ = IndexExpression(maketuple=False)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
__all__ += ["index_exp", "s_"]
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/_funcs_impl.py
ADDED
|
@@ -0,0 +1,2056 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: ignore-errors
|
| 2 |
+
|
| 3 |
+
"""A thin pytorch / numpy compat layer.
|
| 4 |
+
|
| 5 |
+
Things imported from here have numpy-compatible signatures but operate on
|
| 6 |
+
pytorch tensors.
|
| 7 |
+
"""
|
| 8 |
+
# Contents of this module ends up in the main namespace via _funcs.py
|
| 9 |
+
# where type annotations are used in conjunction with the @normalizer decorator.
|
| 10 |
+
from __future__ import annotations
|
| 11 |
+
|
| 12 |
+
import builtins
|
| 13 |
+
import itertools
|
| 14 |
+
import operator
|
| 15 |
+
from typing import Optional, Sequence, TYPE_CHECKING
|
| 16 |
+
|
| 17 |
+
import torch
|
| 18 |
+
|
| 19 |
+
from . import _dtypes_impl, _util
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
if TYPE_CHECKING:
|
| 23 |
+
from ._normalizations import (
|
| 24 |
+
ArrayLike,
|
| 25 |
+
ArrayLikeOrScalar,
|
| 26 |
+
CastingModes,
|
| 27 |
+
DTypeLike,
|
| 28 |
+
NDArray,
|
| 29 |
+
NotImplementedType,
|
| 30 |
+
OutArray,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def copy(
|
| 35 |
+
a: ArrayLike, order: NotImplementedType = "K", subok: NotImplementedType = False
|
| 36 |
+
):
|
| 37 |
+
return a.clone()
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def copyto(
|
| 41 |
+
dst: NDArray,
|
| 42 |
+
src: ArrayLike,
|
| 43 |
+
casting: Optional[CastingModes] = "same_kind",
|
| 44 |
+
where: NotImplementedType = None,
|
| 45 |
+
):
|
| 46 |
+
(src,) = _util.typecast_tensors((src,), dst.dtype, casting=casting)
|
| 47 |
+
dst.copy_(src)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def atleast_1d(*arys: ArrayLike):
|
| 51 |
+
res = torch.atleast_1d(*arys)
|
| 52 |
+
if isinstance(res, tuple):
|
| 53 |
+
return list(res)
|
| 54 |
+
else:
|
| 55 |
+
return res
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def atleast_2d(*arys: ArrayLike):
|
| 59 |
+
res = torch.atleast_2d(*arys)
|
| 60 |
+
if isinstance(res, tuple):
|
| 61 |
+
return list(res)
|
| 62 |
+
else:
|
| 63 |
+
return res
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def atleast_3d(*arys: ArrayLike):
|
| 67 |
+
res = torch.atleast_3d(*arys)
|
| 68 |
+
if isinstance(res, tuple):
|
| 69 |
+
return list(res)
|
| 70 |
+
else:
|
| 71 |
+
return res
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def _concat_check(tup, dtype, out):
|
| 75 |
+
if tup == ():
|
| 76 |
+
raise ValueError("need at least one array to concatenate")
|
| 77 |
+
|
| 78 |
+
"""Check inputs in concatenate et al."""
|
| 79 |
+
if out is not None and dtype is not None:
|
| 80 |
+
# mimic numpy
|
| 81 |
+
raise TypeError(
|
| 82 |
+
"concatenate() only takes `out` or `dtype` as an "
|
| 83 |
+
"argument, but both were provided."
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def _concat_cast_helper(tensors, out=None, dtype=None, casting="same_kind"):
|
| 88 |
+
"""Figure out dtypes, cast if necessary."""
|
| 89 |
+
|
| 90 |
+
if out is not None or dtype is not None:
|
| 91 |
+
# figure out the type of the inputs and outputs
|
| 92 |
+
out_dtype = out.dtype.torch_dtype if dtype is None else dtype
|
| 93 |
+
else:
|
| 94 |
+
out_dtype = _dtypes_impl.result_type_impl(*tensors)
|
| 95 |
+
|
| 96 |
+
# cast input arrays if necessary; do not broadcast them agains `out`
|
| 97 |
+
tensors = _util.typecast_tensors(tensors, out_dtype, casting)
|
| 98 |
+
|
| 99 |
+
return tensors
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def _concatenate(
|
| 103 |
+
tensors, axis=0, out=None, dtype=None, casting: Optional[CastingModes] = "same_kind"
|
| 104 |
+
):
|
| 105 |
+
# pure torch implementation, used below and in cov/corrcoef below
|
| 106 |
+
tensors, axis = _util.axis_none_flatten(*tensors, axis=axis)
|
| 107 |
+
tensors = _concat_cast_helper(tensors, out, dtype, casting)
|
| 108 |
+
return torch.cat(tensors, axis)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def concatenate(
|
| 112 |
+
ar_tuple: Sequence[ArrayLike],
|
| 113 |
+
axis=0,
|
| 114 |
+
out: Optional[OutArray] = None,
|
| 115 |
+
dtype: Optional[DTypeLike] = None,
|
| 116 |
+
casting: Optional[CastingModes] = "same_kind",
|
| 117 |
+
):
|
| 118 |
+
_concat_check(ar_tuple, dtype, out=out)
|
| 119 |
+
result = _concatenate(ar_tuple, axis=axis, out=out, dtype=dtype, casting=casting)
|
| 120 |
+
return result
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def vstack(
|
| 124 |
+
tup: Sequence[ArrayLike],
|
| 125 |
+
*,
|
| 126 |
+
dtype: Optional[DTypeLike] = None,
|
| 127 |
+
casting: Optional[CastingModes] = "same_kind",
|
| 128 |
+
):
|
| 129 |
+
_concat_check(tup, dtype, out=None)
|
| 130 |
+
tensors = _concat_cast_helper(tup, dtype=dtype, casting=casting)
|
| 131 |
+
return torch.vstack(tensors)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
row_stack = vstack
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def hstack(
|
| 138 |
+
tup: Sequence[ArrayLike],
|
| 139 |
+
*,
|
| 140 |
+
dtype: Optional[DTypeLike] = None,
|
| 141 |
+
casting: Optional[CastingModes] = "same_kind",
|
| 142 |
+
):
|
| 143 |
+
_concat_check(tup, dtype, out=None)
|
| 144 |
+
tensors = _concat_cast_helper(tup, dtype=dtype, casting=casting)
|
| 145 |
+
return torch.hstack(tensors)
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def dstack(
|
| 149 |
+
tup: Sequence[ArrayLike],
|
| 150 |
+
*,
|
| 151 |
+
dtype: Optional[DTypeLike] = None,
|
| 152 |
+
casting: Optional[CastingModes] = "same_kind",
|
| 153 |
+
):
|
| 154 |
+
# XXX: in numpy 1.24 dstack does not have dtype and casting keywords
|
| 155 |
+
# but {h,v}stack do. Hence add them here for consistency.
|
| 156 |
+
_concat_check(tup, dtype, out=None)
|
| 157 |
+
tensors = _concat_cast_helper(tup, dtype=dtype, casting=casting)
|
| 158 |
+
return torch.dstack(tensors)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def column_stack(
|
| 162 |
+
tup: Sequence[ArrayLike],
|
| 163 |
+
*,
|
| 164 |
+
dtype: Optional[DTypeLike] = None,
|
| 165 |
+
casting: Optional[CastingModes] = "same_kind",
|
| 166 |
+
):
|
| 167 |
+
# XXX: in numpy 1.24 column_stack does not have dtype and casting keywords
|
| 168 |
+
# but row_stack does. (because row_stack is an alias for vstack, really).
|
| 169 |
+
# Hence add these keywords here for consistency.
|
| 170 |
+
_concat_check(tup, dtype, out=None)
|
| 171 |
+
tensors = _concat_cast_helper(tup, dtype=dtype, casting=casting)
|
| 172 |
+
return torch.column_stack(tensors)
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
def stack(
|
| 176 |
+
arrays: Sequence[ArrayLike],
|
| 177 |
+
axis=0,
|
| 178 |
+
out: Optional[OutArray] = None,
|
| 179 |
+
*,
|
| 180 |
+
dtype: Optional[DTypeLike] = None,
|
| 181 |
+
casting: Optional[CastingModes] = "same_kind",
|
| 182 |
+
):
|
| 183 |
+
_concat_check(arrays, dtype, out=out)
|
| 184 |
+
|
| 185 |
+
tensors = _concat_cast_helper(arrays, dtype=dtype, casting=casting)
|
| 186 |
+
result_ndim = tensors[0].ndim + 1
|
| 187 |
+
axis = _util.normalize_axis_index(axis, result_ndim)
|
| 188 |
+
return torch.stack(tensors, axis=axis)
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def append(arr: ArrayLike, values: ArrayLike, axis=None):
|
| 192 |
+
if axis is None:
|
| 193 |
+
if arr.ndim != 1:
|
| 194 |
+
arr = arr.flatten()
|
| 195 |
+
values = values.flatten()
|
| 196 |
+
axis = arr.ndim - 1
|
| 197 |
+
return _concatenate((arr, values), axis=axis)
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
# ### split ###
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def _split_helper(tensor, indices_or_sections, axis, strict=False):
|
| 204 |
+
if isinstance(indices_or_sections, int):
|
| 205 |
+
return _split_helper_int(tensor, indices_or_sections, axis, strict)
|
| 206 |
+
elif isinstance(indices_or_sections, (list, tuple)):
|
| 207 |
+
# NB: drop split=..., it only applies to split_helper_int
|
| 208 |
+
return _split_helper_list(tensor, list(indices_or_sections), axis)
|
| 209 |
+
else:
|
| 210 |
+
raise TypeError("split_helper: ", type(indices_or_sections))
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
def _split_helper_int(tensor, indices_or_sections, axis, strict=False):
|
| 214 |
+
if not isinstance(indices_or_sections, int):
|
| 215 |
+
raise NotImplementedError("split: indices_or_sections")
|
| 216 |
+
|
| 217 |
+
axis = _util.normalize_axis_index(axis, tensor.ndim)
|
| 218 |
+
|
| 219 |
+
# numpy: l%n chunks of size (l//n + 1), the rest are sized l//n
|
| 220 |
+
l, n = tensor.shape[axis], indices_or_sections
|
| 221 |
+
|
| 222 |
+
if n <= 0:
|
| 223 |
+
raise ValueError
|
| 224 |
+
|
| 225 |
+
if l % n == 0:
|
| 226 |
+
num, sz = n, l // n
|
| 227 |
+
lst = [sz] * num
|
| 228 |
+
else:
|
| 229 |
+
if strict:
|
| 230 |
+
raise ValueError("array split does not result in an equal division")
|
| 231 |
+
|
| 232 |
+
num, sz = l % n, l // n + 1
|
| 233 |
+
lst = [sz] * num
|
| 234 |
+
|
| 235 |
+
lst += [sz - 1] * (n - num)
|
| 236 |
+
|
| 237 |
+
return torch.split(tensor, lst, axis)
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def _split_helper_list(tensor, indices_or_sections, axis):
|
| 241 |
+
if not isinstance(indices_or_sections, list):
|
| 242 |
+
raise NotImplementedError("split: indices_or_sections: list")
|
| 243 |
+
# numpy expects indices, while torch expects lengths of sections
|
| 244 |
+
# also, numpy appends zero-size arrays for indices above the shape[axis]
|
| 245 |
+
lst = [x for x in indices_or_sections if x <= tensor.shape[axis]]
|
| 246 |
+
num_extra = len(indices_or_sections) - len(lst)
|
| 247 |
+
|
| 248 |
+
lst.append(tensor.shape[axis])
|
| 249 |
+
lst = [
|
| 250 |
+
lst[0],
|
| 251 |
+
] + [a - b for a, b in zip(lst[1:], lst[:-1])]
|
| 252 |
+
lst += [0] * num_extra
|
| 253 |
+
|
| 254 |
+
return torch.split(tensor, lst, axis)
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def array_split(ary: ArrayLike, indices_or_sections, axis=0):
|
| 258 |
+
return _split_helper(ary, indices_or_sections, axis)
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
def split(ary: ArrayLike, indices_or_sections, axis=0):
|
| 262 |
+
return _split_helper(ary, indices_or_sections, axis, strict=True)
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
def hsplit(ary: ArrayLike, indices_or_sections):
|
| 266 |
+
if ary.ndim == 0:
|
| 267 |
+
raise ValueError("hsplit only works on arrays of 1 or more dimensions")
|
| 268 |
+
axis = 1 if ary.ndim > 1 else 0
|
| 269 |
+
return _split_helper(ary, indices_or_sections, axis, strict=True)
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def vsplit(ary: ArrayLike, indices_or_sections):
|
| 273 |
+
if ary.ndim < 2:
|
| 274 |
+
raise ValueError("vsplit only works on arrays of 2 or more dimensions")
|
| 275 |
+
return _split_helper(ary, indices_or_sections, 0, strict=True)
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
def dsplit(ary: ArrayLike, indices_or_sections):
|
| 279 |
+
if ary.ndim < 3:
|
| 280 |
+
raise ValueError("dsplit only works on arrays of 3 or more dimensions")
|
| 281 |
+
return _split_helper(ary, indices_or_sections, 2, strict=True)
|
| 282 |
+
|
| 283 |
+
|
| 284 |
+
def kron(a: ArrayLike, b: ArrayLike):
|
| 285 |
+
return torch.kron(a, b)
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
def vander(x: ArrayLike, N=None, increasing=False):
|
| 289 |
+
return torch.vander(x, N, increasing)
|
| 290 |
+
|
| 291 |
+
|
| 292 |
+
# ### linspace, geomspace, logspace and arange ###
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
def linspace(
|
| 296 |
+
start: ArrayLike,
|
| 297 |
+
stop: ArrayLike,
|
| 298 |
+
num=50,
|
| 299 |
+
endpoint=True,
|
| 300 |
+
retstep=False,
|
| 301 |
+
dtype: Optional[DTypeLike] = None,
|
| 302 |
+
axis=0,
|
| 303 |
+
):
|
| 304 |
+
if axis != 0 or retstep or not endpoint:
|
| 305 |
+
raise NotImplementedError
|
| 306 |
+
if dtype is None:
|
| 307 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
| 308 |
+
# XXX: raises TypeError if start or stop are not scalars
|
| 309 |
+
return torch.linspace(start, stop, num, dtype=dtype)
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
def geomspace(
|
| 313 |
+
start: ArrayLike,
|
| 314 |
+
stop: ArrayLike,
|
| 315 |
+
num=50,
|
| 316 |
+
endpoint=True,
|
| 317 |
+
dtype: Optional[DTypeLike] = None,
|
| 318 |
+
axis=0,
|
| 319 |
+
):
|
| 320 |
+
if axis != 0 or not endpoint:
|
| 321 |
+
raise NotImplementedError
|
| 322 |
+
base = torch.pow(stop / start, 1.0 / (num - 1))
|
| 323 |
+
logbase = torch.log(base)
|
| 324 |
+
return torch.logspace(
|
| 325 |
+
torch.log(start) / logbase,
|
| 326 |
+
torch.log(stop) / logbase,
|
| 327 |
+
num,
|
| 328 |
+
base=base,
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
def logspace(
|
| 333 |
+
start,
|
| 334 |
+
stop,
|
| 335 |
+
num=50,
|
| 336 |
+
endpoint=True,
|
| 337 |
+
base=10.0,
|
| 338 |
+
dtype: Optional[DTypeLike] = None,
|
| 339 |
+
axis=0,
|
| 340 |
+
):
|
| 341 |
+
if axis != 0 or not endpoint:
|
| 342 |
+
raise NotImplementedError
|
| 343 |
+
return torch.logspace(start, stop, num, base=base, dtype=dtype)
|
| 344 |
+
|
| 345 |
+
|
| 346 |
+
def arange(
|
| 347 |
+
start: Optional[ArrayLikeOrScalar] = None,
|
| 348 |
+
stop: Optional[ArrayLikeOrScalar] = None,
|
| 349 |
+
step: Optional[ArrayLikeOrScalar] = 1,
|
| 350 |
+
dtype: Optional[DTypeLike] = None,
|
| 351 |
+
*,
|
| 352 |
+
like: NotImplementedType = None,
|
| 353 |
+
):
|
| 354 |
+
if step == 0:
|
| 355 |
+
raise ZeroDivisionError
|
| 356 |
+
if stop is None and start is None:
|
| 357 |
+
raise TypeError
|
| 358 |
+
if stop is None:
|
| 359 |
+
# XXX: this breaks if start is passed as a kwarg:
|
| 360 |
+
# arange(start=4) should raise (no stop) but doesn't
|
| 361 |
+
start, stop = 0, start
|
| 362 |
+
if start is None:
|
| 363 |
+
start = 0
|
| 364 |
+
|
| 365 |
+
# the dtype of the result
|
| 366 |
+
if dtype is None:
|
| 367 |
+
dtype = (
|
| 368 |
+
_dtypes_impl.default_dtypes().float_dtype
|
| 369 |
+
if any(_dtypes_impl.is_float_or_fp_tensor(x) for x in (start, stop, step))
|
| 370 |
+
else _dtypes_impl.default_dtypes().int_dtype
|
| 371 |
+
)
|
| 372 |
+
work_dtype = torch.float64 if dtype.is_complex else dtype
|
| 373 |
+
|
| 374 |
+
# RuntimeError: "lt_cpu" not implemented for 'ComplexFloat'. Fall back to eager.
|
| 375 |
+
if any(_dtypes_impl.is_complex_or_complex_tensor(x) for x in (start, stop, step)):
|
| 376 |
+
raise NotImplementedError
|
| 377 |
+
|
| 378 |
+
if (step > 0 and start > stop) or (step < 0 and start < stop):
|
| 379 |
+
# empty range
|
| 380 |
+
return torch.empty(0, dtype=dtype)
|
| 381 |
+
|
| 382 |
+
result = torch.arange(start, stop, step, dtype=work_dtype)
|
| 383 |
+
result = _util.cast_if_needed(result, dtype)
|
| 384 |
+
return result
|
| 385 |
+
|
| 386 |
+
|
| 387 |
+
# ### zeros/ones/empty/full ###
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
def empty(
|
| 391 |
+
shape,
|
| 392 |
+
dtype: Optional[DTypeLike] = None,
|
| 393 |
+
order: NotImplementedType = "C",
|
| 394 |
+
*,
|
| 395 |
+
like: NotImplementedType = None,
|
| 396 |
+
):
|
| 397 |
+
if dtype is None:
|
| 398 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
| 399 |
+
return torch.empty(shape, dtype=dtype)
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
# NB: *_like functions deliberately deviate from numpy: it has subok=True
|
| 403 |
+
# as the default; we set subok=False and raise on anything else.
|
| 404 |
+
|
| 405 |
+
|
| 406 |
+
def empty_like(
|
| 407 |
+
prototype: ArrayLike,
|
| 408 |
+
dtype: Optional[DTypeLike] = None,
|
| 409 |
+
order: NotImplementedType = "K",
|
| 410 |
+
subok: NotImplementedType = False,
|
| 411 |
+
shape=None,
|
| 412 |
+
):
|
| 413 |
+
result = torch.empty_like(prototype, dtype=dtype)
|
| 414 |
+
if shape is not None:
|
| 415 |
+
result = result.reshape(shape)
|
| 416 |
+
return result
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
def full(
|
| 420 |
+
shape,
|
| 421 |
+
fill_value: ArrayLike,
|
| 422 |
+
dtype: Optional[DTypeLike] = None,
|
| 423 |
+
order: NotImplementedType = "C",
|
| 424 |
+
*,
|
| 425 |
+
like: NotImplementedType = None,
|
| 426 |
+
):
|
| 427 |
+
if isinstance(shape, int):
|
| 428 |
+
shape = (shape,)
|
| 429 |
+
if dtype is None:
|
| 430 |
+
dtype = fill_value.dtype
|
| 431 |
+
if not isinstance(shape, (tuple, list)):
|
| 432 |
+
shape = (shape,)
|
| 433 |
+
return torch.full(shape, fill_value, dtype=dtype)
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
def full_like(
|
| 437 |
+
a: ArrayLike,
|
| 438 |
+
fill_value,
|
| 439 |
+
dtype: Optional[DTypeLike] = None,
|
| 440 |
+
order: NotImplementedType = "K",
|
| 441 |
+
subok: NotImplementedType = False,
|
| 442 |
+
shape=None,
|
| 443 |
+
):
|
| 444 |
+
# XXX: fill_value broadcasts
|
| 445 |
+
result = torch.full_like(a, fill_value, dtype=dtype)
|
| 446 |
+
if shape is not None:
|
| 447 |
+
result = result.reshape(shape)
|
| 448 |
+
return result
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
def ones(
|
| 452 |
+
shape,
|
| 453 |
+
dtype: Optional[DTypeLike] = None,
|
| 454 |
+
order: NotImplementedType = "C",
|
| 455 |
+
*,
|
| 456 |
+
like: NotImplementedType = None,
|
| 457 |
+
):
|
| 458 |
+
if dtype is None:
|
| 459 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
| 460 |
+
return torch.ones(shape, dtype=dtype)
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
def ones_like(
|
| 464 |
+
a: ArrayLike,
|
| 465 |
+
dtype: Optional[DTypeLike] = None,
|
| 466 |
+
order: NotImplementedType = "K",
|
| 467 |
+
subok: NotImplementedType = False,
|
| 468 |
+
shape=None,
|
| 469 |
+
):
|
| 470 |
+
result = torch.ones_like(a, dtype=dtype)
|
| 471 |
+
if shape is not None:
|
| 472 |
+
result = result.reshape(shape)
|
| 473 |
+
return result
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
def zeros(
|
| 477 |
+
shape,
|
| 478 |
+
dtype: Optional[DTypeLike] = None,
|
| 479 |
+
order: NotImplementedType = "C",
|
| 480 |
+
*,
|
| 481 |
+
like: NotImplementedType = None,
|
| 482 |
+
):
|
| 483 |
+
if dtype is None:
|
| 484 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
| 485 |
+
return torch.zeros(shape, dtype=dtype)
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
def zeros_like(
|
| 489 |
+
a: ArrayLike,
|
| 490 |
+
dtype: Optional[DTypeLike] = None,
|
| 491 |
+
order: NotImplementedType = "K",
|
| 492 |
+
subok: NotImplementedType = False,
|
| 493 |
+
shape=None,
|
| 494 |
+
):
|
| 495 |
+
result = torch.zeros_like(a, dtype=dtype)
|
| 496 |
+
if shape is not None:
|
| 497 |
+
result = result.reshape(shape)
|
| 498 |
+
return result
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
# ### cov & corrcoef ###
|
| 502 |
+
|
| 503 |
+
|
| 504 |
+
def _xy_helper_corrcoef(x_tensor, y_tensor=None, rowvar=True):
|
| 505 |
+
"""Prepare inputs for cov and corrcoef."""
|
| 506 |
+
|
| 507 |
+
# https://github.com/numpy/numpy/blob/v1.24.0/numpy/lib/function_base.py#L2636
|
| 508 |
+
if y_tensor is not None:
|
| 509 |
+
# make sure x and y are at least 2D
|
| 510 |
+
ndim_extra = 2 - x_tensor.ndim
|
| 511 |
+
if ndim_extra > 0:
|
| 512 |
+
x_tensor = x_tensor.view((1,) * ndim_extra + x_tensor.shape)
|
| 513 |
+
if not rowvar and x_tensor.shape[0] != 1:
|
| 514 |
+
x_tensor = x_tensor.mT
|
| 515 |
+
x_tensor = x_tensor.clone()
|
| 516 |
+
|
| 517 |
+
ndim_extra = 2 - y_tensor.ndim
|
| 518 |
+
if ndim_extra > 0:
|
| 519 |
+
y_tensor = y_tensor.view((1,) * ndim_extra + y_tensor.shape)
|
| 520 |
+
if not rowvar and y_tensor.shape[0] != 1:
|
| 521 |
+
y_tensor = y_tensor.mT
|
| 522 |
+
y_tensor = y_tensor.clone()
|
| 523 |
+
|
| 524 |
+
x_tensor = _concatenate((x_tensor, y_tensor), axis=0)
|
| 525 |
+
|
| 526 |
+
return x_tensor
|
| 527 |
+
|
| 528 |
+
|
| 529 |
+
def corrcoef(
|
| 530 |
+
x: ArrayLike,
|
| 531 |
+
y: Optional[ArrayLike] = None,
|
| 532 |
+
rowvar=True,
|
| 533 |
+
bias=None,
|
| 534 |
+
ddof=None,
|
| 535 |
+
*,
|
| 536 |
+
dtype: Optional[DTypeLike] = None,
|
| 537 |
+
):
|
| 538 |
+
if bias is not None or ddof is not None:
|
| 539 |
+
# deprecated in NumPy
|
| 540 |
+
raise NotImplementedError
|
| 541 |
+
xy_tensor = _xy_helper_corrcoef(x, y, rowvar)
|
| 542 |
+
|
| 543 |
+
is_half = (xy_tensor.dtype == torch.float16) and xy_tensor.is_cpu
|
| 544 |
+
if is_half:
|
| 545 |
+
# work around torch's "addmm_impl_cpu_" not implemented for 'Half'"
|
| 546 |
+
dtype = torch.float32
|
| 547 |
+
|
| 548 |
+
xy_tensor = _util.cast_if_needed(xy_tensor, dtype)
|
| 549 |
+
result = torch.corrcoef(xy_tensor)
|
| 550 |
+
|
| 551 |
+
if is_half:
|
| 552 |
+
result = result.to(torch.float16)
|
| 553 |
+
|
| 554 |
+
return result
|
| 555 |
+
|
| 556 |
+
|
| 557 |
+
def cov(
|
| 558 |
+
m: ArrayLike,
|
| 559 |
+
y: Optional[ArrayLike] = None,
|
| 560 |
+
rowvar=True,
|
| 561 |
+
bias=False,
|
| 562 |
+
ddof=None,
|
| 563 |
+
fweights: Optional[ArrayLike] = None,
|
| 564 |
+
aweights: Optional[ArrayLike] = None,
|
| 565 |
+
*,
|
| 566 |
+
dtype: Optional[DTypeLike] = None,
|
| 567 |
+
):
|
| 568 |
+
m = _xy_helper_corrcoef(m, y, rowvar)
|
| 569 |
+
|
| 570 |
+
if ddof is None:
|
| 571 |
+
ddof = 1 if bias == 0 else 0
|
| 572 |
+
|
| 573 |
+
is_half = (m.dtype == torch.float16) and m.is_cpu
|
| 574 |
+
if is_half:
|
| 575 |
+
# work around torch's "addmm_impl_cpu_" not implemented for 'Half'"
|
| 576 |
+
dtype = torch.float32
|
| 577 |
+
|
| 578 |
+
m = _util.cast_if_needed(m, dtype)
|
| 579 |
+
result = torch.cov(m, correction=ddof, aweights=aweights, fweights=fweights)
|
| 580 |
+
|
| 581 |
+
if is_half:
|
| 582 |
+
result = result.to(torch.float16)
|
| 583 |
+
|
| 584 |
+
return result
|
| 585 |
+
|
| 586 |
+
|
| 587 |
+
def _conv_corr_impl(a, v, mode):
|
| 588 |
+
dt = _dtypes_impl.result_type_impl(a, v)
|
| 589 |
+
a = _util.cast_if_needed(a, dt)
|
| 590 |
+
v = _util.cast_if_needed(v, dt)
|
| 591 |
+
|
| 592 |
+
padding = v.shape[0] - 1 if mode == "full" else mode
|
| 593 |
+
|
| 594 |
+
if padding == "same" and v.shape[0] % 2 == 0:
|
| 595 |
+
# UserWarning: Using padding='same' with even kernel lengths and odd
|
| 596 |
+
# dilation may require a zero-padded copy of the input be created
|
| 597 |
+
# (Triggered internally at pytorch/aten/src/ATen/native/Convolution.cpp:1010.)
|
| 598 |
+
raise NotImplementedError("mode='same' and even-length weights")
|
| 599 |
+
|
| 600 |
+
# NumPy only accepts 1D arrays; PyTorch requires 2D inputs and 3D weights
|
| 601 |
+
aa = a[None, :]
|
| 602 |
+
vv = v[None, None, :]
|
| 603 |
+
|
| 604 |
+
result = torch.nn.functional.conv1d(aa, vv, padding=padding)
|
| 605 |
+
|
| 606 |
+
# torch returns a 2D result, numpy returns a 1D array
|
| 607 |
+
return result[0, :]
|
| 608 |
+
|
| 609 |
+
|
| 610 |
+
def convolve(a: ArrayLike, v: ArrayLike, mode="full"):
|
| 611 |
+
# NumPy: if v is longer than a, the arrays are swapped before computation
|
| 612 |
+
if a.shape[0] < v.shape[0]:
|
| 613 |
+
a, v = v, a
|
| 614 |
+
|
| 615 |
+
# flip the weights since numpy does and torch does not
|
| 616 |
+
v = torch.flip(v, (0,))
|
| 617 |
+
|
| 618 |
+
return _conv_corr_impl(a, v, mode)
|
| 619 |
+
|
| 620 |
+
|
| 621 |
+
def correlate(a: ArrayLike, v: ArrayLike, mode="valid"):
|
| 622 |
+
v = torch.conj_physical(v)
|
| 623 |
+
return _conv_corr_impl(a, v, mode)
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
# ### logic & element selection ###
|
| 627 |
+
|
| 628 |
+
|
| 629 |
+
def bincount(x: ArrayLike, /, weights: Optional[ArrayLike] = None, minlength=0):
|
| 630 |
+
if x.numel() == 0:
|
| 631 |
+
# edge case allowed by numpy
|
| 632 |
+
x = x.new_empty(0, dtype=int)
|
| 633 |
+
|
| 634 |
+
int_dtype = _dtypes_impl.default_dtypes().int_dtype
|
| 635 |
+
(x,) = _util.typecast_tensors((x,), int_dtype, casting="safe")
|
| 636 |
+
|
| 637 |
+
return torch.bincount(x, weights, minlength)
|
| 638 |
+
|
| 639 |
+
|
| 640 |
+
def where(
|
| 641 |
+
condition: ArrayLike,
|
| 642 |
+
x: Optional[ArrayLikeOrScalar] = None,
|
| 643 |
+
y: Optional[ArrayLikeOrScalar] = None,
|
| 644 |
+
/,
|
| 645 |
+
):
|
| 646 |
+
if (x is None) != (y is None):
|
| 647 |
+
raise ValueError("either both or neither of x and y should be given")
|
| 648 |
+
|
| 649 |
+
if condition.dtype != torch.bool:
|
| 650 |
+
condition = condition.to(torch.bool)
|
| 651 |
+
|
| 652 |
+
if x is None and y is None:
|
| 653 |
+
result = torch.where(condition)
|
| 654 |
+
else:
|
| 655 |
+
result = torch.where(condition, x, y)
|
| 656 |
+
return result
|
| 657 |
+
|
| 658 |
+
|
| 659 |
+
# ###### module-level queries of object properties
|
| 660 |
+
|
| 661 |
+
|
| 662 |
+
def ndim(a: ArrayLike):
|
| 663 |
+
return a.ndim
|
| 664 |
+
|
| 665 |
+
|
| 666 |
+
def shape(a: ArrayLike):
|
| 667 |
+
return tuple(a.shape)
|
| 668 |
+
|
| 669 |
+
|
| 670 |
+
def size(a: ArrayLike, axis=None):
|
| 671 |
+
if axis is None:
|
| 672 |
+
return a.numel()
|
| 673 |
+
else:
|
| 674 |
+
return a.shape[axis]
|
| 675 |
+
|
| 676 |
+
|
| 677 |
+
# ###### shape manipulations and indexing
|
| 678 |
+
|
| 679 |
+
|
| 680 |
+
def expand_dims(a: ArrayLike, axis):
|
| 681 |
+
shape = _util.expand_shape(a.shape, axis)
|
| 682 |
+
return a.view(shape) # never copies
|
| 683 |
+
|
| 684 |
+
|
| 685 |
+
def flip(m: ArrayLike, axis=None):
|
| 686 |
+
# XXX: semantic difference: np.flip returns a view, torch.flip copies
|
| 687 |
+
if axis is None:
|
| 688 |
+
axis = tuple(range(m.ndim))
|
| 689 |
+
else:
|
| 690 |
+
axis = _util.normalize_axis_tuple(axis, m.ndim)
|
| 691 |
+
return torch.flip(m, axis)
|
| 692 |
+
|
| 693 |
+
|
| 694 |
+
def flipud(m: ArrayLike):
|
| 695 |
+
return torch.flipud(m)
|
| 696 |
+
|
| 697 |
+
|
| 698 |
+
def fliplr(m: ArrayLike):
|
| 699 |
+
return torch.fliplr(m)
|
| 700 |
+
|
| 701 |
+
|
| 702 |
+
def rot90(m: ArrayLike, k=1, axes=(0, 1)):
|
| 703 |
+
axes = _util.normalize_axis_tuple(axes, m.ndim)
|
| 704 |
+
return torch.rot90(m, k, axes)
|
| 705 |
+
|
| 706 |
+
|
| 707 |
+
# ### broadcasting and indices ###
|
| 708 |
+
|
| 709 |
+
|
| 710 |
+
def broadcast_to(array: ArrayLike, shape, subok: NotImplementedType = False):
|
| 711 |
+
return torch.broadcast_to(array, size=shape)
|
| 712 |
+
|
| 713 |
+
|
| 714 |
+
# This is a function from tuples to tuples, so we just reuse it
|
| 715 |
+
from torch import broadcast_shapes
|
| 716 |
+
|
| 717 |
+
|
| 718 |
+
def broadcast_arrays(*args: ArrayLike, subok: NotImplementedType = False):
|
| 719 |
+
return torch.broadcast_tensors(*args)
|
| 720 |
+
|
| 721 |
+
|
| 722 |
+
def meshgrid(*xi: ArrayLike, copy=True, sparse=False, indexing="xy"):
|
| 723 |
+
ndim = len(xi)
|
| 724 |
+
|
| 725 |
+
if indexing not in ["xy", "ij"]:
|
| 726 |
+
raise ValueError("Valid values for `indexing` are 'xy' and 'ij'.")
|
| 727 |
+
|
| 728 |
+
s0 = (1,) * ndim
|
| 729 |
+
output = [x.reshape(s0[:i] + (-1,) + s0[i + 1 :]) for i, x in enumerate(xi)]
|
| 730 |
+
|
| 731 |
+
if indexing == "xy" and ndim > 1:
|
| 732 |
+
# switch first and second axis
|
| 733 |
+
output[0] = output[0].reshape((1, -1) + s0[2:])
|
| 734 |
+
output[1] = output[1].reshape((-1, 1) + s0[2:])
|
| 735 |
+
|
| 736 |
+
if not sparse:
|
| 737 |
+
# Return the full N-D matrix (not only the 1-D vector)
|
| 738 |
+
output = torch.broadcast_tensors(*output)
|
| 739 |
+
|
| 740 |
+
if copy:
|
| 741 |
+
output = [x.clone() for x in output]
|
| 742 |
+
|
| 743 |
+
return list(output) # match numpy, return a list
|
| 744 |
+
|
| 745 |
+
|
| 746 |
+
def indices(dimensions, dtype: Optional[DTypeLike] = int, sparse=False):
|
| 747 |
+
# https://github.com/numpy/numpy/blob/v1.24.0/numpy/core/numeric.py#L1691-L1791
|
| 748 |
+
dimensions = tuple(dimensions)
|
| 749 |
+
N = len(dimensions)
|
| 750 |
+
shape = (1,) * N
|
| 751 |
+
if sparse:
|
| 752 |
+
res = ()
|
| 753 |
+
else:
|
| 754 |
+
res = torch.empty((N,) + dimensions, dtype=dtype)
|
| 755 |
+
for i, dim in enumerate(dimensions):
|
| 756 |
+
idx = torch.arange(dim, dtype=dtype).reshape(
|
| 757 |
+
shape[:i] + (dim,) + shape[i + 1 :]
|
| 758 |
+
)
|
| 759 |
+
if sparse:
|
| 760 |
+
res = res + (idx,)
|
| 761 |
+
else:
|
| 762 |
+
res[i] = idx
|
| 763 |
+
return res
|
| 764 |
+
|
| 765 |
+
|
| 766 |
+
# ### tri*-something ###
|
| 767 |
+
|
| 768 |
+
|
| 769 |
+
def tril(m: ArrayLike, k=0):
|
| 770 |
+
return torch.tril(m, k)
|
| 771 |
+
|
| 772 |
+
|
| 773 |
+
def triu(m: ArrayLike, k=0):
|
| 774 |
+
return torch.triu(m, k)
|
| 775 |
+
|
| 776 |
+
|
| 777 |
+
def tril_indices(n, k=0, m=None):
|
| 778 |
+
if m is None:
|
| 779 |
+
m = n
|
| 780 |
+
return torch.tril_indices(n, m, offset=k)
|
| 781 |
+
|
| 782 |
+
|
| 783 |
+
def triu_indices(n, k=0, m=None):
|
| 784 |
+
if m is None:
|
| 785 |
+
m = n
|
| 786 |
+
return torch.triu_indices(n, m, offset=k)
|
| 787 |
+
|
| 788 |
+
|
| 789 |
+
def tril_indices_from(arr: ArrayLike, k=0):
|
| 790 |
+
if arr.ndim != 2:
|
| 791 |
+
raise ValueError("input array must be 2-d")
|
| 792 |
+
# Return a tensor rather than a tuple to avoid a graphbreak
|
| 793 |
+
return torch.tril_indices(arr.shape[0], arr.shape[1], offset=k)
|
| 794 |
+
|
| 795 |
+
|
| 796 |
+
def triu_indices_from(arr: ArrayLike, k=0):
|
| 797 |
+
if arr.ndim != 2:
|
| 798 |
+
raise ValueError("input array must be 2-d")
|
| 799 |
+
# Return a tensor rather than a tuple to avoid a graphbreak
|
| 800 |
+
return torch.triu_indices(arr.shape[0], arr.shape[1], offset=k)
|
| 801 |
+
|
| 802 |
+
|
| 803 |
+
def tri(
|
| 804 |
+
N,
|
| 805 |
+
M=None,
|
| 806 |
+
k=0,
|
| 807 |
+
dtype: Optional[DTypeLike] = None,
|
| 808 |
+
*,
|
| 809 |
+
like: NotImplementedType = None,
|
| 810 |
+
):
|
| 811 |
+
if M is None:
|
| 812 |
+
M = N
|
| 813 |
+
tensor = torch.ones((N, M), dtype=dtype)
|
| 814 |
+
return torch.tril(tensor, diagonal=k)
|
| 815 |
+
|
| 816 |
+
|
| 817 |
+
# ### equality, equivalence, allclose ###
|
| 818 |
+
|
| 819 |
+
|
| 820 |
+
def isclose(a: ArrayLike, b: ArrayLike, rtol=1.0e-5, atol=1.0e-8, equal_nan=False):
|
| 821 |
+
dtype = _dtypes_impl.result_type_impl(a, b)
|
| 822 |
+
a = _util.cast_if_needed(a, dtype)
|
| 823 |
+
b = _util.cast_if_needed(b, dtype)
|
| 824 |
+
return torch.isclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)
|
| 825 |
+
|
| 826 |
+
|
| 827 |
+
def allclose(a: ArrayLike, b: ArrayLike, rtol=1e-05, atol=1e-08, equal_nan=False):
|
| 828 |
+
dtype = _dtypes_impl.result_type_impl(a, b)
|
| 829 |
+
a = _util.cast_if_needed(a, dtype)
|
| 830 |
+
b = _util.cast_if_needed(b, dtype)
|
| 831 |
+
return torch.allclose(a, b, rtol=rtol, atol=atol, equal_nan=equal_nan)
|
| 832 |
+
|
| 833 |
+
|
| 834 |
+
def _tensor_equal(a1, a2, equal_nan=False):
|
| 835 |
+
# Implementation of array_equal/array_equiv.
|
| 836 |
+
if a1.shape != a2.shape:
|
| 837 |
+
return False
|
| 838 |
+
cond = a1 == a2
|
| 839 |
+
if equal_nan:
|
| 840 |
+
cond = cond | (torch.isnan(a1) & torch.isnan(a2))
|
| 841 |
+
return cond.all().item()
|
| 842 |
+
|
| 843 |
+
|
| 844 |
+
def array_equal(a1: ArrayLike, a2: ArrayLike, equal_nan=False):
|
| 845 |
+
return _tensor_equal(a1, a2, equal_nan=equal_nan)
|
| 846 |
+
|
| 847 |
+
|
| 848 |
+
def array_equiv(a1: ArrayLike, a2: ArrayLike):
|
| 849 |
+
# *almost* the same as array_equal: _equiv tries to broadcast, _equal does not
|
| 850 |
+
try:
|
| 851 |
+
a1_t, a2_t = torch.broadcast_tensors(a1, a2)
|
| 852 |
+
except RuntimeError:
|
| 853 |
+
# failed to broadcast => not equivalent
|
| 854 |
+
return False
|
| 855 |
+
return _tensor_equal(a1_t, a2_t)
|
| 856 |
+
|
| 857 |
+
|
| 858 |
+
def nan_to_num(
|
| 859 |
+
x: ArrayLike, copy: NotImplementedType = True, nan=0.0, posinf=None, neginf=None
|
| 860 |
+
):
|
| 861 |
+
# work around RuntimeError: "nan_to_num" not implemented for 'ComplexDouble'
|
| 862 |
+
if x.is_complex():
|
| 863 |
+
re = torch.nan_to_num(x.real, nan=nan, posinf=posinf, neginf=neginf)
|
| 864 |
+
im = torch.nan_to_num(x.imag, nan=nan, posinf=posinf, neginf=neginf)
|
| 865 |
+
return re + 1j * im
|
| 866 |
+
else:
|
| 867 |
+
return torch.nan_to_num(x, nan=nan, posinf=posinf, neginf=neginf)
|
| 868 |
+
|
| 869 |
+
|
| 870 |
+
# ### put/take_along_axis ###
|
| 871 |
+
|
| 872 |
+
|
| 873 |
+
def take(
|
| 874 |
+
a: ArrayLike,
|
| 875 |
+
indices: ArrayLike,
|
| 876 |
+
axis=None,
|
| 877 |
+
out: Optional[OutArray] = None,
|
| 878 |
+
mode: NotImplementedType = "raise",
|
| 879 |
+
):
|
| 880 |
+
(a,), axis = _util.axis_none_flatten(a, axis=axis)
|
| 881 |
+
axis = _util.normalize_axis_index(axis, a.ndim)
|
| 882 |
+
idx = (slice(None),) * axis + (indices, ...)
|
| 883 |
+
result = a[idx]
|
| 884 |
+
return result
|
| 885 |
+
|
| 886 |
+
|
| 887 |
+
def take_along_axis(arr: ArrayLike, indices: ArrayLike, axis):
|
| 888 |
+
(arr,), axis = _util.axis_none_flatten(arr, axis=axis)
|
| 889 |
+
axis = _util.normalize_axis_index(axis, arr.ndim)
|
| 890 |
+
return torch.take_along_dim(arr, indices, axis)
|
| 891 |
+
|
| 892 |
+
|
| 893 |
+
def put(
|
| 894 |
+
a: NDArray,
|
| 895 |
+
indices: ArrayLike,
|
| 896 |
+
values: ArrayLike,
|
| 897 |
+
mode: NotImplementedType = "raise",
|
| 898 |
+
):
|
| 899 |
+
v = values.type(a.dtype)
|
| 900 |
+
# If indices is larger than v, expand v to at least the size of indices. Any
|
| 901 |
+
# unnecessary trailing elements are then trimmed.
|
| 902 |
+
if indices.numel() > v.numel():
|
| 903 |
+
ratio = (indices.numel() + v.numel() - 1) // v.numel()
|
| 904 |
+
v = v.unsqueeze(0).expand((ratio,) + v.shape)
|
| 905 |
+
# Trim unnecessary elements, regardless if v was expanded or not. Note
|
| 906 |
+
# np.put() trims v to match indices by default too.
|
| 907 |
+
if indices.numel() < v.numel():
|
| 908 |
+
v = v.flatten()
|
| 909 |
+
v = v[: indices.numel()]
|
| 910 |
+
a.put_(indices, v)
|
| 911 |
+
return None
|
| 912 |
+
|
| 913 |
+
|
| 914 |
+
def put_along_axis(arr: ArrayLike, indices: ArrayLike, values: ArrayLike, axis):
|
| 915 |
+
(arr,), axis = _util.axis_none_flatten(arr, axis=axis)
|
| 916 |
+
axis = _util.normalize_axis_index(axis, arr.ndim)
|
| 917 |
+
|
| 918 |
+
indices, values = torch.broadcast_tensors(indices, values)
|
| 919 |
+
values = _util.cast_if_needed(values, arr.dtype)
|
| 920 |
+
result = torch.scatter(arr, axis, indices, values)
|
| 921 |
+
arr.copy_(result.reshape(arr.shape))
|
| 922 |
+
return None
|
| 923 |
+
|
| 924 |
+
|
| 925 |
+
def choose(
|
| 926 |
+
a: ArrayLike,
|
| 927 |
+
choices: Sequence[ArrayLike],
|
| 928 |
+
out: Optional[OutArray] = None,
|
| 929 |
+
mode: NotImplementedType = "raise",
|
| 930 |
+
):
|
| 931 |
+
# First, broadcast elements of `choices`
|
| 932 |
+
choices = torch.stack(torch.broadcast_tensors(*choices))
|
| 933 |
+
|
| 934 |
+
# Use an analog of `gather(choices, 0, a)` which broadcasts `choices` vs `a`:
|
| 935 |
+
# (taken from https://github.com/pytorch/pytorch/issues/9407#issuecomment-1427907939)
|
| 936 |
+
idx_list = [
|
| 937 |
+
torch.arange(dim).view((1,) * i + (dim,) + (1,) * (choices.ndim - i - 1))
|
| 938 |
+
for i, dim in enumerate(choices.shape)
|
| 939 |
+
]
|
| 940 |
+
|
| 941 |
+
idx_list[0] = a
|
| 942 |
+
return choices[idx_list].squeeze(0)
|
| 943 |
+
|
| 944 |
+
|
| 945 |
+
# ### unique et al. ###
|
| 946 |
+
|
| 947 |
+
|
| 948 |
+
def unique(
|
| 949 |
+
ar: ArrayLike,
|
| 950 |
+
return_index: NotImplementedType = False,
|
| 951 |
+
return_inverse=False,
|
| 952 |
+
return_counts=False,
|
| 953 |
+
axis=None,
|
| 954 |
+
*,
|
| 955 |
+
equal_nan: NotImplementedType = True,
|
| 956 |
+
):
|
| 957 |
+
(ar,), axis = _util.axis_none_flatten(ar, axis=axis)
|
| 958 |
+
axis = _util.normalize_axis_index(axis, ar.ndim)
|
| 959 |
+
|
| 960 |
+
result = torch.unique(
|
| 961 |
+
ar, return_inverse=return_inverse, return_counts=return_counts, dim=axis
|
| 962 |
+
)
|
| 963 |
+
|
| 964 |
+
return result
|
| 965 |
+
|
| 966 |
+
|
| 967 |
+
def nonzero(a: ArrayLike):
|
| 968 |
+
return torch.nonzero(a, as_tuple=True)
|
| 969 |
+
|
| 970 |
+
|
| 971 |
+
def argwhere(a: ArrayLike):
|
| 972 |
+
return torch.argwhere(a)
|
| 973 |
+
|
| 974 |
+
|
| 975 |
+
def flatnonzero(a: ArrayLike):
|
| 976 |
+
return torch.flatten(a).nonzero(as_tuple=True)[0]
|
| 977 |
+
|
| 978 |
+
|
| 979 |
+
def clip(
|
| 980 |
+
a: ArrayLike,
|
| 981 |
+
min: Optional[ArrayLike] = None,
|
| 982 |
+
max: Optional[ArrayLike] = None,
|
| 983 |
+
out: Optional[OutArray] = None,
|
| 984 |
+
):
|
| 985 |
+
return torch.clamp(a, min, max)
|
| 986 |
+
|
| 987 |
+
|
| 988 |
+
def repeat(a: ArrayLike, repeats: ArrayLikeOrScalar, axis=None):
|
| 989 |
+
return torch.repeat_interleave(a, repeats, axis)
|
| 990 |
+
|
| 991 |
+
|
| 992 |
+
def tile(A: ArrayLike, reps):
|
| 993 |
+
if isinstance(reps, int):
|
| 994 |
+
reps = (reps,)
|
| 995 |
+
return torch.tile(A, reps)
|
| 996 |
+
|
| 997 |
+
|
| 998 |
+
def resize(a: ArrayLike, new_shape=None):
|
| 999 |
+
# implementation vendored from
|
| 1000 |
+
# https://github.com/numpy/numpy/blob/v1.24.0/numpy/core/fromnumeric.py#L1420-L1497
|
| 1001 |
+
if new_shape is None:
|
| 1002 |
+
return a
|
| 1003 |
+
|
| 1004 |
+
if isinstance(new_shape, int):
|
| 1005 |
+
new_shape = (new_shape,)
|
| 1006 |
+
|
| 1007 |
+
a = a.flatten()
|
| 1008 |
+
|
| 1009 |
+
new_size = 1
|
| 1010 |
+
for dim_length in new_shape:
|
| 1011 |
+
new_size *= dim_length
|
| 1012 |
+
if dim_length < 0:
|
| 1013 |
+
raise ValueError("all elements of `new_shape` must be non-negative")
|
| 1014 |
+
|
| 1015 |
+
if a.numel() == 0 or new_size == 0:
|
| 1016 |
+
# First case must zero fill. The second would have repeats == 0.
|
| 1017 |
+
return torch.zeros(new_shape, dtype=a.dtype)
|
| 1018 |
+
|
| 1019 |
+
repeats = -(-new_size // a.numel()) # ceil division
|
| 1020 |
+
a = concatenate((a,) * repeats)[:new_size]
|
| 1021 |
+
|
| 1022 |
+
return reshape(a, new_shape)
|
| 1023 |
+
|
| 1024 |
+
|
| 1025 |
+
# ### diag et al. ###
|
| 1026 |
+
|
| 1027 |
+
|
| 1028 |
+
def diagonal(a: ArrayLike, offset=0, axis1=0, axis2=1):
|
| 1029 |
+
axis1 = _util.normalize_axis_index(axis1, a.ndim)
|
| 1030 |
+
axis2 = _util.normalize_axis_index(axis2, a.ndim)
|
| 1031 |
+
return torch.diagonal(a, offset, axis1, axis2)
|
| 1032 |
+
|
| 1033 |
+
|
| 1034 |
+
def trace(
|
| 1035 |
+
a: ArrayLike,
|
| 1036 |
+
offset=0,
|
| 1037 |
+
axis1=0,
|
| 1038 |
+
axis2=1,
|
| 1039 |
+
dtype: Optional[DTypeLike] = None,
|
| 1040 |
+
out: Optional[OutArray] = None,
|
| 1041 |
+
):
|
| 1042 |
+
result = torch.diagonal(a, offset, dim1=axis1, dim2=axis2).sum(-1, dtype=dtype)
|
| 1043 |
+
return result
|
| 1044 |
+
|
| 1045 |
+
|
| 1046 |
+
def eye(
|
| 1047 |
+
N,
|
| 1048 |
+
M=None,
|
| 1049 |
+
k=0,
|
| 1050 |
+
dtype: Optional[DTypeLike] = None,
|
| 1051 |
+
order: NotImplementedType = "C",
|
| 1052 |
+
*,
|
| 1053 |
+
like: NotImplementedType = None,
|
| 1054 |
+
):
|
| 1055 |
+
if dtype is None:
|
| 1056 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
| 1057 |
+
if M is None:
|
| 1058 |
+
M = N
|
| 1059 |
+
z = torch.zeros(N, M, dtype=dtype)
|
| 1060 |
+
z.diagonal(k).fill_(1)
|
| 1061 |
+
return z
|
| 1062 |
+
|
| 1063 |
+
|
| 1064 |
+
def identity(n, dtype: Optional[DTypeLike] = None, *, like: NotImplementedType = None):
|
| 1065 |
+
return torch.eye(n, dtype=dtype)
|
| 1066 |
+
|
| 1067 |
+
|
| 1068 |
+
def diag(v: ArrayLike, k=0):
|
| 1069 |
+
return torch.diag(v, k)
|
| 1070 |
+
|
| 1071 |
+
|
| 1072 |
+
def diagflat(v: ArrayLike, k=0):
|
| 1073 |
+
return torch.diagflat(v, k)
|
| 1074 |
+
|
| 1075 |
+
|
| 1076 |
+
def diag_indices(n, ndim=2):
|
| 1077 |
+
idx = torch.arange(n)
|
| 1078 |
+
return (idx,) * ndim
|
| 1079 |
+
|
| 1080 |
+
|
| 1081 |
+
def diag_indices_from(arr: ArrayLike):
|
| 1082 |
+
if not arr.ndim >= 2:
|
| 1083 |
+
raise ValueError("input array must be at least 2-d")
|
| 1084 |
+
# For more than d=2, the strided formula is only valid for arrays with
|
| 1085 |
+
# all dimensions equal, so we check first.
|
| 1086 |
+
s = arr.shape
|
| 1087 |
+
if s[1:] != s[:-1]:
|
| 1088 |
+
raise ValueError("All dimensions of input must be of equal length")
|
| 1089 |
+
return diag_indices(s[0], arr.ndim)
|
| 1090 |
+
|
| 1091 |
+
|
| 1092 |
+
def fill_diagonal(a: ArrayLike, val: ArrayLike, wrap=False):
|
| 1093 |
+
if a.ndim < 2:
|
| 1094 |
+
raise ValueError("array must be at least 2-d")
|
| 1095 |
+
if val.numel() == 0 and not wrap:
|
| 1096 |
+
a.fill_diagonal_(val)
|
| 1097 |
+
return a
|
| 1098 |
+
|
| 1099 |
+
if val.ndim == 0:
|
| 1100 |
+
val = val.unsqueeze(0)
|
| 1101 |
+
|
| 1102 |
+
# torch.Tensor.fill_diagonal_ only accepts scalars
|
| 1103 |
+
# If the size of val is too large, then val is trimmed
|
| 1104 |
+
if a.ndim == 2:
|
| 1105 |
+
tall = a.shape[0] > a.shape[1]
|
| 1106 |
+
# wrap does nothing for wide matrices...
|
| 1107 |
+
if not wrap or not tall:
|
| 1108 |
+
# Never wraps
|
| 1109 |
+
diag = a.diagonal()
|
| 1110 |
+
diag.copy_(val[: diag.numel()])
|
| 1111 |
+
else:
|
| 1112 |
+
# wraps and tall... leaving one empty line between diagonals?!
|
| 1113 |
+
max_, min_ = a.shape
|
| 1114 |
+
idx = torch.arange(max_ - max_ // (min_ + 1))
|
| 1115 |
+
mod = idx % min_
|
| 1116 |
+
div = idx // min_
|
| 1117 |
+
a[(div * (min_ + 1) + mod, mod)] = val[: idx.numel()]
|
| 1118 |
+
else:
|
| 1119 |
+
idx = diag_indices_from(a)
|
| 1120 |
+
# a.shape = (n, n, ..., n)
|
| 1121 |
+
a[idx] = val[: a.shape[0]]
|
| 1122 |
+
|
| 1123 |
+
return a
|
| 1124 |
+
|
| 1125 |
+
|
| 1126 |
+
def vdot(a: ArrayLike, b: ArrayLike, /):
|
| 1127 |
+
# 1. torch only accepts 1D arrays, numpy flattens
|
| 1128 |
+
# 2. torch requires matching dtype, while numpy casts (?)
|
| 1129 |
+
t_a, t_b = torch.atleast_1d(a, b)
|
| 1130 |
+
if t_a.ndim > 1:
|
| 1131 |
+
t_a = t_a.flatten()
|
| 1132 |
+
if t_b.ndim > 1:
|
| 1133 |
+
t_b = t_b.flatten()
|
| 1134 |
+
|
| 1135 |
+
dtype = _dtypes_impl.result_type_impl(t_a, t_b)
|
| 1136 |
+
is_half = dtype == torch.float16 and (t_a.is_cpu or t_b.is_cpu)
|
| 1137 |
+
is_bool = dtype == torch.bool
|
| 1138 |
+
|
| 1139 |
+
# work around torch's "dot" not implemented for 'Half', 'Bool'
|
| 1140 |
+
if is_half:
|
| 1141 |
+
dtype = torch.float32
|
| 1142 |
+
elif is_bool:
|
| 1143 |
+
dtype = torch.uint8
|
| 1144 |
+
|
| 1145 |
+
t_a = _util.cast_if_needed(t_a, dtype)
|
| 1146 |
+
t_b = _util.cast_if_needed(t_b, dtype)
|
| 1147 |
+
|
| 1148 |
+
result = torch.vdot(t_a, t_b)
|
| 1149 |
+
|
| 1150 |
+
if is_half:
|
| 1151 |
+
result = result.to(torch.float16)
|
| 1152 |
+
elif is_bool:
|
| 1153 |
+
result = result.to(torch.bool)
|
| 1154 |
+
|
| 1155 |
+
return result
|
| 1156 |
+
|
| 1157 |
+
|
| 1158 |
+
def tensordot(a: ArrayLike, b: ArrayLike, axes=2):
|
| 1159 |
+
if isinstance(axes, (list, tuple)):
|
| 1160 |
+
axes = [[ax] if isinstance(ax, int) else ax for ax in axes]
|
| 1161 |
+
|
| 1162 |
+
target_dtype = _dtypes_impl.result_type_impl(a, b)
|
| 1163 |
+
a = _util.cast_if_needed(a, target_dtype)
|
| 1164 |
+
b = _util.cast_if_needed(b, target_dtype)
|
| 1165 |
+
|
| 1166 |
+
return torch.tensordot(a, b, dims=axes)
|
| 1167 |
+
|
| 1168 |
+
|
| 1169 |
+
def dot(a: ArrayLike, b: ArrayLike, out: Optional[OutArray] = None):
|
| 1170 |
+
dtype = _dtypes_impl.result_type_impl(a, b)
|
| 1171 |
+
is_bool = dtype == torch.bool
|
| 1172 |
+
if is_bool:
|
| 1173 |
+
dtype = torch.uint8
|
| 1174 |
+
|
| 1175 |
+
a = _util.cast_if_needed(a, dtype)
|
| 1176 |
+
b = _util.cast_if_needed(b, dtype)
|
| 1177 |
+
|
| 1178 |
+
if a.ndim == 0 or b.ndim == 0:
|
| 1179 |
+
result = a * b
|
| 1180 |
+
else:
|
| 1181 |
+
result = torch.matmul(a, b)
|
| 1182 |
+
|
| 1183 |
+
if is_bool:
|
| 1184 |
+
result = result.to(torch.bool)
|
| 1185 |
+
|
| 1186 |
+
return result
|
| 1187 |
+
|
| 1188 |
+
|
| 1189 |
+
def inner(a: ArrayLike, b: ArrayLike, /):
|
| 1190 |
+
dtype = _dtypes_impl.result_type_impl(a, b)
|
| 1191 |
+
is_half = dtype == torch.float16 and (a.is_cpu or b.is_cpu)
|
| 1192 |
+
is_bool = dtype == torch.bool
|
| 1193 |
+
|
| 1194 |
+
if is_half:
|
| 1195 |
+
# work around torch's "addmm_impl_cpu_" not implemented for 'Half'"
|
| 1196 |
+
dtype = torch.float32
|
| 1197 |
+
elif is_bool:
|
| 1198 |
+
dtype = torch.uint8
|
| 1199 |
+
|
| 1200 |
+
a = _util.cast_if_needed(a, dtype)
|
| 1201 |
+
b = _util.cast_if_needed(b, dtype)
|
| 1202 |
+
|
| 1203 |
+
result = torch.inner(a, b)
|
| 1204 |
+
|
| 1205 |
+
if is_half:
|
| 1206 |
+
result = result.to(torch.float16)
|
| 1207 |
+
elif is_bool:
|
| 1208 |
+
result = result.to(torch.bool)
|
| 1209 |
+
return result
|
| 1210 |
+
|
| 1211 |
+
|
| 1212 |
+
def outer(a: ArrayLike, b: ArrayLike, out: Optional[OutArray] = None):
|
| 1213 |
+
return torch.outer(a, b)
|
| 1214 |
+
|
| 1215 |
+
|
| 1216 |
+
def cross(a: ArrayLike, b: ArrayLike, axisa=-1, axisb=-1, axisc=-1, axis=None):
|
| 1217 |
+
# implementation vendored from
|
| 1218 |
+
# https://github.com/numpy/numpy/blob/v1.24.0/numpy/core/numeric.py#L1486-L1685
|
| 1219 |
+
if axis is not None:
|
| 1220 |
+
axisa, axisb, axisc = (axis,) * 3
|
| 1221 |
+
|
| 1222 |
+
# Check axisa and axisb are within bounds
|
| 1223 |
+
axisa = _util.normalize_axis_index(axisa, a.ndim)
|
| 1224 |
+
axisb = _util.normalize_axis_index(axisb, b.ndim)
|
| 1225 |
+
|
| 1226 |
+
# Move working axis to the end of the shape
|
| 1227 |
+
a = torch.moveaxis(a, axisa, -1)
|
| 1228 |
+
b = torch.moveaxis(b, axisb, -1)
|
| 1229 |
+
msg = "incompatible dimensions for cross product\n(dimension must be 2 or 3)"
|
| 1230 |
+
if a.shape[-1] not in (2, 3) or b.shape[-1] not in (2, 3):
|
| 1231 |
+
raise ValueError(msg)
|
| 1232 |
+
|
| 1233 |
+
# Create the output array
|
| 1234 |
+
shape = broadcast_shapes(a[..., 0].shape, b[..., 0].shape)
|
| 1235 |
+
if a.shape[-1] == 3 or b.shape[-1] == 3:
|
| 1236 |
+
shape += (3,)
|
| 1237 |
+
# Check axisc is within bounds
|
| 1238 |
+
axisc = _util.normalize_axis_index(axisc, len(shape))
|
| 1239 |
+
dtype = _dtypes_impl.result_type_impl(a, b)
|
| 1240 |
+
cp = torch.empty(shape, dtype=dtype)
|
| 1241 |
+
|
| 1242 |
+
# recast arrays as dtype
|
| 1243 |
+
a = _util.cast_if_needed(a, dtype)
|
| 1244 |
+
b = _util.cast_if_needed(b, dtype)
|
| 1245 |
+
|
| 1246 |
+
# create local aliases for readability
|
| 1247 |
+
a0 = a[..., 0]
|
| 1248 |
+
a1 = a[..., 1]
|
| 1249 |
+
if a.shape[-1] == 3:
|
| 1250 |
+
a2 = a[..., 2]
|
| 1251 |
+
b0 = b[..., 0]
|
| 1252 |
+
b1 = b[..., 1]
|
| 1253 |
+
if b.shape[-1] == 3:
|
| 1254 |
+
b2 = b[..., 2]
|
| 1255 |
+
if cp.ndim != 0 and cp.shape[-1] == 3:
|
| 1256 |
+
cp0 = cp[..., 0]
|
| 1257 |
+
cp1 = cp[..., 1]
|
| 1258 |
+
cp2 = cp[..., 2]
|
| 1259 |
+
|
| 1260 |
+
if a.shape[-1] == 2:
|
| 1261 |
+
if b.shape[-1] == 2:
|
| 1262 |
+
# a0 * b1 - a1 * b0
|
| 1263 |
+
cp[...] = a0 * b1 - a1 * b0
|
| 1264 |
+
return cp
|
| 1265 |
+
else:
|
| 1266 |
+
assert b.shape[-1] == 3
|
| 1267 |
+
# cp0 = a1 * b2 - 0 (a2 = 0)
|
| 1268 |
+
# cp1 = 0 - a0 * b2 (a2 = 0)
|
| 1269 |
+
# cp2 = a0 * b1 - a1 * b0
|
| 1270 |
+
cp0[...] = a1 * b2
|
| 1271 |
+
cp1[...] = -a0 * b2
|
| 1272 |
+
cp2[...] = a0 * b1 - a1 * b0
|
| 1273 |
+
else:
|
| 1274 |
+
assert a.shape[-1] == 3
|
| 1275 |
+
if b.shape[-1] == 3:
|
| 1276 |
+
cp0[...] = a1 * b2 - a2 * b1
|
| 1277 |
+
cp1[...] = a2 * b0 - a0 * b2
|
| 1278 |
+
cp2[...] = a0 * b1 - a1 * b0
|
| 1279 |
+
else:
|
| 1280 |
+
assert b.shape[-1] == 2
|
| 1281 |
+
cp0[...] = -a2 * b1
|
| 1282 |
+
cp1[...] = a2 * b0
|
| 1283 |
+
cp2[...] = a0 * b1 - a1 * b0
|
| 1284 |
+
|
| 1285 |
+
return torch.moveaxis(cp, -1, axisc)
|
| 1286 |
+
|
| 1287 |
+
|
| 1288 |
+
def einsum(*operands, out=None, dtype=None, order="K", casting="safe", optimize=False):
|
| 1289 |
+
# Have to manually normalize *operands and **kwargs, following the NumPy signature
|
| 1290 |
+
# We have a local import to avoid poluting the global space, as it will be then
|
| 1291 |
+
# exported in funcs.py
|
| 1292 |
+
from ._ndarray import ndarray
|
| 1293 |
+
from ._normalizations import (
|
| 1294 |
+
maybe_copy_to,
|
| 1295 |
+
normalize_array_like,
|
| 1296 |
+
normalize_casting,
|
| 1297 |
+
normalize_dtype,
|
| 1298 |
+
wrap_tensors,
|
| 1299 |
+
)
|
| 1300 |
+
|
| 1301 |
+
dtype = normalize_dtype(dtype)
|
| 1302 |
+
casting = normalize_casting(casting)
|
| 1303 |
+
if out is not None and not isinstance(out, ndarray):
|
| 1304 |
+
raise TypeError("'out' must be an array")
|
| 1305 |
+
if order != "K":
|
| 1306 |
+
raise NotImplementedError("'order' parameter is not supported.")
|
| 1307 |
+
|
| 1308 |
+
# parse arrays and normalize them
|
| 1309 |
+
sublist_format = not isinstance(operands[0], str)
|
| 1310 |
+
if sublist_format:
|
| 1311 |
+
# op, str, op, str ... [sublistout] format: normalize every other argument
|
| 1312 |
+
|
| 1313 |
+
# - if sublistout is not given, the length of operands is even, and we pick
|
| 1314 |
+
# odd-numbered elements, which are arrays.
|
| 1315 |
+
# - if sublistout is given, the length of operands is odd, we peel off
|
| 1316 |
+
# the last one, and pick odd-numbered elements, which are arrays.
|
| 1317 |
+
# Without [:-1], we would have picked sublistout, too.
|
| 1318 |
+
array_operands = operands[:-1][::2]
|
| 1319 |
+
else:
|
| 1320 |
+
# ("ij->", arrays) format
|
| 1321 |
+
subscripts, array_operands = operands[0], operands[1:]
|
| 1322 |
+
|
| 1323 |
+
tensors = [normalize_array_like(op) for op in array_operands]
|
| 1324 |
+
target_dtype = _dtypes_impl.result_type_impl(*tensors) if dtype is None else dtype
|
| 1325 |
+
|
| 1326 |
+
# work around 'bmm' not implemented for 'Half' etc
|
| 1327 |
+
is_half = target_dtype == torch.float16 and all(t.is_cpu for t in tensors)
|
| 1328 |
+
if is_half:
|
| 1329 |
+
target_dtype = torch.float32
|
| 1330 |
+
|
| 1331 |
+
is_short_int = target_dtype in [torch.uint8, torch.int8, torch.int16, torch.int32]
|
| 1332 |
+
if is_short_int:
|
| 1333 |
+
target_dtype = torch.int64
|
| 1334 |
+
|
| 1335 |
+
tensors = _util.typecast_tensors(tensors, target_dtype, casting)
|
| 1336 |
+
|
| 1337 |
+
from torch.backends import opt_einsum
|
| 1338 |
+
|
| 1339 |
+
try:
|
| 1340 |
+
# set the global state to handle the optimize=... argument, restore on exit
|
| 1341 |
+
if opt_einsum.is_available():
|
| 1342 |
+
old_strategy = torch.backends.opt_einsum.strategy
|
| 1343 |
+
old_enabled = torch.backends.opt_einsum.enabled
|
| 1344 |
+
|
| 1345 |
+
# torch.einsum calls opt_einsum.contract_path, which runs into
|
| 1346 |
+
# https://github.com/dgasmith/opt_einsum/issues/219
|
| 1347 |
+
# for strategy={True, False}
|
| 1348 |
+
if optimize is True:
|
| 1349 |
+
optimize = "auto"
|
| 1350 |
+
elif optimize is False:
|
| 1351 |
+
torch.backends.opt_einsum.enabled = False
|
| 1352 |
+
|
| 1353 |
+
torch.backends.opt_einsum.strategy = optimize
|
| 1354 |
+
|
| 1355 |
+
if sublist_format:
|
| 1356 |
+
# recombine operands
|
| 1357 |
+
sublists = operands[1::2]
|
| 1358 |
+
has_sublistout = len(operands) % 2 == 1
|
| 1359 |
+
if has_sublistout:
|
| 1360 |
+
sublistout = operands[-1]
|
| 1361 |
+
operands = list(itertools.chain.from_iterable(zip(tensors, sublists)))
|
| 1362 |
+
if has_sublistout:
|
| 1363 |
+
operands.append(sublistout)
|
| 1364 |
+
|
| 1365 |
+
result = torch.einsum(*operands)
|
| 1366 |
+
else:
|
| 1367 |
+
result = torch.einsum(subscripts, *tensors)
|
| 1368 |
+
|
| 1369 |
+
finally:
|
| 1370 |
+
if opt_einsum.is_available():
|
| 1371 |
+
torch.backends.opt_einsum.strategy = old_strategy
|
| 1372 |
+
torch.backends.opt_einsum.enabled = old_enabled
|
| 1373 |
+
|
| 1374 |
+
result = maybe_copy_to(out, result)
|
| 1375 |
+
return wrap_tensors(result)
|
| 1376 |
+
|
| 1377 |
+
|
| 1378 |
+
# ### sort and partition ###
|
| 1379 |
+
|
| 1380 |
+
|
| 1381 |
+
def _sort_helper(tensor, axis, kind, order):
|
| 1382 |
+
if tensor.dtype.is_complex:
|
| 1383 |
+
raise NotImplementedError(f"sorting {tensor.dtype} is not supported")
|
| 1384 |
+
(tensor,), axis = _util.axis_none_flatten(tensor, axis=axis)
|
| 1385 |
+
axis = _util.normalize_axis_index(axis, tensor.ndim)
|
| 1386 |
+
|
| 1387 |
+
stable = kind == "stable"
|
| 1388 |
+
|
| 1389 |
+
return tensor, axis, stable
|
| 1390 |
+
|
| 1391 |
+
|
| 1392 |
+
def sort(a: ArrayLike, axis=-1, kind=None, order: NotImplementedType = None):
|
| 1393 |
+
# `order` keyword arg is only relevant for structured dtypes; so not supported here.
|
| 1394 |
+
a, axis, stable = _sort_helper(a, axis, kind, order)
|
| 1395 |
+
result = torch.sort(a, dim=axis, stable=stable)
|
| 1396 |
+
return result.values
|
| 1397 |
+
|
| 1398 |
+
|
| 1399 |
+
def argsort(a: ArrayLike, axis=-1, kind=None, order: NotImplementedType = None):
|
| 1400 |
+
a, axis, stable = _sort_helper(a, axis, kind, order)
|
| 1401 |
+
return torch.argsort(a, dim=axis, stable=stable)
|
| 1402 |
+
|
| 1403 |
+
|
| 1404 |
+
def searchsorted(
|
| 1405 |
+
a: ArrayLike, v: ArrayLike, side="left", sorter: Optional[ArrayLike] = None
|
| 1406 |
+
):
|
| 1407 |
+
if a.dtype.is_complex:
|
| 1408 |
+
raise NotImplementedError(f"searchsorted with dtype={a.dtype}")
|
| 1409 |
+
|
| 1410 |
+
return torch.searchsorted(a, v, side=side, sorter=sorter)
|
| 1411 |
+
|
| 1412 |
+
|
| 1413 |
+
# ### swap/move/roll axis ###
|
| 1414 |
+
|
| 1415 |
+
|
| 1416 |
+
def moveaxis(a: ArrayLike, source, destination):
|
| 1417 |
+
source = _util.normalize_axis_tuple(source, a.ndim, "source")
|
| 1418 |
+
destination = _util.normalize_axis_tuple(destination, a.ndim, "destination")
|
| 1419 |
+
return torch.moveaxis(a, source, destination)
|
| 1420 |
+
|
| 1421 |
+
|
| 1422 |
+
def swapaxes(a: ArrayLike, axis1, axis2):
|
| 1423 |
+
axis1 = _util.normalize_axis_index(axis1, a.ndim)
|
| 1424 |
+
axis2 = _util.normalize_axis_index(axis2, a.ndim)
|
| 1425 |
+
return torch.swapaxes(a, axis1, axis2)
|
| 1426 |
+
|
| 1427 |
+
|
| 1428 |
+
def rollaxis(a: ArrayLike, axis, start=0):
|
| 1429 |
+
# Straight vendor from:
|
| 1430 |
+
# https://github.com/numpy/numpy/blob/v1.24.0/numpy/core/numeric.py#L1259
|
| 1431 |
+
#
|
| 1432 |
+
# Also note this function in NumPy is mostly retained for backwards compat
|
| 1433 |
+
# (https://stackoverflow.com/questions/29891583/reason-why-numpy-rollaxis-is-so-confusing)
|
| 1434 |
+
# so let's not touch it unless hard pressed.
|
| 1435 |
+
n = a.ndim
|
| 1436 |
+
axis = _util.normalize_axis_index(axis, n)
|
| 1437 |
+
if start < 0:
|
| 1438 |
+
start += n
|
| 1439 |
+
msg = "'%s' arg requires %d <= %s < %d, but %d was passed in"
|
| 1440 |
+
if not (0 <= start < n + 1):
|
| 1441 |
+
raise _util.AxisError(msg % ("start", -n, "start", n + 1, start))
|
| 1442 |
+
if axis < start:
|
| 1443 |
+
# it's been removed
|
| 1444 |
+
start -= 1
|
| 1445 |
+
if axis == start:
|
| 1446 |
+
# numpy returns a view, here we try returning the tensor itself
|
| 1447 |
+
# return tensor[...]
|
| 1448 |
+
return a
|
| 1449 |
+
axes = list(range(0, n))
|
| 1450 |
+
axes.remove(axis)
|
| 1451 |
+
axes.insert(start, axis)
|
| 1452 |
+
return a.view(axes)
|
| 1453 |
+
|
| 1454 |
+
|
| 1455 |
+
def roll(a: ArrayLike, shift, axis=None):
|
| 1456 |
+
if axis is not None:
|
| 1457 |
+
axis = _util.normalize_axis_tuple(axis, a.ndim, allow_duplicate=True)
|
| 1458 |
+
if not isinstance(shift, tuple):
|
| 1459 |
+
shift = (shift,) * len(axis)
|
| 1460 |
+
return torch.roll(a, shift, axis)
|
| 1461 |
+
|
| 1462 |
+
|
| 1463 |
+
# ### shape manipulations ###
|
| 1464 |
+
|
| 1465 |
+
|
| 1466 |
+
def squeeze(a: ArrayLike, axis=None):
|
| 1467 |
+
if axis == ():
|
| 1468 |
+
result = a
|
| 1469 |
+
elif axis is None:
|
| 1470 |
+
result = a.squeeze()
|
| 1471 |
+
else:
|
| 1472 |
+
if isinstance(axis, tuple):
|
| 1473 |
+
result = a
|
| 1474 |
+
for ax in axis:
|
| 1475 |
+
result = a.squeeze(ax)
|
| 1476 |
+
else:
|
| 1477 |
+
result = a.squeeze(axis)
|
| 1478 |
+
return result
|
| 1479 |
+
|
| 1480 |
+
|
| 1481 |
+
def reshape(a: ArrayLike, newshape, order: NotImplementedType = "C"):
|
| 1482 |
+
# if sh = (1, 2, 3), numpy allows both .reshape(sh) and .reshape(*sh)
|
| 1483 |
+
newshape = newshape[0] if len(newshape) == 1 else newshape
|
| 1484 |
+
return a.reshape(newshape)
|
| 1485 |
+
|
| 1486 |
+
|
| 1487 |
+
# NB: cannot use torch.reshape(a, newshape) above, because of
|
| 1488 |
+
# (Pdb) torch.reshape(torch.as_tensor([1]), 1)
|
| 1489 |
+
# *** TypeError: reshape(): argument 'shape' (position 2) must be tuple of SymInts, not int
|
| 1490 |
+
|
| 1491 |
+
|
| 1492 |
+
def transpose(a: ArrayLike, axes=None):
|
| 1493 |
+
# numpy allows both .transpose(sh) and .transpose(*sh)
|
| 1494 |
+
# also older code uses axes being a list
|
| 1495 |
+
if axes in [(), None, (None,)]:
|
| 1496 |
+
axes = tuple(reversed(range(a.ndim)))
|
| 1497 |
+
elif len(axes) == 1:
|
| 1498 |
+
axes = axes[0]
|
| 1499 |
+
return a.permute(axes)
|
| 1500 |
+
|
| 1501 |
+
|
| 1502 |
+
def ravel(a: ArrayLike, order: NotImplementedType = "C"):
|
| 1503 |
+
return torch.flatten(a)
|
| 1504 |
+
|
| 1505 |
+
|
| 1506 |
+
def diff(
|
| 1507 |
+
a: ArrayLike,
|
| 1508 |
+
n=1,
|
| 1509 |
+
axis=-1,
|
| 1510 |
+
prepend: Optional[ArrayLike] = None,
|
| 1511 |
+
append: Optional[ArrayLike] = None,
|
| 1512 |
+
):
|
| 1513 |
+
axis = _util.normalize_axis_index(axis, a.ndim)
|
| 1514 |
+
|
| 1515 |
+
if n < 0:
|
| 1516 |
+
raise ValueError(f"order must be non-negative but got {n}")
|
| 1517 |
+
|
| 1518 |
+
if n == 0:
|
| 1519 |
+
# match numpy and return the input immediately
|
| 1520 |
+
return a
|
| 1521 |
+
|
| 1522 |
+
if prepend is not None:
|
| 1523 |
+
shape = list(a.shape)
|
| 1524 |
+
shape[axis] = prepend.shape[axis] if prepend.ndim > 0 else 1
|
| 1525 |
+
prepend = torch.broadcast_to(prepend, shape)
|
| 1526 |
+
|
| 1527 |
+
if append is not None:
|
| 1528 |
+
shape = list(a.shape)
|
| 1529 |
+
shape[axis] = append.shape[axis] if append.ndim > 0 else 1
|
| 1530 |
+
append = torch.broadcast_to(append, shape)
|
| 1531 |
+
|
| 1532 |
+
return torch.diff(a, n, axis=axis, prepend=prepend, append=append)
|
| 1533 |
+
|
| 1534 |
+
|
| 1535 |
+
# ### math functions ###
|
| 1536 |
+
|
| 1537 |
+
|
| 1538 |
+
def angle(z: ArrayLike, deg=False):
|
| 1539 |
+
result = torch.angle(z)
|
| 1540 |
+
if deg:
|
| 1541 |
+
result = result * (180 / torch.pi)
|
| 1542 |
+
return result
|
| 1543 |
+
|
| 1544 |
+
|
| 1545 |
+
def sinc(x: ArrayLike):
|
| 1546 |
+
return torch.sinc(x)
|
| 1547 |
+
|
| 1548 |
+
|
| 1549 |
+
# NB: have to normalize *varargs manually
|
| 1550 |
+
def gradient(f: ArrayLike, *varargs, axis=None, edge_order=1):
|
| 1551 |
+
N = f.ndim # number of dimensions
|
| 1552 |
+
|
| 1553 |
+
varargs = _util.ndarrays_to_tensors(varargs)
|
| 1554 |
+
|
| 1555 |
+
if axis is None:
|
| 1556 |
+
axes = tuple(range(N))
|
| 1557 |
+
else:
|
| 1558 |
+
axes = _util.normalize_axis_tuple(axis, N)
|
| 1559 |
+
|
| 1560 |
+
len_axes = len(axes)
|
| 1561 |
+
n = len(varargs)
|
| 1562 |
+
if n == 0:
|
| 1563 |
+
# no spacing argument - use 1 in all axes
|
| 1564 |
+
dx = [1.0] * len_axes
|
| 1565 |
+
elif n == 1 and (_dtypes_impl.is_scalar(varargs[0]) or varargs[0].ndim == 0):
|
| 1566 |
+
# single scalar or 0D tensor for all axes (np.ndim(varargs[0]) == 0)
|
| 1567 |
+
dx = varargs * len_axes
|
| 1568 |
+
elif n == len_axes:
|
| 1569 |
+
# scalar or 1d array for each axis
|
| 1570 |
+
dx = list(varargs)
|
| 1571 |
+
for i, distances in enumerate(dx):
|
| 1572 |
+
distances = torch.as_tensor(distances)
|
| 1573 |
+
if distances.ndim == 0:
|
| 1574 |
+
continue
|
| 1575 |
+
elif distances.ndim != 1:
|
| 1576 |
+
raise ValueError("distances must be either scalars or 1d")
|
| 1577 |
+
if len(distances) != f.shape[axes[i]]:
|
| 1578 |
+
raise ValueError(
|
| 1579 |
+
"when 1d, distances must match "
|
| 1580 |
+
"the length of the corresponding dimension"
|
| 1581 |
+
)
|
| 1582 |
+
if not (distances.dtype.is_floating_point or distances.dtype.is_complex):
|
| 1583 |
+
distances = distances.double()
|
| 1584 |
+
|
| 1585 |
+
diffx = torch.diff(distances)
|
| 1586 |
+
# if distances are constant reduce to the scalar case
|
| 1587 |
+
# since it brings a consistent speedup
|
| 1588 |
+
if (diffx == diffx[0]).all():
|
| 1589 |
+
diffx = diffx[0]
|
| 1590 |
+
dx[i] = diffx
|
| 1591 |
+
else:
|
| 1592 |
+
raise TypeError("invalid number of arguments")
|
| 1593 |
+
|
| 1594 |
+
if edge_order > 2:
|
| 1595 |
+
raise ValueError("'edge_order' greater than 2 not supported")
|
| 1596 |
+
|
| 1597 |
+
# use central differences on interior and one-sided differences on the
|
| 1598 |
+
# endpoints. This preserves second order-accuracy over the full domain.
|
| 1599 |
+
|
| 1600 |
+
outvals = []
|
| 1601 |
+
|
| 1602 |
+
# create slice objects --- initially all are [:, :, ..., :]
|
| 1603 |
+
slice1 = [slice(None)] * N
|
| 1604 |
+
slice2 = [slice(None)] * N
|
| 1605 |
+
slice3 = [slice(None)] * N
|
| 1606 |
+
slice4 = [slice(None)] * N
|
| 1607 |
+
|
| 1608 |
+
otype = f.dtype
|
| 1609 |
+
if _dtypes_impl.python_type_for_torch(otype) in (int, bool):
|
| 1610 |
+
# Convert to floating point.
|
| 1611 |
+
# First check if f is a numpy integer type; if so, convert f to float64
|
| 1612 |
+
# to avoid modular arithmetic when computing the changes in f.
|
| 1613 |
+
f = f.double()
|
| 1614 |
+
otype = torch.float64
|
| 1615 |
+
|
| 1616 |
+
for axis, ax_dx in zip(axes, dx):
|
| 1617 |
+
if f.shape[axis] < edge_order + 1:
|
| 1618 |
+
raise ValueError(
|
| 1619 |
+
"Shape of array too small to calculate a numerical gradient, "
|
| 1620 |
+
"at least (edge_order + 1) elements are required."
|
| 1621 |
+
)
|
| 1622 |
+
# result allocation
|
| 1623 |
+
out = torch.empty_like(f, dtype=otype)
|
| 1624 |
+
|
| 1625 |
+
# spacing for the current axis (NB: np.ndim(ax_dx) == 0)
|
| 1626 |
+
uniform_spacing = _dtypes_impl.is_scalar(ax_dx) or ax_dx.ndim == 0
|
| 1627 |
+
|
| 1628 |
+
# Numerical differentiation: 2nd order interior
|
| 1629 |
+
slice1[axis] = slice(1, -1)
|
| 1630 |
+
slice2[axis] = slice(None, -2)
|
| 1631 |
+
slice3[axis] = slice(1, -1)
|
| 1632 |
+
slice4[axis] = slice(2, None)
|
| 1633 |
+
|
| 1634 |
+
if uniform_spacing:
|
| 1635 |
+
out[tuple(slice1)] = (f[tuple(slice4)] - f[tuple(slice2)]) / (2.0 * ax_dx)
|
| 1636 |
+
else:
|
| 1637 |
+
dx1 = ax_dx[0:-1]
|
| 1638 |
+
dx2 = ax_dx[1:]
|
| 1639 |
+
a = -(dx2) / (dx1 * (dx1 + dx2))
|
| 1640 |
+
b = (dx2 - dx1) / (dx1 * dx2)
|
| 1641 |
+
c = dx1 / (dx2 * (dx1 + dx2))
|
| 1642 |
+
# fix the shape for broadcasting
|
| 1643 |
+
shape = [1] * N
|
| 1644 |
+
shape[axis] = -1
|
| 1645 |
+
a = a.reshape(shape)
|
| 1646 |
+
b = b.reshape(shape)
|
| 1647 |
+
c = c.reshape(shape)
|
| 1648 |
+
# 1D equivalent -- out[1:-1] = a * f[:-2] + b * f[1:-1] + c * f[2:]
|
| 1649 |
+
out[tuple(slice1)] = (
|
| 1650 |
+
a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)]
|
| 1651 |
+
)
|
| 1652 |
+
|
| 1653 |
+
# Numerical differentiation: 1st order edges
|
| 1654 |
+
if edge_order == 1:
|
| 1655 |
+
slice1[axis] = 0
|
| 1656 |
+
slice2[axis] = 1
|
| 1657 |
+
slice3[axis] = 0
|
| 1658 |
+
dx_0 = ax_dx if uniform_spacing else ax_dx[0]
|
| 1659 |
+
# 1D equivalent -- out[0] = (f[1] - f[0]) / (x[1] - x[0])
|
| 1660 |
+
out[tuple(slice1)] = (f[tuple(slice2)] - f[tuple(slice3)]) / dx_0
|
| 1661 |
+
|
| 1662 |
+
slice1[axis] = -1
|
| 1663 |
+
slice2[axis] = -1
|
| 1664 |
+
slice3[axis] = -2
|
| 1665 |
+
dx_n = ax_dx if uniform_spacing else ax_dx[-1]
|
| 1666 |
+
# 1D equivalent -- out[-1] = (f[-1] - f[-2]) / (x[-1] - x[-2])
|
| 1667 |
+
out[tuple(slice1)] = (f[tuple(slice2)] - f[tuple(slice3)]) / dx_n
|
| 1668 |
+
|
| 1669 |
+
# Numerical differentiation: 2nd order edges
|
| 1670 |
+
else:
|
| 1671 |
+
slice1[axis] = 0
|
| 1672 |
+
slice2[axis] = 0
|
| 1673 |
+
slice3[axis] = 1
|
| 1674 |
+
slice4[axis] = 2
|
| 1675 |
+
if uniform_spacing:
|
| 1676 |
+
a = -1.5 / ax_dx
|
| 1677 |
+
b = 2.0 / ax_dx
|
| 1678 |
+
c = -0.5 / ax_dx
|
| 1679 |
+
else:
|
| 1680 |
+
dx1 = ax_dx[0]
|
| 1681 |
+
dx2 = ax_dx[1]
|
| 1682 |
+
a = -(2.0 * dx1 + dx2) / (dx1 * (dx1 + dx2))
|
| 1683 |
+
b = (dx1 + dx2) / (dx1 * dx2)
|
| 1684 |
+
c = -dx1 / (dx2 * (dx1 + dx2))
|
| 1685 |
+
# 1D equivalent -- out[0] = a * f[0] + b * f[1] + c * f[2]
|
| 1686 |
+
out[tuple(slice1)] = (
|
| 1687 |
+
a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)]
|
| 1688 |
+
)
|
| 1689 |
+
|
| 1690 |
+
slice1[axis] = -1
|
| 1691 |
+
slice2[axis] = -3
|
| 1692 |
+
slice3[axis] = -2
|
| 1693 |
+
slice4[axis] = -1
|
| 1694 |
+
if uniform_spacing:
|
| 1695 |
+
a = 0.5 / ax_dx
|
| 1696 |
+
b = -2.0 / ax_dx
|
| 1697 |
+
c = 1.5 / ax_dx
|
| 1698 |
+
else:
|
| 1699 |
+
dx1 = ax_dx[-2]
|
| 1700 |
+
dx2 = ax_dx[-1]
|
| 1701 |
+
a = (dx2) / (dx1 * (dx1 + dx2))
|
| 1702 |
+
b = -(dx2 + dx1) / (dx1 * dx2)
|
| 1703 |
+
c = (2.0 * dx2 + dx1) / (dx2 * (dx1 + dx2))
|
| 1704 |
+
# 1D equivalent -- out[-1] = a * f[-3] + b * f[-2] + c * f[-1]
|
| 1705 |
+
out[tuple(slice1)] = (
|
| 1706 |
+
a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)]
|
| 1707 |
+
)
|
| 1708 |
+
|
| 1709 |
+
outvals.append(out)
|
| 1710 |
+
|
| 1711 |
+
# reset the slice object in this dimension to ":"
|
| 1712 |
+
slice1[axis] = slice(None)
|
| 1713 |
+
slice2[axis] = slice(None)
|
| 1714 |
+
slice3[axis] = slice(None)
|
| 1715 |
+
slice4[axis] = slice(None)
|
| 1716 |
+
|
| 1717 |
+
if len_axes == 1:
|
| 1718 |
+
return outvals[0]
|
| 1719 |
+
else:
|
| 1720 |
+
return outvals
|
| 1721 |
+
|
| 1722 |
+
|
| 1723 |
+
# ### Type/shape etc queries ###
|
| 1724 |
+
|
| 1725 |
+
|
| 1726 |
+
def round(a: ArrayLike, decimals=0, out: Optional[OutArray] = None):
|
| 1727 |
+
if a.is_floating_point():
|
| 1728 |
+
result = torch.round(a, decimals=decimals)
|
| 1729 |
+
elif a.is_complex():
|
| 1730 |
+
# RuntimeError: "round_cpu" not implemented for 'ComplexFloat'
|
| 1731 |
+
result = torch.complex(
|
| 1732 |
+
torch.round(a.real, decimals=decimals),
|
| 1733 |
+
torch.round(a.imag, decimals=decimals),
|
| 1734 |
+
)
|
| 1735 |
+
else:
|
| 1736 |
+
# RuntimeError: "round_cpu" not implemented for 'int'
|
| 1737 |
+
result = a
|
| 1738 |
+
return result
|
| 1739 |
+
|
| 1740 |
+
|
| 1741 |
+
around = round
|
| 1742 |
+
round_ = round
|
| 1743 |
+
|
| 1744 |
+
|
| 1745 |
+
def real_if_close(a: ArrayLike, tol=100):
|
| 1746 |
+
if not torch.is_complex(a):
|
| 1747 |
+
return a
|
| 1748 |
+
if tol > 1:
|
| 1749 |
+
# Undocumented in numpy: if tol < 1, it's an absolute tolerance!
|
| 1750 |
+
# Otherwise, tol > 1 is relative tolerance, in units of the dtype epsilon
|
| 1751 |
+
# https://github.com/numpy/numpy/blob/v1.24.0/numpy/lib/type_check.py#L577
|
| 1752 |
+
tol = tol * torch.finfo(a.dtype).eps
|
| 1753 |
+
|
| 1754 |
+
mask = torch.abs(a.imag) < tol
|
| 1755 |
+
return a.real if mask.all() else a
|
| 1756 |
+
|
| 1757 |
+
|
| 1758 |
+
def real(a: ArrayLike):
|
| 1759 |
+
return torch.real(a)
|
| 1760 |
+
|
| 1761 |
+
|
| 1762 |
+
def imag(a: ArrayLike):
|
| 1763 |
+
if a.is_complex():
|
| 1764 |
+
return a.imag
|
| 1765 |
+
return torch.zeros_like(a)
|
| 1766 |
+
|
| 1767 |
+
|
| 1768 |
+
def iscomplex(x: ArrayLike):
|
| 1769 |
+
if torch.is_complex(x):
|
| 1770 |
+
return x.imag != 0
|
| 1771 |
+
return torch.zeros_like(x, dtype=torch.bool)
|
| 1772 |
+
|
| 1773 |
+
|
| 1774 |
+
def isreal(x: ArrayLike):
|
| 1775 |
+
if torch.is_complex(x):
|
| 1776 |
+
return x.imag == 0
|
| 1777 |
+
return torch.ones_like(x, dtype=torch.bool)
|
| 1778 |
+
|
| 1779 |
+
|
| 1780 |
+
def iscomplexobj(x: ArrayLike):
|
| 1781 |
+
return torch.is_complex(x)
|
| 1782 |
+
|
| 1783 |
+
|
| 1784 |
+
def isrealobj(x: ArrayLike):
|
| 1785 |
+
return not torch.is_complex(x)
|
| 1786 |
+
|
| 1787 |
+
|
| 1788 |
+
def isneginf(x: ArrayLike, out: Optional[OutArray] = None):
|
| 1789 |
+
return torch.isneginf(x)
|
| 1790 |
+
|
| 1791 |
+
|
| 1792 |
+
def isposinf(x: ArrayLike, out: Optional[OutArray] = None):
|
| 1793 |
+
return torch.isposinf(x)
|
| 1794 |
+
|
| 1795 |
+
|
| 1796 |
+
def i0(x: ArrayLike):
|
| 1797 |
+
return torch.special.i0(x)
|
| 1798 |
+
|
| 1799 |
+
|
| 1800 |
+
def isscalar(a):
|
| 1801 |
+
# We need to use normalize_array_like, but we don't want to export it in funcs.py
|
| 1802 |
+
from ._normalizations import normalize_array_like
|
| 1803 |
+
|
| 1804 |
+
try:
|
| 1805 |
+
t = normalize_array_like(a)
|
| 1806 |
+
return t.numel() == 1
|
| 1807 |
+
except Exception:
|
| 1808 |
+
return False
|
| 1809 |
+
|
| 1810 |
+
|
| 1811 |
+
# ### Filter windows ###
|
| 1812 |
+
|
| 1813 |
+
|
| 1814 |
+
def hamming(M):
|
| 1815 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
| 1816 |
+
return torch.hamming_window(M, periodic=False, dtype=dtype)
|
| 1817 |
+
|
| 1818 |
+
|
| 1819 |
+
def hanning(M):
|
| 1820 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
| 1821 |
+
return torch.hann_window(M, periodic=False, dtype=dtype)
|
| 1822 |
+
|
| 1823 |
+
|
| 1824 |
+
def kaiser(M, beta):
|
| 1825 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
| 1826 |
+
return torch.kaiser_window(M, beta=beta, periodic=False, dtype=dtype)
|
| 1827 |
+
|
| 1828 |
+
|
| 1829 |
+
def blackman(M):
|
| 1830 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
| 1831 |
+
return torch.blackman_window(M, periodic=False, dtype=dtype)
|
| 1832 |
+
|
| 1833 |
+
|
| 1834 |
+
def bartlett(M):
|
| 1835 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
| 1836 |
+
return torch.bartlett_window(M, periodic=False, dtype=dtype)
|
| 1837 |
+
|
| 1838 |
+
|
| 1839 |
+
# ### Dtype routines ###
|
| 1840 |
+
|
| 1841 |
+
# vendored from https://github.com/numpy/numpy/blob/v1.24.0/numpy/lib/type_check.py#L666
|
| 1842 |
+
|
| 1843 |
+
|
| 1844 |
+
array_type = [
|
| 1845 |
+
[torch.float16, torch.float32, torch.float64],
|
| 1846 |
+
[None, torch.complex64, torch.complex128],
|
| 1847 |
+
]
|
| 1848 |
+
array_precision = {
|
| 1849 |
+
torch.float16: 0,
|
| 1850 |
+
torch.float32: 1,
|
| 1851 |
+
torch.float64: 2,
|
| 1852 |
+
torch.complex64: 1,
|
| 1853 |
+
torch.complex128: 2,
|
| 1854 |
+
}
|
| 1855 |
+
|
| 1856 |
+
|
| 1857 |
+
def common_type(*tensors: ArrayLike):
|
| 1858 |
+
is_complex = False
|
| 1859 |
+
precision = 0
|
| 1860 |
+
for a in tensors:
|
| 1861 |
+
t = a.dtype
|
| 1862 |
+
if iscomplexobj(a):
|
| 1863 |
+
is_complex = True
|
| 1864 |
+
if not (t.is_floating_point or t.is_complex):
|
| 1865 |
+
p = 2 # array_precision[_nx.double]
|
| 1866 |
+
else:
|
| 1867 |
+
p = array_precision.get(t, None)
|
| 1868 |
+
if p is None:
|
| 1869 |
+
raise TypeError("can't get common type for non-numeric array")
|
| 1870 |
+
precision = builtins.max(precision, p)
|
| 1871 |
+
if is_complex:
|
| 1872 |
+
return array_type[1][precision]
|
| 1873 |
+
else:
|
| 1874 |
+
return array_type[0][precision]
|
| 1875 |
+
|
| 1876 |
+
|
| 1877 |
+
# ### histograms ###
|
| 1878 |
+
|
| 1879 |
+
|
| 1880 |
+
def histogram(
|
| 1881 |
+
a: ArrayLike,
|
| 1882 |
+
bins: ArrayLike = 10,
|
| 1883 |
+
range=None,
|
| 1884 |
+
normed=None,
|
| 1885 |
+
weights: Optional[ArrayLike] = None,
|
| 1886 |
+
density=None,
|
| 1887 |
+
):
|
| 1888 |
+
if normed is not None:
|
| 1889 |
+
raise ValueError("normed argument is deprecated, use density= instead")
|
| 1890 |
+
|
| 1891 |
+
if weights is not None and weights.dtype.is_complex:
|
| 1892 |
+
raise NotImplementedError("complex weights histogram.")
|
| 1893 |
+
|
| 1894 |
+
is_a_int = not (a.dtype.is_floating_point or a.dtype.is_complex)
|
| 1895 |
+
is_w_int = weights is None or not weights.dtype.is_floating_point
|
| 1896 |
+
if is_a_int:
|
| 1897 |
+
a = a.double()
|
| 1898 |
+
|
| 1899 |
+
if weights is not None:
|
| 1900 |
+
weights = _util.cast_if_needed(weights, a.dtype)
|
| 1901 |
+
|
| 1902 |
+
if isinstance(bins, torch.Tensor):
|
| 1903 |
+
if bins.ndim == 0:
|
| 1904 |
+
# bins was a single int
|
| 1905 |
+
bins = operator.index(bins)
|
| 1906 |
+
else:
|
| 1907 |
+
bins = _util.cast_if_needed(bins, a.dtype)
|
| 1908 |
+
|
| 1909 |
+
if range is None:
|
| 1910 |
+
h, b = torch.histogram(a, bins, weight=weights, density=bool(density))
|
| 1911 |
+
else:
|
| 1912 |
+
h, b = torch.histogram(
|
| 1913 |
+
a, bins, range=range, weight=weights, density=bool(density)
|
| 1914 |
+
)
|
| 1915 |
+
|
| 1916 |
+
if not density and is_w_int:
|
| 1917 |
+
h = h.long()
|
| 1918 |
+
if is_a_int:
|
| 1919 |
+
b = b.long()
|
| 1920 |
+
|
| 1921 |
+
return h, b
|
| 1922 |
+
|
| 1923 |
+
|
| 1924 |
+
def histogram2d(
|
| 1925 |
+
x,
|
| 1926 |
+
y,
|
| 1927 |
+
bins=10,
|
| 1928 |
+
range: Optional[ArrayLike] = None,
|
| 1929 |
+
normed=None,
|
| 1930 |
+
weights: Optional[ArrayLike] = None,
|
| 1931 |
+
density=None,
|
| 1932 |
+
):
|
| 1933 |
+
# vendored from https://github.com/numpy/numpy/blob/v1.24.0/numpy/lib/twodim_base.py#L655-L821
|
| 1934 |
+
if len(x) != len(y):
|
| 1935 |
+
raise ValueError("x and y must have the same length.")
|
| 1936 |
+
|
| 1937 |
+
try:
|
| 1938 |
+
N = len(bins)
|
| 1939 |
+
except TypeError:
|
| 1940 |
+
N = 1
|
| 1941 |
+
|
| 1942 |
+
if N != 1 and N != 2:
|
| 1943 |
+
bins = [bins, bins]
|
| 1944 |
+
|
| 1945 |
+
h, e = histogramdd((x, y), bins, range, normed, weights, density)
|
| 1946 |
+
|
| 1947 |
+
return h, e[0], e[1]
|
| 1948 |
+
|
| 1949 |
+
|
| 1950 |
+
def histogramdd(
|
| 1951 |
+
sample,
|
| 1952 |
+
bins=10,
|
| 1953 |
+
range: Optional[ArrayLike] = None,
|
| 1954 |
+
normed=None,
|
| 1955 |
+
weights: Optional[ArrayLike] = None,
|
| 1956 |
+
density=None,
|
| 1957 |
+
):
|
| 1958 |
+
# have to normalize manually because `sample` interpretation differs
|
| 1959 |
+
# for a list of lists and a 2D array
|
| 1960 |
+
if normed is not None:
|
| 1961 |
+
raise ValueError("normed argument is deprecated, use density= instead")
|
| 1962 |
+
|
| 1963 |
+
from ._normalizations import normalize_array_like, normalize_seq_array_like
|
| 1964 |
+
|
| 1965 |
+
if isinstance(sample, (list, tuple)):
|
| 1966 |
+
sample = normalize_array_like(sample).T
|
| 1967 |
+
else:
|
| 1968 |
+
sample = normalize_array_like(sample)
|
| 1969 |
+
|
| 1970 |
+
sample = torch.atleast_2d(sample)
|
| 1971 |
+
|
| 1972 |
+
if not (sample.dtype.is_floating_point or sample.dtype.is_complex):
|
| 1973 |
+
sample = sample.double()
|
| 1974 |
+
|
| 1975 |
+
# bins is either an int, or a sequence of ints or a sequence of arrays
|
| 1976 |
+
bins_is_array = not (
|
| 1977 |
+
isinstance(bins, int) or builtins.all(isinstance(b, int) for b in bins)
|
| 1978 |
+
)
|
| 1979 |
+
if bins_is_array:
|
| 1980 |
+
bins = normalize_seq_array_like(bins)
|
| 1981 |
+
bins_dtypes = [b.dtype for b in bins]
|
| 1982 |
+
bins = [_util.cast_if_needed(b, sample.dtype) for b in bins]
|
| 1983 |
+
|
| 1984 |
+
if range is not None:
|
| 1985 |
+
range = range.flatten().tolist()
|
| 1986 |
+
|
| 1987 |
+
if weights is not None:
|
| 1988 |
+
# range=... is required : interleave min and max values per dimension
|
| 1989 |
+
mm = sample.aminmax(dim=0)
|
| 1990 |
+
range = torch.cat(mm).reshape(2, -1).T.flatten()
|
| 1991 |
+
range = tuple(range.tolist())
|
| 1992 |
+
weights = _util.cast_if_needed(weights, sample.dtype)
|
| 1993 |
+
w_kwd = {"weight": weights}
|
| 1994 |
+
else:
|
| 1995 |
+
w_kwd = {}
|
| 1996 |
+
|
| 1997 |
+
h, b = torch.histogramdd(sample, bins, range, density=bool(density), **w_kwd)
|
| 1998 |
+
|
| 1999 |
+
if bins_is_array:
|
| 2000 |
+
b = [_util.cast_if_needed(bb, dtyp) for bb, dtyp in zip(b, bins_dtypes)]
|
| 2001 |
+
|
| 2002 |
+
return h, b
|
| 2003 |
+
|
| 2004 |
+
|
| 2005 |
+
# ### odds and ends
|
| 2006 |
+
|
| 2007 |
+
|
| 2008 |
+
def min_scalar_type(a: ArrayLike, /):
|
| 2009 |
+
# https://github.com/numpy/numpy/blob/maintenance/1.24.x/numpy/core/src/multiarray/convert_datatype.c#L1288
|
| 2010 |
+
|
| 2011 |
+
from ._dtypes import DType
|
| 2012 |
+
|
| 2013 |
+
if a.numel() > 1:
|
| 2014 |
+
# numpy docs: "For non-scalar array a, returns the vector's dtype unmodified."
|
| 2015 |
+
return DType(a.dtype)
|
| 2016 |
+
|
| 2017 |
+
if a.dtype == torch.bool:
|
| 2018 |
+
dtype = torch.bool
|
| 2019 |
+
|
| 2020 |
+
elif a.dtype.is_complex:
|
| 2021 |
+
fi = torch.finfo(torch.float32)
|
| 2022 |
+
fits_in_single = a.dtype == torch.complex64 or (
|
| 2023 |
+
fi.min <= a.real <= fi.max and fi.min <= a.imag <= fi.max
|
| 2024 |
+
)
|
| 2025 |
+
dtype = torch.complex64 if fits_in_single else torch.complex128
|
| 2026 |
+
|
| 2027 |
+
elif a.dtype.is_floating_point:
|
| 2028 |
+
for dt in [torch.float16, torch.float32, torch.float64]:
|
| 2029 |
+
fi = torch.finfo(dt)
|
| 2030 |
+
if fi.min <= a <= fi.max:
|
| 2031 |
+
dtype = dt
|
| 2032 |
+
break
|
| 2033 |
+
else:
|
| 2034 |
+
# must be integer
|
| 2035 |
+
for dt in [torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64]:
|
| 2036 |
+
# Prefer unsigned int where possible, as numpy does.
|
| 2037 |
+
ii = torch.iinfo(dt)
|
| 2038 |
+
if ii.min <= a <= ii.max:
|
| 2039 |
+
dtype = dt
|
| 2040 |
+
break
|
| 2041 |
+
|
| 2042 |
+
return DType(dtype)
|
| 2043 |
+
|
| 2044 |
+
|
| 2045 |
+
def pad(array: ArrayLike, pad_width: ArrayLike, mode="constant", **kwargs):
|
| 2046 |
+
if mode != "constant":
|
| 2047 |
+
raise NotImplementedError
|
| 2048 |
+
value = kwargs.get("constant_values", 0)
|
| 2049 |
+
# `value` must be a python scalar for torch.nn.functional.pad
|
| 2050 |
+
typ = _dtypes_impl.python_type_for_torch(array.dtype)
|
| 2051 |
+
value = typ(value)
|
| 2052 |
+
|
| 2053 |
+
pad_width = torch.broadcast_to(pad_width, (array.ndim, 2))
|
| 2054 |
+
pad_width = torch.flip(pad_width, (0,)).flatten()
|
| 2055 |
+
|
| 2056 |
+
return torch.nn.functional.pad(array, tuple(pad_width), value=value)
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/_ndarray.py
ADDED
|
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: ignore-errors
|
| 2 |
+
|
| 3 |
+
from __future__ import annotations
|
| 4 |
+
|
| 5 |
+
import builtins
|
| 6 |
+
import math
|
| 7 |
+
import operator
|
| 8 |
+
from typing import Sequence
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
|
| 12 |
+
from . import _dtypes, _dtypes_impl, _funcs, _ufuncs, _util
|
| 13 |
+
from ._normalizations import (
|
| 14 |
+
ArrayLike,
|
| 15 |
+
normalize_array_like,
|
| 16 |
+
normalizer,
|
| 17 |
+
NotImplementedType,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
newaxis = None
|
| 22 |
+
|
| 23 |
+
FLAGS = [
|
| 24 |
+
"C_CONTIGUOUS",
|
| 25 |
+
"F_CONTIGUOUS",
|
| 26 |
+
"OWNDATA",
|
| 27 |
+
"WRITEABLE",
|
| 28 |
+
"ALIGNED",
|
| 29 |
+
"WRITEBACKIFCOPY",
|
| 30 |
+
"FNC",
|
| 31 |
+
"FORC",
|
| 32 |
+
"BEHAVED",
|
| 33 |
+
"CARRAY",
|
| 34 |
+
"FARRAY",
|
| 35 |
+
]
|
| 36 |
+
|
| 37 |
+
SHORTHAND_TO_FLAGS = {
|
| 38 |
+
"C": "C_CONTIGUOUS",
|
| 39 |
+
"F": "F_CONTIGUOUS",
|
| 40 |
+
"O": "OWNDATA",
|
| 41 |
+
"W": "WRITEABLE",
|
| 42 |
+
"A": "ALIGNED",
|
| 43 |
+
"X": "WRITEBACKIFCOPY",
|
| 44 |
+
"B": "BEHAVED",
|
| 45 |
+
"CA": "CARRAY",
|
| 46 |
+
"FA": "FARRAY",
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class Flags:
|
| 51 |
+
def __init__(self, flag_to_value: dict):
|
| 52 |
+
assert all(k in FLAGS for k in flag_to_value.keys()) # sanity check
|
| 53 |
+
self._flag_to_value = flag_to_value
|
| 54 |
+
|
| 55 |
+
def __getattr__(self, attr: str):
|
| 56 |
+
if attr.islower() and attr.upper() in FLAGS:
|
| 57 |
+
return self[attr.upper()]
|
| 58 |
+
else:
|
| 59 |
+
raise AttributeError(f"No flag attribute '{attr}'")
|
| 60 |
+
|
| 61 |
+
def __getitem__(self, key):
|
| 62 |
+
if key in SHORTHAND_TO_FLAGS.keys():
|
| 63 |
+
key = SHORTHAND_TO_FLAGS[key]
|
| 64 |
+
if key in FLAGS:
|
| 65 |
+
try:
|
| 66 |
+
return self._flag_to_value[key]
|
| 67 |
+
except KeyError as e:
|
| 68 |
+
raise NotImplementedError(f"{key=}") from e
|
| 69 |
+
else:
|
| 70 |
+
raise KeyError(f"No flag key '{key}'")
|
| 71 |
+
|
| 72 |
+
def __setattr__(self, attr, value):
|
| 73 |
+
if attr.islower() and attr.upper() in FLAGS:
|
| 74 |
+
self[attr.upper()] = value
|
| 75 |
+
else:
|
| 76 |
+
super().__setattr__(attr, value)
|
| 77 |
+
|
| 78 |
+
def __setitem__(self, key, value):
|
| 79 |
+
if key in FLAGS or key in SHORTHAND_TO_FLAGS.keys():
|
| 80 |
+
raise NotImplementedError("Modifying flags is not implemented")
|
| 81 |
+
else:
|
| 82 |
+
raise KeyError(f"No flag key '{key}'")
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def create_method(fn, name=None):
|
| 86 |
+
name = name or fn.__name__
|
| 87 |
+
|
| 88 |
+
def f(*args, **kwargs):
|
| 89 |
+
return fn(*args, **kwargs)
|
| 90 |
+
|
| 91 |
+
f.__name__ = name
|
| 92 |
+
f.__qualname__ = f"ndarray.{name}"
|
| 93 |
+
return f
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
# Map ndarray.name_method -> np.name_func
|
| 97 |
+
# If name_func == None, it means that name_method == name_func
|
| 98 |
+
methods = {
|
| 99 |
+
"clip": None,
|
| 100 |
+
"nonzero": None,
|
| 101 |
+
"repeat": None,
|
| 102 |
+
"round": None,
|
| 103 |
+
"squeeze": None,
|
| 104 |
+
"swapaxes": None,
|
| 105 |
+
"ravel": None,
|
| 106 |
+
# linalg
|
| 107 |
+
"diagonal": None,
|
| 108 |
+
"dot": None,
|
| 109 |
+
"trace": None,
|
| 110 |
+
# sorting
|
| 111 |
+
"argsort": None,
|
| 112 |
+
"searchsorted": None,
|
| 113 |
+
# reductions
|
| 114 |
+
"argmax": None,
|
| 115 |
+
"argmin": None,
|
| 116 |
+
"any": None,
|
| 117 |
+
"all": None,
|
| 118 |
+
"max": None,
|
| 119 |
+
"min": None,
|
| 120 |
+
"ptp": None,
|
| 121 |
+
"sum": None,
|
| 122 |
+
"prod": None,
|
| 123 |
+
"mean": None,
|
| 124 |
+
"var": None,
|
| 125 |
+
"std": None,
|
| 126 |
+
# scans
|
| 127 |
+
"cumsum": None,
|
| 128 |
+
"cumprod": None,
|
| 129 |
+
# advanced indexing
|
| 130 |
+
"take": None,
|
| 131 |
+
"choose": None,
|
| 132 |
+
}
|
| 133 |
+
|
| 134 |
+
dunder = {
|
| 135 |
+
"abs": "absolute",
|
| 136 |
+
"invert": None,
|
| 137 |
+
"pos": "positive",
|
| 138 |
+
"neg": "negative",
|
| 139 |
+
"gt": "greater",
|
| 140 |
+
"lt": "less",
|
| 141 |
+
"ge": "greater_equal",
|
| 142 |
+
"le": "less_equal",
|
| 143 |
+
}
|
| 144 |
+
|
| 145 |
+
# dunder methods with right-looking and in-place variants
|
| 146 |
+
ri_dunder = {
|
| 147 |
+
"add": None,
|
| 148 |
+
"sub": "subtract",
|
| 149 |
+
"mul": "multiply",
|
| 150 |
+
"truediv": "divide",
|
| 151 |
+
"floordiv": "floor_divide",
|
| 152 |
+
"pow": "power",
|
| 153 |
+
"mod": "remainder",
|
| 154 |
+
"and": "bitwise_and",
|
| 155 |
+
"or": "bitwise_or",
|
| 156 |
+
"xor": "bitwise_xor",
|
| 157 |
+
"lshift": "left_shift",
|
| 158 |
+
"rshift": "right_shift",
|
| 159 |
+
"matmul": None,
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def _upcast_int_indices(index):
|
| 164 |
+
if isinstance(index, torch.Tensor):
|
| 165 |
+
if index.dtype in (torch.int8, torch.int16, torch.int32, torch.uint8):
|
| 166 |
+
return index.to(torch.int64)
|
| 167 |
+
elif isinstance(index, tuple):
|
| 168 |
+
return tuple(_upcast_int_indices(i) for i in index)
|
| 169 |
+
return index
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
# Used to indicate that a parameter is unspecified (as opposed to explicitly
|
| 173 |
+
# `None`)
|
| 174 |
+
class _Unspecified:
|
| 175 |
+
pass
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
_Unspecified.unspecified = _Unspecified()
|
| 179 |
+
|
| 180 |
+
###############################################################
|
| 181 |
+
# ndarray class #
|
| 182 |
+
###############################################################
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
class ndarray:
|
| 186 |
+
def __init__(self, t=None):
|
| 187 |
+
if t is None:
|
| 188 |
+
self.tensor = torch.Tensor()
|
| 189 |
+
elif isinstance(t, torch.Tensor):
|
| 190 |
+
self.tensor = t
|
| 191 |
+
else:
|
| 192 |
+
raise ValueError(
|
| 193 |
+
"ndarray constructor is not recommended; prefer"
|
| 194 |
+
"either array(...) or zeros/empty(...)"
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
# Register NumPy functions as methods
|
| 198 |
+
for method, name in methods.items():
|
| 199 |
+
fn = getattr(_funcs, name or method)
|
| 200 |
+
vars()[method] = create_method(fn, method)
|
| 201 |
+
|
| 202 |
+
# Regular methods but coming from ufuncs
|
| 203 |
+
conj = create_method(_ufuncs.conjugate, "conj")
|
| 204 |
+
conjugate = create_method(_ufuncs.conjugate)
|
| 205 |
+
|
| 206 |
+
for method, name in dunder.items():
|
| 207 |
+
fn = getattr(_ufuncs, name or method)
|
| 208 |
+
method = f"__{method}__"
|
| 209 |
+
vars()[method] = create_method(fn, method)
|
| 210 |
+
|
| 211 |
+
for method, name in ri_dunder.items():
|
| 212 |
+
fn = getattr(_ufuncs, name or method)
|
| 213 |
+
plain = f"__{method}__"
|
| 214 |
+
vars()[plain] = create_method(fn, plain)
|
| 215 |
+
rvar = f"__r{method}__"
|
| 216 |
+
vars()[rvar] = create_method(lambda self, other, fn=fn: fn(other, self), rvar)
|
| 217 |
+
ivar = f"__i{method}__"
|
| 218 |
+
vars()[ivar] = create_method(
|
| 219 |
+
lambda self, other, fn=fn: fn(self, other, out=self), ivar
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
# There's no __idivmod__
|
| 223 |
+
__divmod__ = create_method(_ufuncs.divmod, "__divmod__")
|
| 224 |
+
__rdivmod__ = create_method(
|
| 225 |
+
lambda self, other: _ufuncs.divmod(other, self), "__rdivmod__"
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
# prevent loop variables leaking into the ndarray class namespace
|
| 229 |
+
del ivar, rvar, name, plain, fn, method
|
| 230 |
+
|
| 231 |
+
@property
|
| 232 |
+
def shape(self):
|
| 233 |
+
return tuple(self.tensor.shape)
|
| 234 |
+
|
| 235 |
+
@property
|
| 236 |
+
def size(self):
|
| 237 |
+
return self.tensor.numel()
|
| 238 |
+
|
| 239 |
+
@property
|
| 240 |
+
def ndim(self):
|
| 241 |
+
return self.tensor.ndim
|
| 242 |
+
|
| 243 |
+
@property
|
| 244 |
+
def dtype(self):
|
| 245 |
+
return _dtypes.dtype(self.tensor.dtype)
|
| 246 |
+
|
| 247 |
+
@property
|
| 248 |
+
def strides(self):
|
| 249 |
+
elsize = self.tensor.element_size()
|
| 250 |
+
return tuple(stride * elsize for stride in self.tensor.stride())
|
| 251 |
+
|
| 252 |
+
@property
|
| 253 |
+
def itemsize(self):
|
| 254 |
+
return self.tensor.element_size()
|
| 255 |
+
|
| 256 |
+
@property
|
| 257 |
+
def flags(self):
|
| 258 |
+
# Note contiguous in torch is assumed C-style
|
| 259 |
+
return Flags(
|
| 260 |
+
{
|
| 261 |
+
"C_CONTIGUOUS": self.tensor.is_contiguous(),
|
| 262 |
+
"F_CONTIGUOUS": self.T.tensor.is_contiguous(),
|
| 263 |
+
"OWNDATA": self.tensor._base is None,
|
| 264 |
+
"WRITEABLE": True, # pytorch does not have readonly tensors
|
| 265 |
+
}
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
@property
|
| 269 |
+
def data(self):
|
| 270 |
+
return self.tensor.data_ptr()
|
| 271 |
+
|
| 272 |
+
@property
|
| 273 |
+
def nbytes(self):
|
| 274 |
+
return self.tensor.storage().nbytes()
|
| 275 |
+
|
| 276 |
+
@property
|
| 277 |
+
def T(self):
|
| 278 |
+
return self.transpose()
|
| 279 |
+
|
| 280 |
+
@property
|
| 281 |
+
def real(self):
|
| 282 |
+
return _funcs.real(self)
|
| 283 |
+
|
| 284 |
+
@real.setter
|
| 285 |
+
def real(self, value):
|
| 286 |
+
self.tensor.real = asarray(value).tensor
|
| 287 |
+
|
| 288 |
+
@property
|
| 289 |
+
def imag(self):
|
| 290 |
+
return _funcs.imag(self)
|
| 291 |
+
|
| 292 |
+
@imag.setter
|
| 293 |
+
def imag(self, value):
|
| 294 |
+
self.tensor.imag = asarray(value).tensor
|
| 295 |
+
|
| 296 |
+
# ctors
|
| 297 |
+
def astype(self, dtype, order="K", casting="unsafe", subok=True, copy=True):
|
| 298 |
+
if order != "K":
|
| 299 |
+
raise NotImplementedError(f"astype(..., order={order} is not implemented.")
|
| 300 |
+
if casting != "unsafe":
|
| 301 |
+
raise NotImplementedError(
|
| 302 |
+
f"astype(..., casting={casting} is not implemented."
|
| 303 |
+
)
|
| 304 |
+
if not subok:
|
| 305 |
+
raise NotImplementedError(f"astype(..., subok={subok} is not implemented.")
|
| 306 |
+
if not copy:
|
| 307 |
+
raise NotImplementedError(f"astype(..., copy={copy} is not implemented.")
|
| 308 |
+
torch_dtype = _dtypes.dtype(dtype).torch_dtype
|
| 309 |
+
t = self.tensor.to(torch_dtype)
|
| 310 |
+
return ndarray(t)
|
| 311 |
+
|
| 312 |
+
@normalizer
|
| 313 |
+
def copy(self: ArrayLike, order: NotImplementedType = "C"):
|
| 314 |
+
return self.clone()
|
| 315 |
+
|
| 316 |
+
@normalizer
|
| 317 |
+
def flatten(self: ArrayLike, order: NotImplementedType = "C"):
|
| 318 |
+
return torch.flatten(self)
|
| 319 |
+
|
| 320 |
+
def resize(self, *new_shape, refcheck=False):
|
| 321 |
+
# NB: differs from np.resize: fills with zeros instead of making repeated copies of input.
|
| 322 |
+
if refcheck:
|
| 323 |
+
raise NotImplementedError(
|
| 324 |
+
f"resize(..., refcheck={refcheck} is not implemented."
|
| 325 |
+
)
|
| 326 |
+
if new_shape in [(), (None,)]:
|
| 327 |
+
return
|
| 328 |
+
|
| 329 |
+
# support both x.resize((2, 2)) and x.resize(2, 2)
|
| 330 |
+
if len(new_shape) == 1:
|
| 331 |
+
new_shape = new_shape[0]
|
| 332 |
+
if isinstance(new_shape, int):
|
| 333 |
+
new_shape = (new_shape,)
|
| 334 |
+
|
| 335 |
+
if builtins.any(x < 0 for x in new_shape):
|
| 336 |
+
raise ValueError("all elements of `new_shape` must be non-negative")
|
| 337 |
+
|
| 338 |
+
new_numel, old_numel = math.prod(new_shape), self.tensor.numel()
|
| 339 |
+
|
| 340 |
+
self.tensor.resize_(new_shape)
|
| 341 |
+
|
| 342 |
+
if new_numel >= old_numel:
|
| 343 |
+
# zero-fill new elements
|
| 344 |
+
assert self.tensor.is_contiguous()
|
| 345 |
+
b = self.tensor.flatten() # does not copy
|
| 346 |
+
b[old_numel:].zero_()
|
| 347 |
+
|
| 348 |
+
def view(self, dtype=_Unspecified.unspecified, type=_Unspecified.unspecified):
|
| 349 |
+
if dtype is _Unspecified.unspecified:
|
| 350 |
+
dtype = self.dtype
|
| 351 |
+
if type is not _Unspecified.unspecified:
|
| 352 |
+
raise NotImplementedError(f"view(..., type={type} is not implemented.")
|
| 353 |
+
torch_dtype = _dtypes.dtype(dtype).torch_dtype
|
| 354 |
+
tview = self.tensor.view(torch_dtype)
|
| 355 |
+
return ndarray(tview)
|
| 356 |
+
|
| 357 |
+
@normalizer
|
| 358 |
+
def fill(self, value: ArrayLike):
|
| 359 |
+
# Both Pytorch and NumPy accept 0D arrays/tensors and scalars, and
|
| 360 |
+
# error out on D > 0 arrays
|
| 361 |
+
self.tensor.fill_(value)
|
| 362 |
+
|
| 363 |
+
def tolist(self):
|
| 364 |
+
return self.tensor.tolist()
|
| 365 |
+
|
| 366 |
+
def __iter__(self):
|
| 367 |
+
return (ndarray(x) for x in self.tensor.__iter__())
|
| 368 |
+
|
| 369 |
+
def __str__(self):
|
| 370 |
+
return (
|
| 371 |
+
str(self.tensor)
|
| 372 |
+
.replace("tensor", "torch.ndarray")
|
| 373 |
+
.replace("dtype=torch.", "dtype=")
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
__repr__ = create_method(__str__)
|
| 377 |
+
|
| 378 |
+
def __eq__(self, other):
|
| 379 |
+
try:
|
| 380 |
+
return _ufuncs.equal(self, other)
|
| 381 |
+
except (RuntimeError, TypeError):
|
| 382 |
+
# Failed to convert other to array: definitely not equal.
|
| 383 |
+
falsy = torch.full(self.shape, fill_value=False, dtype=bool)
|
| 384 |
+
return asarray(falsy)
|
| 385 |
+
|
| 386 |
+
def __ne__(self, other):
|
| 387 |
+
return ~(self == other)
|
| 388 |
+
|
| 389 |
+
def __index__(self):
|
| 390 |
+
try:
|
| 391 |
+
return operator.index(self.tensor.item())
|
| 392 |
+
except Exception as exc:
|
| 393 |
+
raise TypeError(
|
| 394 |
+
"only integer scalar arrays can be converted to a scalar index"
|
| 395 |
+
) from exc
|
| 396 |
+
|
| 397 |
+
def __bool__(self):
|
| 398 |
+
return bool(self.tensor)
|
| 399 |
+
|
| 400 |
+
def __int__(self):
|
| 401 |
+
return int(self.tensor)
|
| 402 |
+
|
| 403 |
+
def __float__(self):
|
| 404 |
+
return float(self.tensor)
|
| 405 |
+
|
| 406 |
+
def __complex__(self):
|
| 407 |
+
return complex(self.tensor)
|
| 408 |
+
|
| 409 |
+
def is_integer(self):
|
| 410 |
+
try:
|
| 411 |
+
v = self.tensor.item()
|
| 412 |
+
result = int(v) == v
|
| 413 |
+
except Exception:
|
| 414 |
+
result = False
|
| 415 |
+
return result
|
| 416 |
+
|
| 417 |
+
def __len__(self):
|
| 418 |
+
return self.tensor.shape[0]
|
| 419 |
+
|
| 420 |
+
def __contains__(self, x):
|
| 421 |
+
return self.tensor.__contains__(x)
|
| 422 |
+
|
| 423 |
+
def transpose(self, *axes):
|
| 424 |
+
# np.transpose(arr, axis=None) but arr.transpose(*axes)
|
| 425 |
+
return _funcs.transpose(self, axes)
|
| 426 |
+
|
| 427 |
+
def reshape(self, *shape, order="C"):
|
| 428 |
+
# arr.reshape(shape) and arr.reshape(*shape)
|
| 429 |
+
return _funcs.reshape(self, shape, order=order)
|
| 430 |
+
|
| 431 |
+
def sort(self, axis=-1, kind=None, order=None):
|
| 432 |
+
# ndarray.sort works in-place
|
| 433 |
+
_funcs.copyto(self, _funcs.sort(self, axis, kind, order))
|
| 434 |
+
|
| 435 |
+
def item(self, *args):
|
| 436 |
+
# Mimic NumPy's implementation with three special cases (no arguments,
|
| 437 |
+
# a flat index and a multi-index):
|
| 438 |
+
# https://github.com/numpy/numpy/blob/main/numpy/core/src/multiarray/methods.c#L702
|
| 439 |
+
if args == ():
|
| 440 |
+
return self.tensor.item()
|
| 441 |
+
elif len(args) == 1:
|
| 442 |
+
# int argument
|
| 443 |
+
return self.ravel()[args[0]]
|
| 444 |
+
else:
|
| 445 |
+
return self.__getitem__(args)
|
| 446 |
+
|
| 447 |
+
def __getitem__(self, index):
|
| 448 |
+
tensor = self.tensor
|
| 449 |
+
|
| 450 |
+
def neg_step(i, s):
|
| 451 |
+
if not (isinstance(s, slice) and s.step is not None and s.step < 0):
|
| 452 |
+
return s
|
| 453 |
+
|
| 454 |
+
nonlocal tensor
|
| 455 |
+
tensor = torch.flip(tensor, (i,))
|
| 456 |
+
|
| 457 |
+
# Account for the fact that a slice includes the start but not the end
|
| 458 |
+
assert isinstance(s.start, int) or s.start is None
|
| 459 |
+
assert isinstance(s.stop, int) or s.stop is None
|
| 460 |
+
start = s.stop + 1 if s.stop else None
|
| 461 |
+
stop = s.start + 1 if s.start else None
|
| 462 |
+
|
| 463 |
+
return slice(start, stop, -s.step)
|
| 464 |
+
|
| 465 |
+
if isinstance(index, Sequence):
|
| 466 |
+
index = type(index)(neg_step(i, s) for i, s in enumerate(index))
|
| 467 |
+
else:
|
| 468 |
+
index = neg_step(0, index)
|
| 469 |
+
index = _util.ndarrays_to_tensors(index)
|
| 470 |
+
index = _upcast_int_indices(index)
|
| 471 |
+
return ndarray(tensor.__getitem__(index))
|
| 472 |
+
|
| 473 |
+
def __setitem__(self, index, value):
|
| 474 |
+
index = _util.ndarrays_to_tensors(index)
|
| 475 |
+
index = _upcast_int_indices(index)
|
| 476 |
+
|
| 477 |
+
if not _dtypes_impl.is_scalar(value):
|
| 478 |
+
value = normalize_array_like(value)
|
| 479 |
+
value = _util.cast_if_needed(value, self.tensor.dtype)
|
| 480 |
+
|
| 481 |
+
return self.tensor.__setitem__(index, value)
|
| 482 |
+
|
| 483 |
+
take = _funcs.take
|
| 484 |
+
put = _funcs.put
|
| 485 |
+
|
| 486 |
+
def __dlpack__(self, *, stream=None):
|
| 487 |
+
return self.tensor.__dlpack__(stream=stream)
|
| 488 |
+
|
| 489 |
+
def __dlpack_device__(self):
|
| 490 |
+
return self.tensor.__dlpack_device__()
|
| 491 |
+
|
| 492 |
+
|
| 493 |
+
def _tolist(obj):
|
| 494 |
+
"""Recursively convert tensors into lists."""
|
| 495 |
+
a1 = []
|
| 496 |
+
for elem in obj:
|
| 497 |
+
if isinstance(elem, (list, tuple)):
|
| 498 |
+
elem = _tolist(elem)
|
| 499 |
+
if isinstance(elem, ndarray):
|
| 500 |
+
a1.append(elem.tensor.tolist())
|
| 501 |
+
else:
|
| 502 |
+
a1.append(elem)
|
| 503 |
+
return a1
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
# This is the ideally the only place which talks to ndarray directly.
|
| 507 |
+
# The rest goes through asarray (preferred) or array.
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
def array(obj, dtype=None, *, copy=True, order="K", subok=False, ndmin=0, like=None):
|
| 511 |
+
if subok is not False:
|
| 512 |
+
raise NotImplementedError("'subok' parameter is not supported.")
|
| 513 |
+
if like is not None:
|
| 514 |
+
raise NotImplementedError("'like' parameter is not supported.")
|
| 515 |
+
if order != "K":
|
| 516 |
+
raise NotImplementedError
|
| 517 |
+
|
| 518 |
+
# a happy path
|
| 519 |
+
if (
|
| 520 |
+
isinstance(obj, ndarray)
|
| 521 |
+
and copy is False
|
| 522 |
+
and dtype is None
|
| 523 |
+
and ndmin <= obj.ndim
|
| 524 |
+
):
|
| 525 |
+
return obj
|
| 526 |
+
|
| 527 |
+
if isinstance(obj, (list, tuple)):
|
| 528 |
+
# FIXME and they have the same dtype, device, etc
|
| 529 |
+
if obj and all(isinstance(x, torch.Tensor) for x in obj):
|
| 530 |
+
# list of arrays: *under torch.Dynamo* these are FakeTensors
|
| 531 |
+
obj = torch.stack(obj)
|
| 532 |
+
else:
|
| 533 |
+
# XXX: remove tolist
|
| 534 |
+
# lists of ndarrays: [1, [2, 3], ndarray(4)] convert to lists of lists
|
| 535 |
+
obj = _tolist(obj)
|
| 536 |
+
|
| 537 |
+
# is obj an ndarray already?
|
| 538 |
+
if isinstance(obj, ndarray):
|
| 539 |
+
obj = obj.tensor
|
| 540 |
+
|
| 541 |
+
# is a specific dtype requested?
|
| 542 |
+
torch_dtype = None
|
| 543 |
+
if dtype is not None:
|
| 544 |
+
torch_dtype = _dtypes.dtype(dtype).torch_dtype
|
| 545 |
+
|
| 546 |
+
tensor = _util._coerce_to_tensor(obj, torch_dtype, copy, ndmin)
|
| 547 |
+
return ndarray(tensor)
|
| 548 |
+
|
| 549 |
+
|
| 550 |
+
def asarray(a, dtype=None, order="K", *, like=None):
|
| 551 |
+
return array(a, dtype=dtype, order=order, like=like, copy=False, ndmin=0)
|
| 552 |
+
|
| 553 |
+
|
| 554 |
+
def ascontiguousarray(a, dtype=None, *, like=None):
|
| 555 |
+
arr = asarray(a, dtype=dtype, like=like)
|
| 556 |
+
if not arr.tensor.is_contiguous():
|
| 557 |
+
arr.tensor = arr.tensor.contiguous()
|
| 558 |
+
return arr
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
def from_dlpack(x, /):
|
| 562 |
+
t = torch.from_dlpack(x)
|
| 563 |
+
return ndarray(t)
|
| 564 |
+
|
| 565 |
+
|
| 566 |
+
def _extract_dtype(entry):
|
| 567 |
+
try:
|
| 568 |
+
dty = _dtypes.dtype(entry)
|
| 569 |
+
except Exception:
|
| 570 |
+
dty = asarray(entry).dtype
|
| 571 |
+
return dty
|
| 572 |
+
|
| 573 |
+
|
| 574 |
+
def can_cast(from_, to, casting="safe"):
|
| 575 |
+
from_ = _extract_dtype(from_)
|
| 576 |
+
to_ = _extract_dtype(to)
|
| 577 |
+
|
| 578 |
+
return _dtypes_impl.can_cast_impl(from_.torch_dtype, to_.torch_dtype, casting)
|
| 579 |
+
|
| 580 |
+
|
| 581 |
+
def result_type(*arrays_and_dtypes):
|
| 582 |
+
tensors = []
|
| 583 |
+
for entry in arrays_and_dtypes:
|
| 584 |
+
try:
|
| 585 |
+
t = asarray(entry).tensor
|
| 586 |
+
except (RuntimeError, ValueError, TypeError):
|
| 587 |
+
dty = _dtypes.dtype(entry)
|
| 588 |
+
t = torch.empty(1, dtype=dty.torch_dtype)
|
| 589 |
+
tensors.append(t)
|
| 590 |
+
|
| 591 |
+
torch_dtype = _dtypes_impl.result_type_impl(*tensors)
|
| 592 |
+
return _dtypes.dtype(torch_dtype)
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/_normalizations.py
ADDED
|
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: ignore-errors
|
| 2 |
+
|
| 3 |
+
""" "Normalize" arguments: convert array_likes to tensors, dtypes to torch dtypes and so on.
|
| 4 |
+
"""
|
| 5 |
+
from __future__ import annotations
|
| 6 |
+
|
| 7 |
+
import functools
|
| 8 |
+
import inspect
|
| 9 |
+
import operator
|
| 10 |
+
import typing
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
|
| 14 |
+
from . import _dtypes, _dtypes_impl, _util
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
ArrayLike = typing.TypeVar("ArrayLike")
|
| 18 |
+
Scalar = typing.Union[int, float, complex, bool]
|
| 19 |
+
ArrayLikeOrScalar = typing.Union[ArrayLike, Scalar]
|
| 20 |
+
|
| 21 |
+
DTypeLike = typing.TypeVar("DTypeLike")
|
| 22 |
+
AxisLike = typing.TypeVar("AxisLike")
|
| 23 |
+
NDArray = typing.TypeVar("NDArray")
|
| 24 |
+
CastingModes = typing.TypeVar("CastingModes")
|
| 25 |
+
KeepDims = typing.TypeVar("KeepDims")
|
| 26 |
+
|
| 27 |
+
# OutArray is to annotate the out= array argument.
|
| 28 |
+
#
|
| 29 |
+
# This one is special is several respects:
|
| 30 |
+
# First, It needs to be an NDArray, and we need to preserve the `result is out`
|
| 31 |
+
# semantics. Therefore, we cannot just extract the Tensor from the out array.
|
| 32 |
+
# So we never pass the out array to implementer functions and handle it in the
|
| 33 |
+
# `normalizer` below.
|
| 34 |
+
# Second, the out= argument can be either keyword or positional argument, and
|
| 35 |
+
# as a positional arg, it can be anywhere in the signature.
|
| 36 |
+
# To handle all this, we define a special `OutArray` annotation and dispatch on it.
|
| 37 |
+
#
|
| 38 |
+
OutArray = typing.TypeVar("OutArray")
|
| 39 |
+
|
| 40 |
+
try:
|
| 41 |
+
from typing import NotImplementedType
|
| 42 |
+
except ImportError:
|
| 43 |
+
NotImplementedType = typing.TypeVar("NotImplementedType")
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def normalize_array_like(x, parm=None):
|
| 47 |
+
from ._ndarray import asarray
|
| 48 |
+
|
| 49 |
+
return asarray(x).tensor
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def normalize_array_like_or_scalar(x, parm=None):
|
| 53 |
+
if _dtypes_impl.is_scalar_or_symbolic(x):
|
| 54 |
+
return x
|
| 55 |
+
return normalize_array_like(x, parm)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def normalize_optional_array_like_or_scalar(x, parm=None):
|
| 59 |
+
if x is None:
|
| 60 |
+
return None
|
| 61 |
+
return normalize_array_like_or_scalar(x, parm)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def normalize_optional_array_like(x, parm=None):
|
| 65 |
+
# This explicit normalizer is needed because otherwise normalize_array_like
|
| 66 |
+
# does not run for a parameter annotated as Optional[ArrayLike]
|
| 67 |
+
return None if x is None else normalize_array_like(x, parm)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def normalize_seq_array_like(x, parm=None):
|
| 71 |
+
return tuple(normalize_array_like(value) for value in x)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def normalize_dtype(dtype, parm=None):
|
| 75 |
+
# cf _decorators.dtype_to_torch
|
| 76 |
+
torch_dtype = None
|
| 77 |
+
if dtype is not None:
|
| 78 |
+
dtype = _dtypes.dtype(dtype)
|
| 79 |
+
torch_dtype = dtype.torch_dtype
|
| 80 |
+
return torch_dtype
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def normalize_not_implemented(arg, parm):
|
| 84 |
+
if arg != parm.default:
|
| 85 |
+
raise NotImplementedError(f"'{parm.name}' parameter is not supported.")
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def normalize_axis_like(arg, parm=None):
|
| 89 |
+
from ._ndarray import ndarray
|
| 90 |
+
|
| 91 |
+
if isinstance(arg, ndarray):
|
| 92 |
+
arg = operator.index(arg)
|
| 93 |
+
return arg
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def normalize_ndarray(arg, parm=None):
|
| 97 |
+
# check the arg is an ndarray, extract its tensor attribute
|
| 98 |
+
if arg is None:
|
| 99 |
+
return arg
|
| 100 |
+
|
| 101 |
+
from ._ndarray import ndarray
|
| 102 |
+
|
| 103 |
+
if not isinstance(arg, ndarray):
|
| 104 |
+
raise TypeError(f"'{parm.name}' must be an array")
|
| 105 |
+
return arg.tensor
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def normalize_outarray(arg, parm=None):
|
| 109 |
+
# almost normalize_ndarray, only return the array, not its tensor
|
| 110 |
+
if arg is None:
|
| 111 |
+
return arg
|
| 112 |
+
from ._ndarray import ndarray
|
| 113 |
+
|
| 114 |
+
# Dynamo can pass torch tensors as out arguments,
|
| 115 |
+
# wrap it in an ndarray before processing
|
| 116 |
+
if isinstance(arg, torch.Tensor):
|
| 117 |
+
arg = ndarray(arg)
|
| 118 |
+
|
| 119 |
+
if not isinstance(arg, ndarray):
|
| 120 |
+
raise TypeError(f"'{parm.name}' must be an array")
|
| 121 |
+
return arg
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def normalize_casting(arg, parm=None):
|
| 125 |
+
if arg not in ["no", "equiv", "safe", "same_kind", "unsafe"]:
|
| 126 |
+
raise ValueError(
|
| 127 |
+
f"casting must be one of 'no', 'equiv', 'safe', 'same_kind', or 'unsafe' (got '{arg}')"
|
| 128 |
+
)
|
| 129 |
+
return arg
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
normalizers = {
|
| 133 |
+
"ArrayLike": normalize_array_like,
|
| 134 |
+
"ArrayLikeOrScalar": normalize_array_like_or_scalar,
|
| 135 |
+
"Optional[ArrayLike]": normalize_optional_array_like,
|
| 136 |
+
"Sequence[ArrayLike]": normalize_seq_array_like,
|
| 137 |
+
"Optional[ArrayLikeOrScalar]": normalize_optional_array_like_or_scalar,
|
| 138 |
+
"Optional[NDArray]": normalize_ndarray,
|
| 139 |
+
"Optional[OutArray]": normalize_outarray,
|
| 140 |
+
"NDArray": normalize_ndarray,
|
| 141 |
+
"Optional[DTypeLike]": normalize_dtype,
|
| 142 |
+
"AxisLike": normalize_axis_like,
|
| 143 |
+
"NotImplementedType": normalize_not_implemented,
|
| 144 |
+
"Optional[CastingModes]": normalize_casting,
|
| 145 |
+
}
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def maybe_normalize(arg, parm):
|
| 149 |
+
"""Normalize arg if a normalizer is registered."""
|
| 150 |
+
normalizer = normalizers.get(parm.annotation, None)
|
| 151 |
+
return normalizer(arg, parm) if normalizer else arg
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
# ### Return value helpers ###
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def maybe_copy_to(out, result, promote_scalar_result=False):
|
| 158 |
+
# NB: here out is either an ndarray or None
|
| 159 |
+
if out is None:
|
| 160 |
+
return result
|
| 161 |
+
elif isinstance(result, torch.Tensor):
|
| 162 |
+
if result.shape != out.shape:
|
| 163 |
+
can_fit = result.numel() == 1 and out.ndim == 0
|
| 164 |
+
if promote_scalar_result and can_fit:
|
| 165 |
+
result = result.squeeze()
|
| 166 |
+
else:
|
| 167 |
+
raise ValueError(
|
| 168 |
+
f"Bad size of the out array: out.shape = {out.shape}"
|
| 169 |
+
f" while result.shape = {result.shape}."
|
| 170 |
+
)
|
| 171 |
+
out.tensor.copy_(result)
|
| 172 |
+
return out
|
| 173 |
+
elif isinstance(result, (tuple, list)):
|
| 174 |
+
return type(result)(
|
| 175 |
+
maybe_copy_to(o, r, promote_scalar_result) for o, r in zip(out, result)
|
| 176 |
+
)
|
| 177 |
+
else:
|
| 178 |
+
raise AssertionError # We should never hit this path
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def wrap_tensors(result):
|
| 182 |
+
from ._ndarray import ndarray
|
| 183 |
+
|
| 184 |
+
if isinstance(result, torch.Tensor):
|
| 185 |
+
return ndarray(result)
|
| 186 |
+
elif isinstance(result, (tuple, list)):
|
| 187 |
+
result = type(result)(wrap_tensors(x) for x in result)
|
| 188 |
+
return result
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def array_or_scalar(values, py_type=float, return_scalar=False):
|
| 192 |
+
if return_scalar:
|
| 193 |
+
return py_type(values.item())
|
| 194 |
+
else:
|
| 195 |
+
from ._ndarray import ndarray
|
| 196 |
+
|
| 197 |
+
return ndarray(values)
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
# ### The main decorator to normalize arguments / postprocess the output ###
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def normalizer(_func=None, *, promote_scalar_result=False):
|
| 204 |
+
def normalizer_inner(func):
|
| 205 |
+
@functools.wraps(func)
|
| 206 |
+
def wrapped(*args, **kwds):
|
| 207 |
+
sig = inspect.signature(func)
|
| 208 |
+
params = sig.parameters
|
| 209 |
+
first_param = next(iter(params.values()))
|
| 210 |
+
|
| 211 |
+
# NumPy's API does not have positional args before variadic positional args
|
| 212 |
+
if first_param.kind == inspect.Parameter.VAR_POSITIONAL:
|
| 213 |
+
args = [maybe_normalize(arg, first_param) for arg in args]
|
| 214 |
+
else:
|
| 215 |
+
# NB: extra unknown arguments: pass through, will raise in func(*args) below
|
| 216 |
+
args = (
|
| 217 |
+
tuple(
|
| 218 |
+
maybe_normalize(arg, parm)
|
| 219 |
+
for arg, parm in zip(args, params.values())
|
| 220 |
+
)
|
| 221 |
+
+ args[len(params.values()) :]
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
kwds = {
|
| 225 |
+
name: maybe_normalize(arg, params[name]) if name in params else arg
|
| 226 |
+
for name, arg in kwds.items()
|
| 227 |
+
}
|
| 228 |
+
|
| 229 |
+
result = func(*args, **kwds)
|
| 230 |
+
|
| 231 |
+
# keepdims
|
| 232 |
+
bound_args = None
|
| 233 |
+
if "keepdims" in params and params["keepdims"].annotation == "KeepDims":
|
| 234 |
+
# keepdims can be in any position so we need sig.bind
|
| 235 |
+
bound_args = sig.bind(*args, **kwds).arguments
|
| 236 |
+
if bound_args.get("keepdims", False):
|
| 237 |
+
# In this case the first arg is the initial tensor and
|
| 238 |
+
# the second arg is (optionally) the axis
|
| 239 |
+
tensor = args[0]
|
| 240 |
+
axis = bound_args.get("axis")
|
| 241 |
+
result = _util.apply_keepdims(result, axis, tensor.ndim)
|
| 242 |
+
|
| 243 |
+
# out
|
| 244 |
+
if "out" in params:
|
| 245 |
+
# out can be in any position so we need sig.bind
|
| 246 |
+
if bound_args is None:
|
| 247 |
+
bound_args = sig.bind(*args, **kwds).arguments
|
| 248 |
+
out = bound_args.get("out")
|
| 249 |
+
result = maybe_copy_to(out, result, promote_scalar_result)
|
| 250 |
+
result = wrap_tensors(result)
|
| 251 |
+
|
| 252 |
+
return result
|
| 253 |
+
|
| 254 |
+
return wrapped
|
| 255 |
+
|
| 256 |
+
if _func is None:
|
| 257 |
+
return normalizer_inner
|
| 258 |
+
else:
|
| 259 |
+
return normalizer_inner(_func)
|
infer_4_47_1/lib/python3.10/site-packages/torch/_numpy/_reductions_impl.py
ADDED
|
@@ -0,0 +1,459 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# mypy: ignore-errors
|
| 2 |
+
|
| 3 |
+
""" Implementation of reduction operations, to be wrapped into arrays, dtypes etc
|
| 4 |
+
in the 'public' layer.
|
| 5 |
+
|
| 6 |
+
Anything here only deals with torch objects, e.g. "dtype" is a torch.dtype instance etc
|
| 7 |
+
"""
|
| 8 |
+
from __future__ import annotations
|
| 9 |
+
|
| 10 |
+
import functools
|
| 11 |
+
from typing import Optional, TYPE_CHECKING
|
| 12 |
+
|
| 13 |
+
import torch
|
| 14 |
+
|
| 15 |
+
from . import _dtypes_impl, _util
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
if TYPE_CHECKING:
|
| 19 |
+
from ._normalizations import (
|
| 20 |
+
ArrayLike,
|
| 21 |
+
AxisLike,
|
| 22 |
+
DTypeLike,
|
| 23 |
+
KeepDims,
|
| 24 |
+
NotImplementedType,
|
| 25 |
+
OutArray,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def _deco_axis_expand(func):
|
| 30 |
+
"""
|
| 31 |
+
Generically handle axis arguments in reductions.
|
| 32 |
+
axis is *always* the 2nd arg in the function so no need to have a look at its signature
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
@functools.wraps(func)
|
| 36 |
+
def wrapped(a, axis=None, *args, **kwds):
|
| 37 |
+
if axis is not None:
|
| 38 |
+
axis = _util.normalize_axis_tuple(axis, a.ndim)
|
| 39 |
+
|
| 40 |
+
if axis == ():
|
| 41 |
+
# So we insert a length-one axis and run the reduction along it.
|
| 42 |
+
# We cannot return a.clone() as this would sidestep the checks inside the function
|
| 43 |
+
newshape = _util.expand_shape(a.shape, axis=0)
|
| 44 |
+
a = a.reshape(newshape)
|
| 45 |
+
axis = (0,)
|
| 46 |
+
|
| 47 |
+
return func(a, axis, *args, **kwds)
|
| 48 |
+
|
| 49 |
+
return wrapped
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def _atleast_float(dtype, other_dtype):
|
| 53 |
+
"""Return a dtype that is real or complex floating-point.
|
| 54 |
+
|
| 55 |
+
For inputs that are boolean or integer dtypes, this returns the default
|
| 56 |
+
float dtype; inputs that are complex get converted to the default complex
|
| 57 |
+
dtype; real floating-point dtypes (`float*`) get passed through unchanged
|
| 58 |
+
"""
|
| 59 |
+
if dtype is None:
|
| 60 |
+
dtype = other_dtype
|
| 61 |
+
if not (dtype.is_floating_point or dtype.is_complex):
|
| 62 |
+
return _dtypes_impl.default_dtypes().float_dtype
|
| 63 |
+
return dtype
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
@_deco_axis_expand
|
| 67 |
+
def count_nonzero(a: ArrayLike, axis: AxisLike = None, *, keepdims: KeepDims = False):
|
| 68 |
+
return a.count_nonzero(axis)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
@_deco_axis_expand
|
| 72 |
+
def argmax(
|
| 73 |
+
a: ArrayLike,
|
| 74 |
+
axis: AxisLike = None,
|
| 75 |
+
out: Optional[OutArray] = None,
|
| 76 |
+
*,
|
| 77 |
+
keepdims: KeepDims = False,
|
| 78 |
+
):
|
| 79 |
+
if a.is_complex():
|
| 80 |
+
raise NotImplementedError(f"argmax with dtype={a.dtype}.")
|
| 81 |
+
|
| 82 |
+
axis = _util.allow_only_single_axis(axis)
|
| 83 |
+
|
| 84 |
+
if a.dtype == torch.bool:
|
| 85 |
+
# RuntimeError: "argmax_cpu" not implemented for 'Bool'
|
| 86 |
+
a = a.to(torch.uint8)
|
| 87 |
+
|
| 88 |
+
return torch.argmax(a, axis)
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
@_deco_axis_expand
|
| 92 |
+
def argmin(
|
| 93 |
+
a: ArrayLike,
|
| 94 |
+
axis: AxisLike = None,
|
| 95 |
+
out: Optional[OutArray] = None,
|
| 96 |
+
*,
|
| 97 |
+
keepdims: KeepDims = False,
|
| 98 |
+
):
|
| 99 |
+
if a.is_complex():
|
| 100 |
+
raise NotImplementedError(f"argmin with dtype={a.dtype}.")
|
| 101 |
+
|
| 102 |
+
axis = _util.allow_only_single_axis(axis)
|
| 103 |
+
|
| 104 |
+
if a.dtype == torch.bool:
|
| 105 |
+
# RuntimeError: "argmin_cpu" not implemented for 'Bool'
|
| 106 |
+
a = a.to(torch.uint8)
|
| 107 |
+
|
| 108 |
+
return torch.argmin(a, axis)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
@_deco_axis_expand
|
| 112 |
+
def any(
|
| 113 |
+
a: ArrayLike,
|
| 114 |
+
axis: AxisLike = None,
|
| 115 |
+
out: Optional[OutArray] = None,
|
| 116 |
+
keepdims: KeepDims = False,
|
| 117 |
+
*,
|
| 118 |
+
where: NotImplementedType = None,
|
| 119 |
+
):
|
| 120 |
+
axis = _util.allow_only_single_axis(axis)
|
| 121 |
+
axis_kw = {} if axis is None else {"dim": axis}
|
| 122 |
+
return torch.any(a, **axis_kw)
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
@_deco_axis_expand
|
| 126 |
+
def all(
|
| 127 |
+
a: ArrayLike,
|
| 128 |
+
axis: AxisLike = None,
|
| 129 |
+
out: Optional[OutArray] = None,
|
| 130 |
+
keepdims: KeepDims = False,
|
| 131 |
+
*,
|
| 132 |
+
where: NotImplementedType = None,
|
| 133 |
+
):
|
| 134 |
+
axis = _util.allow_only_single_axis(axis)
|
| 135 |
+
axis_kw = {} if axis is None else {"dim": axis}
|
| 136 |
+
return torch.all(a, **axis_kw)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
@_deco_axis_expand
|
| 140 |
+
def amax(
|
| 141 |
+
a: ArrayLike,
|
| 142 |
+
axis: AxisLike = None,
|
| 143 |
+
out: Optional[OutArray] = None,
|
| 144 |
+
keepdims: KeepDims = False,
|
| 145 |
+
initial: NotImplementedType = None,
|
| 146 |
+
where: NotImplementedType = None,
|
| 147 |
+
):
|
| 148 |
+
if a.is_complex():
|
| 149 |
+
raise NotImplementedError(f"amax with dtype={a.dtype}")
|
| 150 |
+
|
| 151 |
+
return a.amax(axis)
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
max = amax
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
@_deco_axis_expand
|
| 158 |
+
def amin(
|
| 159 |
+
a: ArrayLike,
|
| 160 |
+
axis: AxisLike = None,
|
| 161 |
+
out: Optional[OutArray] = None,
|
| 162 |
+
keepdims: KeepDims = False,
|
| 163 |
+
initial: NotImplementedType = None,
|
| 164 |
+
where: NotImplementedType = None,
|
| 165 |
+
):
|
| 166 |
+
if a.is_complex():
|
| 167 |
+
raise NotImplementedError(f"amin with dtype={a.dtype}")
|
| 168 |
+
|
| 169 |
+
return a.amin(axis)
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
min = amin
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
@_deco_axis_expand
|
| 176 |
+
def ptp(
|
| 177 |
+
a: ArrayLike,
|
| 178 |
+
axis: AxisLike = None,
|
| 179 |
+
out: Optional[OutArray] = None,
|
| 180 |
+
keepdims: KeepDims = False,
|
| 181 |
+
):
|
| 182 |
+
return a.amax(axis) - a.amin(axis)
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
@_deco_axis_expand
|
| 186 |
+
def sum(
|
| 187 |
+
a: ArrayLike,
|
| 188 |
+
axis: AxisLike = None,
|
| 189 |
+
dtype: Optional[DTypeLike] = None,
|
| 190 |
+
out: Optional[OutArray] = None,
|
| 191 |
+
keepdims: KeepDims = False,
|
| 192 |
+
initial: NotImplementedType = None,
|
| 193 |
+
where: NotImplementedType = None,
|
| 194 |
+
):
|
| 195 |
+
assert dtype is None or isinstance(dtype, torch.dtype)
|
| 196 |
+
|
| 197 |
+
if dtype == torch.bool:
|
| 198 |
+
dtype = _dtypes_impl.default_dtypes().int_dtype
|
| 199 |
+
|
| 200 |
+
axis_kw = {} if axis is None else {"dim": axis}
|
| 201 |
+
return a.sum(dtype=dtype, **axis_kw)
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
@_deco_axis_expand
|
| 205 |
+
def prod(
|
| 206 |
+
a: ArrayLike,
|
| 207 |
+
axis: AxisLike = None,
|
| 208 |
+
dtype: Optional[DTypeLike] = None,
|
| 209 |
+
out: Optional[OutArray] = None,
|
| 210 |
+
keepdims: KeepDims = False,
|
| 211 |
+
initial: NotImplementedType = None,
|
| 212 |
+
where: NotImplementedType = None,
|
| 213 |
+
):
|
| 214 |
+
axis = _util.allow_only_single_axis(axis)
|
| 215 |
+
|
| 216 |
+
if dtype == torch.bool:
|
| 217 |
+
dtype = _dtypes_impl.default_dtypes().int_dtype
|
| 218 |
+
|
| 219 |
+
axis_kw = {} if axis is None else {"dim": axis}
|
| 220 |
+
return a.prod(dtype=dtype, **axis_kw)
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
product = prod
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
@_deco_axis_expand
|
| 227 |
+
def mean(
|
| 228 |
+
a: ArrayLike,
|
| 229 |
+
axis: AxisLike = None,
|
| 230 |
+
dtype: Optional[DTypeLike] = None,
|
| 231 |
+
out: Optional[OutArray] = None,
|
| 232 |
+
keepdims: KeepDims = False,
|
| 233 |
+
*,
|
| 234 |
+
where: NotImplementedType = None,
|
| 235 |
+
):
|
| 236 |
+
dtype = _atleast_float(dtype, a.dtype)
|
| 237 |
+
|
| 238 |
+
axis_kw = {} if axis is None else {"dim": axis}
|
| 239 |
+
result = a.mean(dtype=dtype, **axis_kw)
|
| 240 |
+
|
| 241 |
+
return result
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
@_deco_axis_expand
|
| 245 |
+
def std(
|
| 246 |
+
a: ArrayLike,
|
| 247 |
+
axis: AxisLike = None,
|
| 248 |
+
dtype: Optional[DTypeLike] = None,
|
| 249 |
+
out: Optional[OutArray] = None,
|
| 250 |
+
ddof=0,
|
| 251 |
+
keepdims: KeepDims = False,
|
| 252 |
+
*,
|
| 253 |
+
where: NotImplementedType = None,
|
| 254 |
+
):
|
| 255 |
+
in_dtype = dtype
|
| 256 |
+
dtype = _atleast_float(dtype, a.dtype)
|
| 257 |
+
tensor = _util.cast_if_needed(a, dtype)
|
| 258 |
+
result = tensor.std(dim=axis, correction=ddof)
|
| 259 |
+
return _util.cast_if_needed(result, in_dtype)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
@_deco_axis_expand
|
| 263 |
+
def var(
|
| 264 |
+
a: ArrayLike,
|
| 265 |
+
axis: AxisLike = None,
|
| 266 |
+
dtype: Optional[DTypeLike] = None,
|
| 267 |
+
out: Optional[OutArray] = None,
|
| 268 |
+
ddof=0,
|
| 269 |
+
keepdims: KeepDims = False,
|
| 270 |
+
*,
|
| 271 |
+
where: NotImplementedType = None,
|
| 272 |
+
):
|
| 273 |
+
in_dtype = dtype
|
| 274 |
+
dtype = _atleast_float(dtype, a.dtype)
|
| 275 |
+
tensor = _util.cast_if_needed(a, dtype)
|
| 276 |
+
result = tensor.var(dim=axis, correction=ddof)
|
| 277 |
+
return _util.cast_if_needed(result, in_dtype)
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
# cumsum / cumprod are almost reductions:
|
| 281 |
+
# 1. no keepdims
|
| 282 |
+
# 2. axis=None flattens
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
def cumsum(
|
| 286 |
+
a: ArrayLike,
|
| 287 |
+
axis: AxisLike = None,
|
| 288 |
+
dtype: Optional[DTypeLike] = None,
|
| 289 |
+
out: Optional[OutArray] = None,
|
| 290 |
+
):
|
| 291 |
+
if dtype == torch.bool:
|
| 292 |
+
dtype = _dtypes_impl.default_dtypes().int_dtype
|
| 293 |
+
if dtype is None:
|
| 294 |
+
dtype = a.dtype
|
| 295 |
+
|
| 296 |
+
(a,), axis = _util.axis_none_flatten(a, axis=axis)
|
| 297 |
+
axis = _util.normalize_axis_index(axis, a.ndim)
|
| 298 |
+
|
| 299 |
+
return a.cumsum(axis=axis, dtype=dtype)
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
def cumprod(
|
| 303 |
+
a: ArrayLike,
|
| 304 |
+
axis: AxisLike = None,
|
| 305 |
+
dtype: Optional[DTypeLike] = None,
|
| 306 |
+
out: Optional[OutArray] = None,
|
| 307 |
+
):
|
| 308 |
+
if dtype == torch.bool:
|
| 309 |
+
dtype = _dtypes_impl.default_dtypes().int_dtype
|
| 310 |
+
if dtype is None:
|
| 311 |
+
dtype = a.dtype
|
| 312 |
+
|
| 313 |
+
(a,), axis = _util.axis_none_flatten(a, axis=axis)
|
| 314 |
+
axis = _util.normalize_axis_index(axis, a.ndim)
|
| 315 |
+
|
| 316 |
+
return a.cumprod(axis=axis, dtype=dtype)
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
cumproduct = cumprod
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
def average(
|
| 323 |
+
a: ArrayLike,
|
| 324 |
+
axis=None,
|
| 325 |
+
weights: ArrayLike = None,
|
| 326 |
+
returned=False,
|
| 327 |
+
*,
|
| 328 |
+
keepdims=False,
|
| 329 |
+
):
|
| 330 |
+
if weights is None:
|
| 331 |
+
result = mean(a, axis=axis)
|
| 332 |
+
wsum = torch.as_tensor(a.numel() / result.numel(), dtype=result.dtype)
|
| 333 |
+
else:
|
| 334 |
+
if not a.dtype.is_floating_point:
|
| 335 |
+
a = a.double()
|
| 336 |
+
|
| 337 |
+
# axis & weights
|
| 338 |
+
if a.shape != weights.shape:
|
| 339 |
+
if axis is None:
|
| 340 |
+
raise TypeError(
|
| 341 |
+
"Axis must be specified when shapes of a and weights differ."
|
| 342 |
+
)
|
| 343 |
+
if weights.ndim != 1:
|
| 344 |
+
raise TypeError(
|
| 345 |
+
"1D weights expected when shapes of a and weights differ."
|
| 346 |
+
)
|
| 347 |
+
if weights.shape[0] != a.shape[axis]:
|
| 348 |
+
raise ValueError(
|
| 349 |
+
"Length of weights not compatible with specified axis."
|
| 350 |
+
)
|
| 351 |
+
|
| 352 |
+
# setup weight to broadcast along axis
|
| 353 |
+
weights = torch.broadcast_to(weights, (a.ndim - 1) * (1,) + weights.shape)
|
| 354 |
+
weights = weights.swapaxes(-1, axis)
|
| 355 |
+
|
| 356 |
+
# do the work
|
| 357 |
+
result_dtype = _dtypes_impl.result_type_impl(a, weights)
|
| 358 |
+
numerator = sum(a * weights, axis, dtype=result_dtype)
|
| 359 |
+
wsum = sum(weights, axis, dtype=result_dtype)
|
| 360 |
+
result = numerator / wsum
|
| 361 |
+
|
| 362 |
+
# We process keepdims manually because the decorator does not deal with variadic returns
|
| 363 |
+
if keepdims:
|
| 364 |
+
result = _util.apply_keepdims(result, axis, a.ndim)
|
| 365 |
+
|
| 366 |
+
if returned:
|
| 367 |
+
if wsum.shape != result.shape:
|
| 368 |
+
wsum = torch.broadcast_to(wsum, result.shape).clone()
|
| 369 |
+
return result, wsum
|
| 370 |
+
else:
|
| 371 |
+
return result
|
| 372 |
+
|
| 373 |
+
|
| 374 |
+
# Not using deco_axis_expand as it assumes that axis is the second arg
|
| 375 |
+
def quantile(
|
| 376 |
+
a: ArrayLike,
|
| 377 |
+
q: ArrayLike,
|
| 378 |
+
axis: AxisLike = None,
|
| 379 |
+
out: Optional[OutArray] = None,
|
| 380 |
+
overwrite_input=False,
|
| 381 |
+
method="linear",
|
| 382 |
+
keepdims: KeepDims = False,
|
| 383 |
+
*,
|
| 384 |
+
interpolation: NotImplementedType = None,
|
| 385 |
+
):
|
| 386 |
+
if overwrite_input:
|
| 387 |
+
# raise NotImplementedError("overwrite_input in quantile not implemented.")
|
| 388 |
+
# NumPy documents that `overwrite_input` MAY modify inputs:
|
| 389 |
+
# https://numpy.org/doc/stable/reference/generated/numpy.percentile.html#numpy-percentile
|
| 390 |
+
# Here we choose to work out-of-place because why not.
|
| 391 |
+
pass
|
| 392 |
+
|
| 393 |
+
if not a.dtype.is_floating_point:
|
| 394 |
+
dtype = _dtypes_impl.default_dtypes().float_dtype
|
| 395 |
+
a = a.to(dtype)
|
| 396 |
+
|
| 397 |
+
# edge case: torch.quantile only supports float32 and float64
|
| 398 |
+
if a.dtype == torch.float16:
|
| 399 |
+
a = a.to(torch.float32)
|
| 400 |
+
|
| 401 |
+
if axis is None:
|
| 402 |
+
a = a.flatten()
|
| 403 |
+
q = q.flatten()
|
| 404 |
+
axis = (0,)
|
| 405 |
+
else:
|
| 406 |
+
axis = _util.normalize_axis_tuple(axis, a.ndim)
|
| 407 |
+
|
| 408 |
+
# FIXME(Mario) Doesn't np.quantile accept a tuple?
|
| 409 |
+
# torch.quantile does accept a number. If we don't want to implement the tuple behaviour
|
| 410 |
+
# (it's deffo low prio) change `normalize_axis_tuple` into a normalize_axis index above.
|
| 411 |
+
axis = _util.allow_only_single_axis(axis)
|
| 412 |
+
|
| 413 |
+
q = _util.cast_if_needed(q, a.dtype)
|
| 414 |
+
|
| 415 |
+
return torch.quantile(a, q, axis=axis, interpolation=method)
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
def percentile(
|
| 419 |
+
a: ArrayLike,
|
| 420 |
+
q: ArrayLike,
|
| 421 |
+
axis: AxisLike = None,
|
| 422 |
+
out: Optional[OutArray] = None,
|
| 423 |
+
overwrite_input=False,
|
| 424 |
+
method="linear",
|
| 425 |
+
keepdims: KeepDims = False,
|
| 426 |
+
*,
|
| 427 |
+
interpolation: NotImplementedType = None,
|
| 428 |
+
):
|
| 429 |
+
# np.percentile(float_tensor, 30) : q.dtype is int64 => q / 100.0 is float32
|
| 430 |
+
if _dtypes_impl.python_type_for_torch(q.dtype) == int:
|
| 431 |
+
q = q.to(_dtypes_impl.default_dtypes().float_dtype)
|
| 432 |
+
qq = q / 100.0
|
| 433 |
+
|
| 434 |
+
return quantile(
|
| 435 |
+
a,
|
| 436 |
+
qq,
|
| 437 |
+
axis=axis,
|
| 438 |
+
overwrite_input=overwrite_input,
|
| 439 |
+
method=method,
|
| 440 |
+
keepdims=keepdims,
|
| 441 |
+
interpolation=interpolation,
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
def median(
|
| 446 |
+
a: ArrayLike,
|
| 447 |
+
axis=None,
|
| 448 |
+
out: Optional[OutArray] = None,
|
| 449 |
+
overwrite_input=False,
|
| 450 |
+
keepdims: KeepDims = False,
|
| 451 |
+
):
|
| 452 |
+
return quantile(
|
| 453 |
+
a,
|
| 454 |
+
torch.as_tensor(0.5),
|
| 455 |
+
axis=axis,
|
| 456 |
+
overwrite_input=overwrite_input,
|
| 457 |
+
out=out,
|
| 458 |
+
keepdims=keepdims,
|
| 459 |
+
)
|