ZTWHHH commited on
Commit
6b07a2a
·
verified ·
1 Parent(s): 641d60d

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +5 -0
  2. infer_4_47_1/lib/python3.10/site-packages/skimage/data/README.txt +9 -0
  3. infer_4_47_1/lib/python3.10/site-packages/skimage/data/_registry.py +184 -0
  4. infer_4_47_1/lib/python3.10/site-packages/skimage/data/multipage.tif +0 -0
  5. infer_4_47_1/lib/python3.10/site-packages/skimage/draw/__init__.py +5 -0
  6. infer_4_47_1/lib/python3.10/site-packages/skimage/draw/__pycache__/__init__.cpython-310.pyc +0 -0
  7. infer_4_47_1/lib/python3.10/site-packages/skimage/draw/__pycache__/draw.cpython-310.pyc +0 -0
  8. infer_4_47_1/lib/python3.10/site-packages/skimage/draw/__pycache__/draw_nd.cpython-310.pyc +0 -0
  9. infer_4_47_1/lib/python3.10/site-packages/skimage/draw/_polygon2mask.py +74 -0
  10. infer_4_47_1/lib/python3.10/site-packages/skimage/draw/_random_shapes.py +459 -0
  11. infer_4_47_1/lib/python3.10/site-packages/skimage/draw/draw.py +973 -0
  12. infer_4_47_1/lib/python3.10/site-packages/skimage/draw/draw3d.py +107 -0
  13. infer_4_47_1/lib/python3.10/site-packages/skimage/draw/draw_nd.py +108 -0
  14. infer_4_47_1/lib/python3.10/site-packages/skimage/draw/tests/__init__.py +0 -0
  15. infer_4_47_1/lib/python3.10/site-packages/skimage/draw/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  16. infer_4_47_1/lib/python3.10/site-packages/skimage/draw/tests/__pycache__/test_draw_nd.cpython-310.pyc +0 -0
  17. infer_4_47_1/lib/python3.10/site-packages/skimage/draw/tests/__pycache__/test_random_shapes.cpython-310.pyc +0 -0
  18. infer_4_47_1/lib/python3.10/site-packages/skimage/draw/tests/test_draw.py +1261 -0
  19. infer_4_47_1/lib/python3.10/site-packages/skimage/draw/tests/test_draw3d.py +224 -0
  20. infer_4_47_1/lib/python3.10/site-packages/skimage/draw/tests/test_draw_nd.py +18 -0
  21. infer_4_47_1/lib/python3.10/site-packages/skimage/draw/tests/test_polygon2mask.py +15 -0
  22. infer_4_47_1/lib/python3.10/site-packages/skimage/draw/tests/test_random_shapes.py +178 -0
  23. infer_4_47_1/lib/python3.10/site-packages/skimage/feature/_texture.cpython-310-x86_64-linux-gnu.so +3 -0
  24. infer_4_47_1/lib/python3.10/site-packages/skimage/morphology/__pycache__/_util.cpython-310.pyc +0 -0
  25. infer_4_47_1/lib/python3.10/site-packages/skimage/morphology/__pycache__/gray.cpython-310.pyc +0 -0
  26. infer_4_47_1/lib/python3.10/site-packages/skimage/morphology/_convex_hull.cpython-310-x86_64-linux-gnu.so +3 -0
  27. infer_4_47_1/lib/python3.10/site-packages/skimage/morphology/_grayreconstruct.cpython-310-x86_64-linux-gnu.so +3 -0
  28. infer_4_47_1/lib/python3.10/site-packages/skimage/morphology/ball_decompositions.npy +3 -0
  29. infer_4_47_1/lib/python3.10/site-packages/skimage/morphology/tests/__pycache__/test_skeletonize.cpython-310.pyc +0 -0
  30. infer_4_47_1/lib/python3.10/site-packages/skimage/registration/__init__.py +5 -0
  31. infer_4_47_1/lib/python3.10/site-packages/skimage/registration/__init__.pyi +8 -0
  32. infer_4_47_1/lib/python3.10/site-packages/skimage/registration/__pycache__/__init__.cpython-310.pyc +0 -0
  33. infer_4_47_1/lib/python3.10/site-packages/skimage/registration/__pycache__/_masked_phase_cross_correlation.cpython-310.pyc +0 -0
  34. infer_4_47_1/lib/python3.10/site-packages/skimage/registration/__pycache__/_optical_flow.cpython-310.pyc +0 -0
  35. infer_4_47_1/lib/python3.10/site-packages/skimage/registration/__pycache__/_phase_cross_correlation.cpython-310.pyc +0 -0
  36. infer_4_47_1/lib/python3.10/site-packages/skimage/registration/_masked_phase_cross_correlation.py +306 -0
  37. infer_4_47_1/lib/python3.10/site-packages/skimage/registration/_optical_flow.py +429 -0
  38. infer_4_47_1/lib/python3.10/site-packages/skimage/registration/_optical_flow_utils.py +150 -0
  39. infer_4_47_1/lib/python3.10/site-packages/skimage/registration/_phase_cross_correlation.py +420 -0
  40. infer_4_47_1/lib/python3.10/site-packages/skimage/registration/tests/__init__.py +0 -0
  41. infer_4_47_1/lib/python3.10/site-packages/skimage/registration/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  42. infer_4_47_1/lib/python3.10/site-packages/skimage/registration/tests/__pycache__/test_ilk.cpython-310.pyc +0 -0
  43. infer_4_47_1/lib/python3.10/site-packages/skimage/registration/tests/__pycache__/test_masked_phase_cross_correlation.cpython-310.pyc +0 -0
  44. infer_4_47_1/lib/python3.10/site-packages/skimage/registration/tests/__pycache__/test_phase_cross_correlation.cpython-310.pyc +0 -0
  45. infer_4_47_1/lib/python3.10/site-packages/skimage/registration/tests/__pycache__/test_tvl1.cpython-310.pyc +0 -0
  46. infer_4_47_1/lib/python3.10/site-packages/skimage/registration/tests/test_ilk.py +101 -0
  47. infer_4_47_1/lib/python3.10/site-packages/skimage/registration/tests/test_masked_phase_cross_correlation.py +278 -0
  48. infer_4_47_1/lib/python3.10/site-packages/skimage/registration/tests/test_phase_cross_correlation.py +251 -0
  49. infer_4_47_1/lib/python3.10/site-packages/skimage/registration/tests/test_tvl1.py +118 -0
  50. infer_4_47_1/lib/python3.10/site-packages/skimage/transform/__init__.pyi +86 -0
.gitattributes CHANGED
@@ -884,3 +884,8 @@ infer_4_47_1/lib/python3.10/site-packages/skimage/morphology/_skeletonize_variou
884
  infer_4_47_1/lib/python3.10/site-packages/skimage/filters/rank/core_cy_3d.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
885
  infer_4_47_1/lib/python3.10/site-packages/skimage/morphology/_extrema_cy.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
886
  infer_4_47_1/lib/python3.10/site-packages/skimage/morphology/_skeletonize_lee_cy.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
884
  infer_4_47_1/lib/python3.10/site-packages/skimage/filters/rank/core_cy_3d.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
885
  infer_4_47_1/lib/python3.10/site-packages/skimage/morphology/_extrema_cy.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
886
  infer_4_47_1/lib/python3.10/site-packages/skimage/morphology/_skeletonize_lee_cy.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
887
+ infer_4_47_1/lib/python3.10/site-packages/skimage/morphology/_grayreconstruct.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
888
+ infer_4_47_1/lib/python3.10/site-packages/skimage/morphology/_convex_hull.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
889
+ infer_4_47_1/lib/python3.10/site-packages/skimage/transform/_radon_transform.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
890
+ infer_4_47_1/lib/python3.10/site-packages/skimage/feature/_texture.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
891
+ infer_4_47_1/lib/python3.10/site-packages/skimage/transform/_hough_transform.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
infer_4_47_1/lib/python3.10/site-packages/skimage/data/README.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ This directory contains sample data from scikit-image.
2
+
3
+ By default, it only contains a small subset of the entire dataset.
4
+
5
+ The full detaset can be downloaded by using the following commands from
6
+ a python console.
7
+
8
+ >>> from skimage.data import download_all
9
+ >>> download_all()
infer_4_47_1/lib/python3.10/site-packages/skimage/data/_registry.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This minimal dataset was available as part of
2
+ # scikit-image 0.15 and will be retained until
3
+ # further notice.
4
+ # Testing data and additional datasets should only
5
+ # be made available by pooch
6
+ legacy_datasets = [
7
+ 'astronaut.png',
8
+ 'brick.png',
9
+ 'camera.png',
10
+ 'chessboard_GRAY.png',
11
+ 'chessboard_RGB.png',
12
+ 'chelsea.png',
13
+ 'clock_motion.png',
14
+ 'coffee.png',
15
+ 'coins.png',
16
+ 'color.png',
17
+ 'cell.png',
18
+ 'grass.png',
19
+ 'gravel.png',
20
+ 'horse.png',
21
+ 'hubble_deep_field.jpg',
22
+ 'ihc.png',
23
+ 'lbpcascade_frontalface_opencv.xml',
24
+ 'lfw_subset.npy',
25
+ 'logo.png',
26
+ 'microaneurysms.png',
27
+ 'moon.png',
28
+ 'page.png',
29
+ 'text.png',
30
+ 'retina.jpg',
31
+ 'rocket.jpg',
32
+ 'phantom.png',
33
+ 'motorcycle_disp.npz',
34
+ 'motorcycle_left.png',
35
+ 'motorcycle_right.png',
36
+ ]
37
+
38
+ # Registry of datafiles that can be downloaded along with their SHA256 hashes
39
+ # To generate the SHA256 hash, use the command
40
+ # openssl sha256 filename
41
+ registry = {
42
+ "color/tests/data/lab_array_a_10.npy": "a3ef76f1530e374f9121020f1f220bc89767dc866f4bbd1b1f47e5b84891a38c",
43
+ "color/tests/data/lab_array_a_2.npy": "793d5981cbffceb14b5fb589f998a2b1acdb5ff9c14d364c8e9e8bd45a80b275",
44
+ "color/tests/data/lab_array_a_r.npy": "3d3613da109d0c87827525fc49b58111aefc12438fa6426654979f66807b9227",
45
+ "color/tests/data/lab_array_b_10.npy": "e8d648b28077c1bfcef55ec6dc8679819612b56a01647f8c0a78625bb06f99b6",
46
+ "color/tests/data/lab_array_b_2.npy": "da9c6aa99e4ab3af8ec3107bbf11647cc483a0760285dd5c9fb66988be393ca1",
47
+ "color/tests/data/lab_array_b_r.npy": "d9eee96f4d65a2fbba82039508aac8c18304752ee8e33233e2a013e65bb91464",
48
+ "color/tests/data/lab_array_c_10.npy": "88b4ff2a2d2c4f48e7bb265609221d4b9ef439a4e2d8a86989696bfdb47790e6",
49
+ "color/tests/data/lab_array_c_2.npy": "e1b8acfdc7284ab9cd339de66948134304073b6f734ecf9ad42f8297b83d3405",
50
+ "color/tests/data/lab_array_c_r.npy": "09ffba2ed69e467864fea883493cd2d2706da028433464e3e858a8086842867e",
51
+ "color/tests/data/lab_array_d50_10.npy": "42e2ff26cb10e2a98fcf1bc06c2483302ff4fabf971fe8d49b530f490b5d24c7",
52
+ "color/tests/data/lab_array_d50_2.npy": "4aa03b7018ff7276643d3c082123cf07304f9d8d898ae92a5756a86955de4faf",
53
+ "color/tests/data/lab_array_d50_r.npy": "57db02009f9a68dade33ce1ecffead0418d8ac8113b2a589fc02a20e6bf7e799",
54
+ "color/tests/data/lab_array_d55_10.npy": "ab4f21368b6d8351578ab093381c44b49ae87a6b7f25c11aa094b07f215eed7d",
55
+ "color/tests/data/lab_array_d55_2.npy": "0319723de4632a252bae828b7c96d038fb075a7df05beadfbad653da05efe372",
56
+ "color/tests/data/lab_array_d55_r.npy": "060ebc446f7b4da4df58a60f0006133dbca735da87ba61854f4a75d28db67a3a",
57
+ "color/tests/data/lab_array_d65_10.npy": "5cb9e9c384d2577aaf8b7d2d21ff5b505708b80605a2f59d10e89d22c3d308d2",
58
+ "color/tests/data/lab_array_d65_2.npy": "16e847160f7ba4f19806d8194ed44a6654c9367e5a2cb240aa6e7eece44a6649",
59
+ "color/tests/data/lab_array_d65_r.npy": "82d0dd7a46741f627b8868793e64cdc2f9944fe1e049b573f752a93760a1577c",
60
+ "color/tests/data/lab_array_d75_10.npy": "c2d3de5422c785c925926b0c6223aeaf50b9393619d1c30830190d433606cbe1",
61
+ "color/tests/data/lab_array_d75_2.npy": "c94d53da398d36e076471ff7e0dafcaffc64ce4ba33b4d04849c32d19c87494a",
62
+ "color/tests/data/lab_array_e_2.npy": "ac05f17a83961b020ceccbdd46bddc86943d43e678dabcc898caf4a1e4be6165",
63
+ "color/tests/data/luv_array_a_10.npy": "c8af67f9fd64a6e9c610ac0c12c5315a49ca229363f048e5d851409d4a3ae5b6",
64
+ "color/tests/data/luv_array_a_2.npy": "eaf05dc61f4a70ece367d5e751a14d42b7c397c7b1c2df4cfecec9ddf26e1c1a",
65
+ "color/tests/data/luv_array_a_r.npy": "2c0891add787ec757601f9c61ad14dd9621dd969af4e32753f2e64df437081b7",
66
+ "color/tests/data/luv_array_b_10.npy": "a5407736b8a43071139ca178d12cdf930f32f52a0644f0b13f89d8895c8b43db",
67
+ "color/tests/data/luv_array_b_2.npy": "8e74173d54dc549b6c0ebd1f1d70489d2905cad87744e41ed74384f21f22986d",
68
+ "color/tests/data/luv_array_b_r.npy": "0a74c41df369cbb5fc0a00c16d60dc6f946ebf144bc5e506545b0d160fa53dfa",
69
+ "color/tests/data/luv_array_c_10.npy": "3a5f975ffa57f69a1be9e02b153e8161f83040ce3002ea1b0a05b9fbdd0d8ec4",
70
+ "color/tests/data/luv_array_c_2.npy": "32506cd50ea2181997cb88d3511e275740e8151d6c693cd178f5eafd8b0c6e47",
71
+ "color/tests/data/luv_array_c_r.npy": "c0fbf98cc0e62ed426ab4d228986d6660089444a7bbfcc64cbb1c632644067bb",
72
+ "color/tests/data/luv_array_d50_10.npy": "fe223db556222ce3a59198bed3a3324c2c719b8083fb84dc5b00f214b4773b16",
73
+ "color/tests/data/luv_array_d50_2.npy": "48e8989048904bdf2c3c1ada265c1c29c5eff60f02f848a25cde622982c84901",
74
+ "color/tests/data/luv_array_d50_r.npy": "f93f0def9c93f872dd10ce4a91fdb3f06eea61ddb6e72387b7669909827d4f9c",
75
+ "color/tests/data/luv_array_d55_10.npy": "d88d53d2bad230c2331442187712ec52ffdee62bf0f60b200c33411bfed76c60",
76
+ "color/tests/data/luv_array_d55_2.npy": "c761b40475df591ae9c0475d54ef712d067190ca4652efc6308b69080a652061",
77
+ "color/tests/data/luv_array_d55_r.npy": "05fbd57e3602ee4d5202b9f18f9b5fc05b545891a9b4456d2a88aa798a5a774a",
78
+ "color/tests/data/luv_array_d65_10.npy": "41a5452ffac4d31dd579d9528e725432c60d77b5f505d801898d9401429c89bf",
79
+ "color/tests/data/luv_array_d65_2.npy": "962ce180132c6c11798cbc423b2b204d1d10187670f6eb5dec1058eaad301e0e",
80
+ "color/tests/data/luv_array_d65_r.npy": "78db8c19af26dd802ce98b039a33855f7c8d6a103a2721d094b1d9c619717449",
81
+ "color/tests/data/luv_array_d75_10.npy": "e1cc70d56eb6789633d4c2a4059b9533f616a7c8592c9bd342403e41d72f45e4",
82
+ "color/tests/data/luv_array_d75_2.npy": "07db3bd59bd89de8e5ff62dad786fe5f4b299133495ba9bea30495b375133a98",
83
+ "color/tests/data/luv_array_e_2.npy": "41b1037d81b267305ffe9e8e97e0affa9fa54b18e60413b01b8f11861cb32213",
84
+ "color/tests/ciede2000_test_data.txt": "2e005c6f76ddfb7bbcc8f68490f1f7b4b4a2a4b06b36a80c985677a2799c0e40",
85
+ "data/astronaut.png": "88431cd9653ccd539741b555fb0a46b61558b301d4110412b5bc28b5e3ea6cb5",
86
+ "data/brick.png": "7966caf324f6ba843118d98f7a07746d22f6a343430add0233eca5f6eaaa8fcf",
87
+ "data/cell.png": "8d23a7fb81f7cc877cd09f330357fc7f595651306e84e17252f6e0a1b3f61515",
88
+ "data/camera.png": "b0793d2adda0fa6ae899c03989482bff9a42d3d5690fc7e3648f2795d730c23a",
89
+ "data/chessboard_GRAY.png": "3e51870774515af4d07d820bd8827364c70839bf9b573c746e485095e893df90",
90
+ "data/chessboard_RGB.png": "1ac01eff2d4e50f4eda55a2ddecdc28a6576623a58d7a7ef84513c5cc19a0331",
91
+ "data/chelsea.png": "596aa1e7cb875eb79f437e310381d26b338a81c2da23439704a73c4651e8c4bb",
92
+ "data/clock_motion.png": "f029226b28b642e80113d86622e9b215ee067a0966feaf5e60604a1e05733955",
93
+ "data/coffee.png": "cc02f8ca188b167c775a7101b5d767d1e71792cf762c33d6fa15a4599b5a8de7",
94
+ "data/coins.png": "f8d773fc9cfa6f4d8e5942dc34d0a0788fcaed2a4fefbbed0aef5398d7ef4cba",
95
+ "data/color.png": "7d2df993de2b4fa2a78e04e5df8050f49a9c511aa75e59ab3bd56ac9c98aef7e",
96
+ "data/eagle.png": "928f1bbe7403b533265f56db3a6b07c835dfa8e2513f5c5075ca2f1960f6179e",
97
+ "data/horse.png": "c7fb60789fe394c485f842291ea3b21e50d140f39d6dcb5fb9917cc178225455",
98
+ "data/grass.png": "b6b6022426b38936c43a4ac09635cd78af074e90f42ffa8227ac8b7452d39f89",
99
+ "data/hubble_deep_field.jpg": "3a19c5dd8a927a9334bb1229a6d63711b1c0c767fb27e2286e7c84a3e2c2f5f4",
100
+ "data/ihc.png": "f8dd1aa387ddd1f49d8ad13b50921b237df8e9b262606d258770687b0ef93cef",
101
+ "data/logo.png": "f2c57fe8af089f08b5ba523d95573c26e62904ac5967f4c8851b27d033690168",
102
+ "data/lfw_subset.npy": "9560ec2f5edfac01973f63a8a99d00053fecd11e21877e18038fbe500f8e872c",
103
+ "data/microaneurysms.png": "a1e1be59aa447f8ce082f7fa809997ab369a2b137cb6c4202abc647c7ccf6456",
104
+ "data/moon.png": "78739619d11f7eb9c165bb5d2efd4772cee557812ec847532dbb1d92ef71f577",
105
+ "data/motorcycle_left.png": "db18e9c4157617403c3537a6ba355dfeafe9a7eabb6b9b94cb33f6525dd49179",
106
+ "data/motorcycle_right.png": "5fc913ae870e42a4b662314bc904d1786bcad8e2f0b9b67dba5a229406357797",
107
+ "data/motorcycle_disp.npz": "2e49c8cebff3fa20359a0cc6880c82e1c03bbb106da81a177218281bc2f113d7",
108
+ "data/mssim_matlab_output.npz": "cc11a14bfa040c75b02db32282439f2e2e3e96779196c171498afaa70528ed7a",
109
+ "data/page.png": "341a6f0a61557662b02734a9b6e56ec33a915b2c41886b97509dedf2a43b47a3",
110
+ "data/phantom.png": "552ff698167aa402cceb17981130607a228a0a0aa7c519299eaa4d5f301ba36c",
111
+ "data/retina.jpg": "38a07f36f27f095e818aea7b96d34202c05176d30253c66733f2e00379e9e0e6",
112
+ "data/rocket.jpg": "c2dd0de7c538df8d111e479619b129464d0269d0ae5fd18ca91d33a7fdfea95c",
113
+ "data/gravel.png": "c48615b451bf1e606fbd72c0aa9f8cc0f068ab7111ef7d93bb9b0f2586440c12",
114
+ "data/text.png": "bd84aa3a6e3c9887850d45d606c96b2e59433fbef50338570b63c319e668e6d1",
115
+ "data/chessboard_GRAY_U16.tif": "9fd3392c5b6cbc5f686d8ff83eb57ef91d038ee0852ac26817e5ac99df4c7f45",
116
+ "data/chessboard_GRAY_U16B.tif": "b0a9270751f0fc340c90b8b615b62b88187b9ab5995942717566735d523cddb2",
117
+ "data/chessboard_GRAY_U8.npy": "71f394694b721e8a33760a355b3666c9b7d7fc1188ff96b3cd23c2a1d73a38d8",
118
+ "data/lbpcascade_frontalface_opencv.xml": "03097789a3dcbb0e40d20b9ef82537dbc3b670b6a7f2268d735470f22e003a91",
119
+ "data/astronaut_GRAY_hog_L1.npy": "5d8ab22b166d1dd49c12caeff9d178ed28132efea3852b952e9d75f7f7f94954",
120
+ "data/astronaut_GRAY_hog_L2-Hys.npy": "c4dd6e50d1129aada358311cf8880ce8c775f31e0e550fc322c16e43a96d56fe",
121
+ "data/rank_filter_tests.npz": "efaf5699630f4a53255e91681dc72a965acd4a8aa1f84671c686fb93e7df046d",
122
+ "data/rank_filters_tests_3d.npz": "1741c2b978424e93558a07d345b2a0d9bfbb33c095c123da147fca066714ab16",
123
+ "data/multi.fits": "5c71a83436762a52b1925f2f0d83881af7765ed50aede155af2800e54bbd5040",
124
+ "data/simple.fits": "cd36087fdbb909b6ba506bbff6bcd4c5f4da3a41862608fbac5e8555ef53d40f",
125
+ "data/palette_color.png": "c4e817035fb9f7730fe95cff1da3866dea01728efc72b6e703d78f7ab9717bdd",
126
+ "data/palette_gray.png": "bace7f73783bf3ab3b7fdaf701707e4fa09f0dbd0ea72cf5b12ddc73d50b02a9",
127
+ "data/green_palette.png": "42d49d94be8f9bc76e50639d3701ed0484258721f6b0bd7f50bb1b9274a010f0",
128
+ "data/truncated.jpg": "4c226038acc78012d335efba29c6119a24444a886842182b7e18db378f4a557d",
129
+ "data/multipage.tif": "4da0ad0d3df4807a9847247d1b5e565b50d46481f643afb5c37c14802c78130f",
130
+ "data/multipage_rgb.tif": "1d23b844fd38dce0e2d06f30432817cdb85e52070d8f5460a2ba58aebf34a0de",
131
+ "data/no_time_for_that_tiny.gif": "20abe94ba9e45f18de416c5fbef8d1f57a499600be40f9a200fae246010eefce",
132
+ "data/foo3x5x4indexed.png": "48a64c25c6da000ffdb5fcc34ebafe9ba3b1c9b61d7984ea7ca6dc54f9312dfa",
133
+ "data/gray_morph_output.npz": "49a0dae607cd8d31e134b4bfcbf0d86b13751fdce9667d8bf1ade93d435191b1",
134
+ "data/disk-matlab-output.npz": "8a39d5c866f6216d6a9c9166312aa4bbf4d18fab3d0dcd963c024985bde5856b",
135
+ "data/diamond-matlab-output.npz": "02fca68907e2b252b501dfe977eef71ae39fadaaa3702ebdc855195422ae1cc2",
136
+ "data/bw_text.png": "308c2b09f8975a69b212e103b18520e8cbb7a4eccfce0f757836cd371f1b9094",
137
+ "data/bw_text_skeleton.npy": "9ff4fc23c6a01497d7987f14e3a97cbcc39cce54b2b3b7ee33b84c1b661d0ae1",
138
+ "data/_blobs_3d_fiji_skeleton.tif": "e3449ad9819425959952050c147278555e5ffe1c2c4a30df29f6a1f9023e10c3",
139
+ "data/checker_bilevel.png": "2e207e486545874a2a3e69ba653b28fdef923157be9017559540e65d1bcb8e28",
140
+ "restoration/tests/astronaut_rl.npy": "3f8373e2c6182a89366e51cef6624e3625deac75fdda1079cbdad2a33322152c",
141
+ "restoration/tests/camera_rl.npy": "fd4f59af84dd471fbbe79ee70c1b7e68a69864c461f0db5ac587e7975363f78f",
142
+ "restoration/tests/camera_unsup.npy": "3de10a0b97267352b18886b25d66a967f9e1d78ada61050577d78586cab82baa",
143
+ "restoration/tests/camera_unsup2.npy": "29cdc60605eb528c5f014baa8564d7d1ba0bd4b3170a66522058cbe5aed0960b",
144
+ "restoration/tests/camera_wiener.npy": "4505ea8b0d63d03250c6d756560d615751b76dd6ffc4a95972fa260c0c84633e",
145
+ "registration/tests/data/OriginalX-130Y130.png": "bf24a06d99ae131c97e582ef5e1cd0c648a8dad0caab31281f3564045492811f",
146
+ "registration/tests/data/OriginalX130Y130.png": "7fdd4c06d504fec35ee0703bd7ed2c08830b075a74c8506bae4a70d682f5a2db",
147
+ "registration/tests/data/OriginalX75Y75.png": "c5cd58893c93140df02896df80b13ecf432f5c86eeaaf8fb311aec52a65c7016",
148
+ "registration/tests/data/TransformedX-130Y130.png": "1cda90ed69c921eb7605b73b76d141cf4ea03fb8ce3336445ca08080e40d7375",
149
+ "registration/tests/data/TransformedX130Y130.png": "bb10c6ae3f91a313b0ac543efdb7ca69c4b95e55674c65a88472a6c4f4692a25",
150
+ "registration/tests/data/TransformedX75Y75.png": "a1e9ead5f8e4a0f604271e1f9c50e89baf53f068f1d19fab2876af4938e695ea",
151
+ "data/brain.tiff": "bcdbaf424fbad7b1fb0f855f608c68e5a838f35affc323ff04ea17f678eef5c6",
152
+ "data/cells3d.tif": "afc7c7d80d38bfde09788b4064ac1e64ec14e88454ab785ebdc8dbba5ca3b222",
153
+ "data/palisades_of_vogt.tif": "7f205b626407e194974cead67c4d3909344cf59c42d229a349da0198183e5bd0",
154
+ "data/kidney.tif": "80c0799bc58b08cf6eaa53ecd202305eb42fd7bc73746cb6c5064dbeae7e8476",
155
+ "data/lily.tif": "395c2f0194c25b9824a8cd79266920362a0816bc9e906dd392adce2d8309af03",
156
+ "data/mitosis.tif": "2751ba667c4067c5d30817cff004aa06f6f6287f1cdbb5b8c9c6a500308cb456",
157
+ "data/skin.jpg": "8759fe080509712163453f4b17106582b8513e73b0788d80160abf840e272075",
158
+ "data/pivchallenge-B-B001_1.tif": "e95e09abbcecba723df283ac7d361766328abd943701a2ec2f345d4a2014da2a",
159
+ "data/pivchallenge-B-B001_2.tif": "4ceb5407e4e333476a0f264c14b7a3f6c0e753fcdc99ee1c4b8196e5f823805e",
160
+ "data/protein_transport.tif": "a8e24e8d187f33e92ee28508d5615286c850ca75374af7e74e527d290e8b06ea",
161
+ "data/solidification.tif": "50ef9a52c621b7c0c506ad1fe1b8ee8a158a4d7c8e50ddfce1e273a422dca3f9",
162
+ }
163
+
164
+ registry_urls = {
165
+ "data/brain.tiff": "https://gitlab.com/scikit-image/data/-/raw/2cdc5ce89b334d28f06a58c9f0ca21aa6992a5ba/brain.tiff",
166
+ "data/cells3d.tif": "https://gitlab.com/scikit-image/data/-/raw/2cdc5ce89b334d28f06a58c9f0ca21aa6992a5ba/cells3d.tif",
167
+ "data/palisades_of_vogt.tif": "https://gitlab.com/scikit-image/data/-/raw/b2bc880f3bac23a583724befe8388dae368c52fe/in-vivo-cornea-spots.tif",
168
+ "data/eagle.png": "https://gitlab.com/scikit-image/data/-/raw/1e4f62ac31ba4553d176d4473a5967ad1b076d62/eagle.png",
169
+ "data/kidney.tif": "https://gitlab.com/scikit-image/data/-/raw/2cdc5ce89b334d28f06a58c9f0ca21aa6992a5ba/kidney-tissue-fluorescence.tif",
170
+ "data/lily.tif": "https://gitlab.com/scikit-image/data/-/raw/2cdc5ce89b334d28f06a58c9f0ca21aa6992a5ba/lily-of-the-valley-fluorescence.tif",
171
+ "data/mitosis.tif": "https://gitlab.com/scikit-image/data/-/raw/2cdc5ce89b334d28f06a58c9f0ca21aa6992a5ba/AS_09125_050116030001_D03f00d0.tif",
172
+ "data/rank_filters_tests_3d.npz": "https://gitlab.com/scikit-image/data/-/raw/2cdc5ce89b334d28f06a58c9f0ca21aa6992a5ba/Tests_besides_Equalize_Otsu/add18_entropy/rank_filters_tests_3d.npz",
173
+ "data/skin.jpg": "https://gitlab.com/scikit-image/data/-/raw/2cdc5ce89b334d28f06a58c9f0ca21aa6992a5ba/Normal_Epidermis_and_Dermis_with_Intradermal_Nevus_10x.JPG",
174
+ "data/pivchallenge-B-B001_1.tif": "https://gitlab.com/scikit-image/data/-/raw/2cdc5ce89b334d28f06a58c9f0ca21aa6992a5ba/pivchallenge/B/B001_1.tif",
175
+ "data/pivchallenge-B-B001_2.tif": "https://gitlab.com/scikit-image/data/-/raw/2cdc5ce89b334d28f06a58c9f0ca21aa6992a5ba/pivchallenge/B/B001_2.tif",
176
+ "data/protein_transport.tif": "https://gitlab.com/scikit-image/data/-/raw/2cdc5ce89b334d28f06a58c9f0ca21aa6992a5ba/NPCsingleNucleus.tif",
177
+ "data/solidification.tif": "https://gitlab.com/scikit-image/data/-/raw/2cdc5ce89b334d28f06a58c9f0ca21aa6992a5ba/nickel_solidification.tif",
178
+ "restoration/tests/astronaut_rl.npy": "https://gitlab.com/scikit-image/data/-/raw/2cdc5ce89b334d28f06a58c9f0ca21aa6992a5ba/astronaut_rl.npy",
179
+ "data/gray_morph_output.npz": "https://gitlab.com/scikit-image/data/-/raw/806548e112bcf2b708a9a32275d335cb592480fd/Tests_besides_Equalize_Otsu/gray_morph_output.npz",
180
+ }
181
+
182
+ legacy_registry = {
183
+ ('data/' + filename): registry['data/' + filename] for filename in legacy_datasets
184
+ }
infer_4_47_1/lib/python3.10/site-packages/skimage/data/multipage.tif ADDED
infer_4_47_1/lib/python3.10/site-packages/skimage/draw/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ """Drawing primitives, such as lines, circles, text, etc."""
2
+
3
+ import lazy_loader as _lazy
4
+
5
+ __getattr__, __dir__, __all__ = _lazy.attach_stub(__name__, __file__)
infer_4_47_1/lib/python3.10/site-packages/skimage/draw/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (355 Bytes). View file
 
infer_4_47_1/lib/python3.10/site-packages/skimage/draw/__pycache__/draw.cpython-310.pyc ADDED
Binary file (33 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/skimage/draw/__pycache__/draw_nd.cpython-310.pyc ADDED
Binary file (3.85 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/skimage/draw/_polygon2mask.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from . import draw
4
+
5
+
6
+ def polygon2mask(image_shape, polygon):
7
+ """Create a binary mask from a polygon.
8
+
9
+ Parameters
10
+ ----------
11
+ image_shape : tuple of size 2
12
+ The shape of the mask.
13
+ polygon : (N, 2) array_like
14
+ The polygon coordinates of shape (N, 2) where N is
15
+ the number of points. The coordinates are (row, column).
16
+
17
+ Returns
18
+ -------
19
+ mask : 2-D ndarray of type 'bool'
20
+ The binary mask that corresponds to the input polygon.
21
+
22
+ See Also
23
+ --------
24
+ polygon:
25
+ Generate coordinates of pixels inside a polygon.
26
+
27
+ Notes
28
+ -----
29
+ This function does not do any border checking. Parts of the polygon that
30
+ are outside the coordinate space defined by `image_shape` are not drawn.
31
+
32
+ Examples
33
+ --------
34
+ >>> import skimage as ski
35
+ >>> image_shape = (10, 10)
36
+ >>> polygon = np.array([[1, 1], [2, 7], [8, 4]])
37
+ >>> mask = ski.draw.polygon2mask(image_shape, polygon)
38
+ >>> mask.astype(int)
39
+ array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
40
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
41
+ [0, 0, 1, 1, 1, 1, 1, 1, 0, 0],
42
+ [0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
43
+ [0, 0, 0, 1, 1, 1, 1, 0, 0, 0],
44
+ [0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
45
+ [0, 0, 0, 0, 1, 1, 0, 0, 0, 0],
46
+ [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
47
+ [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
48
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
49
+
50
+ If vertices / points of the `polygon` are outside the coordinate space
51
+ defined by `image_shape`, only a part (or none at all) of the polygon is
52
+ drawn in the mask.
53
+
54
+ >>> offset = np.array([[2, -4]])
55
+ >>> ski.draw.polygon2mask(image_shape, polygon - offset).astype(int)
56
+ array([[0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
57
+ [0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
58
+ [0, 0, 0, 0, 0, 0, 0, 1, 1, 1],
59
+ [0, 0, 0, 0, 0, 0, 0, 1, 1, 1],
60
+ [0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
61
+ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
62
+ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
63
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
64
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
65
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
66
+ """
67
+ polygon = np.asarray(polygon)
68
+ vertex_row_coords, vertex_col_coords = polygon.T
69
+ fill_row_coords, fill_col_coords = draw.polygon(
70
+ vertex_row_coords, vertex_col_coords, image_shape
71
+ )
72
+ mask = np.zeros(image_shape, dtype=bool)
73
+ mask[fill_row_coords, fill_col_coords] = True
74
+ return mask
infer_4_47_1/lib/python3.10/site-packages/skimage/draw/_random_shapes.py ADDED
@@ -0,0 +1,459 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import numpy as np
4
+
5
+ from .draw import polygon as draw_polygon, disk as draw_disk, ellipse as draw_ellipse
6
+ from .._shared.utils import warn
7
+
8
+
9
+ def _generate_rectangle_mask(point, image, shape, random):
10
+ """Generate a mask for a filled rectangle shape.
11
+
12
+ The height and width of the rectangle are generated randomly.
13
+
14
+ Parameters
15
+ ----------
16
+ point : tuple
17
+ The row and column of the top left corner of the rectangle.
18
+ image : tuple
19
+ The height, width and depth of the image into which the shape
20
+ is placed.
21
+ shape : tuple
22
+ The minimum and maximum size of the shape to fit.
23
+ random : `numpy.random.Generator`
24
+
25
+ The random state to use for random sampling.
26
+
27
+ Raises
28
+ ------
29
+ ArithmeticError
30
+ When a shape cannot be fit into the image with the given starting
31
+ coordinates. This usually means the image dimensions are too small or
32
+ shape dimensions too large.
33
+
34
+ Returns
35
+ -------
36
+ label : tuple
37
+ A (category, ((r0, r1), (c0, c1))) tuple specifying the category and
38
+ bounding box coordinates of the shape.
39
+ indices : 2-D array
40
+ A mask of indices that the shape fills.
41
+
42
+ """
43
+ available_width = min(image[1] - point[1], shape[1]) - shape[0]
44
+ available_height = min(image[0] - point[0], shape[1]) - shape[0]
45
+
46
+ # Pick random widths and heights.
47
+ r = shape[0] + random.integers(max(1, available_height)) - 1
48
+ c = shape[0] + random.integers(max(1, available_width)) - 1
49
+ rectangle = draw_polygon(
50
+ [
51
+ point[0],
52
+ point[0] + r,
53
+ point[0] + r,
54
+ point[0],
55
+ ],
56
+ [
57
+ point[1],
58
+ point[1],
59
+ point[1] + c,
60
+ point[1] + c,
61
+ ],
62
+ )
63
+ label = ('rectangle', ((point[0], point[0] + r + 1), (point[1], point[1] + c + 1)))
64
+
65
+ return rectangle, label
66
+
67
+
68
+ def _generate_circle_mask(point, image, shape, random):
69
+ """Generate a mask for a filled circle shape.
70
+
71
+ The radius of the circle is generated randomly.
72
+
73
+ Parameters
74
+ ----------
75
+ point : tuple
76
+ The row and column of the top left corner of the rectangle.
77
+ image : tuple
78
+ The height, width and depth of the image into which the shape is placed.
79
+ shape : tuple
80
+ The minimum and maximum size and color of the shape to fit.
81
+ random : `numpy.random.Generator`
82
+ The random state to use for random sampling.
83
+
84
+ Raises
85
+ ------
86
+ ArithmeticError
87
+ When a shape cannot be fit into the image with the given starting
88
+ coordinates. This usually means the image dimensions are too small or
89
+ shape dimensions too large.
90
+
91
+ Returns
92
+ -------
93
+ label : tuple
94
+ A (category, ((r0, r1), (c0, c1))) tuple specifying the category and
95
+ bounding box coordinates of the shape.
96
+ indices : 2-D array
97
+ A mask of indices that the shape fills.
98
+ """
99
+ if shape[0] == 1 or shape[1] == 1:
100
+ raise ValueError('size must be > 1 for circles')
101
+ min_radius = shape[0] // 2.0
102
+ max_radius = shape[1] // 2.0
103
+ left = point[1]
104
+ right = image[1] - point[1]
105
+ top = point[0]
106
+ bottom = image[0] - point[0]
107
+ available_radius = min(left, right, top, bottom, max_radius) - min_radius
108
+ if available_radius < 0:
109
+ raise ArithmeticError('cannot fit shape to image')
110
+ radius = int(min_radius + random.integers(max(1, available_radius)))
111
+ # TODO: think about how to deprecate this
112
+ # while draw_circle was deprecated in favor of draw_disk
113
+ # switching to a label of 'disk' here
114
+ # would be a breaking change for downstream libraries
115
+ # See discussion on naming convention here
116
+ # https://github.com/scikit-image/scikit-image/pull/4428
117
+ disk = draw_disk((point[0], point[1]), radius)
118
+ # Until a deprecation path is decided, always return `'circle'`
119
+ label = (
120
+ 'circle',
121
+ (
122
+ (point[0] - radius + 1, point[0] + radius),
123
+ (point[1] - radius + 1, point[1] + radius),
124
+ ),
125
+ )
126
+
127
+ return disk, label
128
+
129
+
130
+ def _generate_triangle_mask(point, image, shape, random):
131
+ """Generate a mask for a filled equilateral triangle shape.
132
+
133
+ The length of the sides of the triangle is generated randomly.
134
+
135
+ Parameters
136
+ ----------
137
+ point : tuple
138
+ The row and column of the top left corner of a up-pointing triangle.
139
+ image : tuple
140
+ The height, width and depth of the image into which the shape
141
+ is placed.
142
+ shape : tuple
143
+ The minimum and maximum size and color of the shape to fit.
144
+ random : `numpy.random.Generator`
145
+ The random state to use for random sampling.
146
+
147
+ Raises
148
+ ------
149
+ ArithmeticError
150
+ When a shape cannot be fit into the image with the given starting
151
+ coordinates. This usually means the image dimensions are too small or
152
+ shape dimensions too large.
153
+
154
+ Returns
155
+ -------
156
+ label : tuple
157
+ A (category, ((r0, r1), (c0, c1))) tuple specifying the category and
158
+ bounding box coordinates of the shape.
159
+ indices : 2-D array
160
+ A mask of indices that the shape fills.
161
+
162
+ """
163
+ if shape[0] == 1 or shape[1] == 1:
164
+ raise ValueError('dimension must be > 1 for triangles')
165
+ available_side = min(image[1] - point[1], point[0], shape[1]) - shape[0]
166
+ side = shape[0] + random.integers(max(1, available_side)) - 1
167
+ triangle_height = int(np.ceil(np.sqrt(3 / 4.0) * side))
168
+ triangle = draw_polygon(
169
+ [
170
+ point[0],
171
+ point[0] - triangle_height,
172
+ point[0],
173
+ ],
174
+ [
175
+ point[1],
176
+ point[1] + side // 2,
177
+ point[1] + side,
178
+ ],
179
+ )
180
+ label = (
181
+ 'triangle',
182
+ ((point[0] - triangle_height, point[0] + 1), (point[1], point[1] + side + 1)),
183
+ )
184
+
185
+ return triangle, label
186
+
187
+
188
+ def _generate_ellipse_mask(point, image, shape, random):
189
+ """Generate a mask for a filled ellipse shape.
190
+
191
+ The rotation, major and minor semi-axes of the ellipse are generated
192
+ randomly.
193
+
194
+ Parameters
195
+ ----------
196
+ point : tuple
197
+ The row and column of the top left corner of the rectangle.
198
+ image : tuple
199
+ The height, width and depth of the image into which the shape is
200
+ placed.
201
+ shape : tuple
202
+ The minimum and maximum size and color of the shape to fit.
203
+ random : `numpy.random.Generator`
204
+ The random state to use for random sampling.
205
+
206
+ Raises
207
+ ------
208
+ ArithmeticError
209
+ When a shape cannot be fit into the image with the given starting
210
+ coordinates. This usually means the image dimensions are too small or
211
+ shape dimensions too large.
212
+
213
+ Returns
214
+ -------
215
+ label : tuple
216
+ A (category, ((r0, r1), (c0, c1))) tuple specifying the category and
217
+ bounding box coordinates of the shape.
218
+ indices : 2-D array
219
+ A mask of indices that the shape fills.
220
+ """
221
+ if shape[0] == 1 or shape[1] == 1:
222
+ raise ValueError('size must be > 1 for ellipses')
223
+ min_radius = shape[0] / 2.0
224
+ max_radius = shape[1] / 2.0
225
+ left = point[1]
226
+ right = image[1] - point[1]
227
+ top = point[0]
228
+ bottom = image[0] - point[0]
229
+ available_radius = min(left, right, top, bottom, max_radius)
230
+ if available_radius < min_radius:
231
+ raise ArithmeticError('cannot fit shape to image')
232
+ # NOTE: very conservative because we could take into account the fact that
233
+ # we have 2 different radii, but this is a good first approximation.
234
+ # Also, we can afford to have a uniform sampling because the ellipse will
235
+ # be rotated.
236
+ r_radius = random.uniform(min_radius, available_radius + 1)
237
+ c_radius = random.uniform(min_radius, available_radius + 1)
238
+ rotation = random.uniform(-np.pi, np.pi)
239
+ ellipse = draw_ellipse(
240
+ point[0],
241
+ point[1],
242
+ r_radius,
243
+ c_radius,
244
+ shape=image[:2],
245
+ rotation=rotation,
246
+ )
247
+ max_radius = math.ceil(max(r_radius, c_radius))
248
+ min_x = np.min(ellipse[0])
249
+ max_x = np.max(ellipse[0]) + 1
250
+ min_y = np.min(ellipse[1])
251
+ max_y = np.max(ellipse[1]) + 1
252
+ label = ('ellipse', ((min_x, max_x), (min_y, max_y)))
253
+
254
+ return ellipse, label
255
+
256
+
257
+ # Allows lookup by key as well as random selection.
258
+ SHAPE_GENERATORS = dict(
259
+ rectangle=_generate_rectangle_mask,
260
+ circle=_generate_circle_mask,
261
+ triangle=_generate_triangle_mask,
262
+ ellipse=_generate_ellipse_mask,
263
+ )
264
+ SHAPE_CHOICES = list(SHAPE_GENERATORS.values())
265
+
266
+
267
+ def _generate_random_colors(num_colors, num_channels, intensity_range, random):
268
+ """Generate an array of random colors.
269
+
270
+ Parameters
271
+ ----------
272
+ num_colors : int
273
+ Number of colors to generate.
274
+ num_channels : int
275
+ Number of elements representing color.
276
+ intensity_range : {tuple of tuples of ints, tuple of ints}, optional
277
+ The range of values to sample pixel values from. For grayscale images
278
+ the format is (min, max). For multichannel - ((min, max),) if the
279
+ ranges are equal across the channels, and
280
+ ((min_0, max_0), ... (min_N, max_N)) if they differ.
281
+ random : `numpy.random.Generator`
282
+ The random state to use for random sampling.
283
+
284
+ Raises
285
+ ------
286
+ ValueError
287
+ When the `intensity_range` is not in the interval (0, 255).
288
+
289
+ Returns
290
+ -------
291
+ colors : array
292
+ An array of shape (num_colors, num_channels), where the values for
293
+ each channel are drawn from the corresponding `intensity_range`.
294
+
295
+ """
296
+ if num_channels == 1:
297
+ intensity_range = (intensity_range,)
298
+ elif len(intensity_range) == 1:
299
+ intensity_range = intensity_range * num_channels
300
+ colors = [random.integers(r[0], r[1] + 1, size=num_colors) for r in intensity_range]
301
+ return np.transpose(colors)
302
+
303
+
304
+ def random_shapes(
305
+ image_shape,
306
+ max_shapes,
307
+ min_shapes=1,
308
+ min_size=2,
309
+ max_size=None,
310
+ num_channels=3,
311
+ shape=None,
312
+ intensity_range=None,
313
+ allow_overlap=False,
314
+ num_trials=100,
315
+ rng=None,
316
+ *,
317
+ channel_axis=-1,
318
+ ):
319
+ """Generate an image with random shapes, labeled with bounding boxes.
320
+
321
+ The image is populated with random shapes with random sizes, random
322
+ locations, and random colors, with or without overlap.
323
+
324
+ Shapes have random (row, col) starting coordinates and random sizes bounded
325
+ by `min_size` and `max_size`. It can occur that a randomly generated shape
326
+ will not fit the image at all. In that case, the algorithm will try again
327
+ with new starting coordinates a certain number of times. However, it also
328
+ means that some shapes may be skipped altogether. In that case, this
329
+ function will generate fewer shapes than requested.
330
+
331
+ Parameters
332
+ ----------
333
+ image_shape : tuple
334
+ The number of rows and columns of the image to generate.
335
+ max_shapes : int
336
+ The maximum number of shapes to (attempt to) fit into the shape.
337
+ min_shapes : int, optional
338
+ The minimum number of shapes to (attempt to) fit into the shape.
339
+ min_size : int, optional
340
+ The minimum dimension of each shape to fit into the image.
341
+ max_size : int, optional
342
+ The maximum dimension of each shape to fit into the image.
343
+ num_channels : int, optional
344
+ Number of channels in the generated image. If 1, generate monochrome
345
+ images, else color images with multiple channels. Ignored if
346
+ ``multichannel`` is set to False.
347
+ shape : {rectangle, circle, triangle, ellipse, None} str, optional
348
+ The name of the shape to generate or `None` to pick random ones.
349
+ intensity_range : {tuple of tuples of uint8, tuple of uint8}, optional
350
+ The range of values to sample pixel values from. For grayscale
351
+ images the format is (min, max). For multichannel - ((min, max),)
352
+ if the ranges are equal across the channels, and
353
+ ((min_0, max_0), ... (min_N, max_N)) if they differ. As the
354
+ function supports generation of uint8 arrays only, the maximum
355
+ range is (0, 255). If None, set to (0, 254) for each channel
356
+ reserving color of intensity = 255 for background.
357
+ allow_overlap : bool, optional
358
+ If `True`, allow shapes to overlap.
359
+ num_trials : int, optional
360
+ How often to attempt to fit a shape into the image before skipping it.
361
+ rng : {`numpy.random.Generator`, int}, optional
362
+ Pseudo-random number generator.
363
+ By default, a PCG64 generator is used (see :func:`numpy.random.default_rng`).
364
+ If `rng` is an int, it is used to seed the generator.
365
+ channel_axis : int or None, optional
366
+ If None, the image is assumed to be a grayscale (single channel) image.
367
+ Otherwise, this parameter indicates which axis of the array corresponds
368
+ to channels.
369
+
370
+ .. versionadded:: 0.19
371
+ ``channel_axis`` was added in 0.19.
372
+
373
+ Returns
374
+ -------
375
+ image : uint8 array
376
+ An image with the fitted shapes.
377
+ labels : list
378
+ A list of labels, one per shape in the image. Each label is a
379
+ (category, ((r0, r1), (c0, c1))) tuple specifying the category and
380
+ bounding box coordinates of the shape.
381
+
382
+ Examples
383
+ --------
384
+ >>> import skimage.draw
385
+ >>> image, labels = skimage.draw.random_shapes((32, 32), max_shapes=3)
386
+ >>> image # doctest: +SKIP
387
+ array([
388
+ [[255, 255, 255],
389
+ [255, 255, 255],
390
+ [255, 255, 255],
391
+ ...,
392
+ [255, 255, 255],
393
+ [255, 255, 255],
394
+ [255, 255, 255]]], dtype=uint8)
395
+ >>> labels # doctest: +SKIP
396
+ [('circle', ((22, 18), (25, 21))),
397
+ ('triangle', ((5, 6), (13, 13)))]
398
+ """
399
+ if min_size > image_shape[0] or min_size > image_shape[1]:
400
+ raise ValueError('Minimum dimension must be less than ncols and nrows')
401
+ max_size = max_size or max(image_shape[0], image_shape[1])
402
+
403
+ if channel_axis is None:
404
+ num_channels = 1
405
+
406
+ if intensity_range is None:
407
+ intensity_range = (0, 254) if num_channels == 1 else ((0, 254),)
408
+ else:
409
+ tmp = (intensity_range,) if num_channels == 1 else intensity_range
410
+ for intensity_pair in tmp:
411
+ for intensity in intensity_pair:
412
+ if not (0 <= intensity <= 255):
413
+ msg = 'Intensity range must lie within (0, 255) interval'
414
+ raise ValueError(msg)
415
+
416
+ rng = np.random.default_rng(rng)
417
+ user_shape = shape
418
+ image_shape = (image_shape[0], image_shape[1], num_channels)
419
+ image = np.full(image_shape, 255, dtype=np.uint8)
420
+ filled = np.zeros(image_shape, dtype=bool)
421
+ labels = []
422
+
423
+ num_shapes = rng.integers(min_shapes, max_shapes + 1)
424
+ colors = _generate_random_colors(num_shapes, num_channels, intensity_range, rng)
425
+ shape = (min_size, max_size)
426
+ for shape_idx in range(num_shapes):
427
+ if user_shape is None:
428
+ shape_generator = rng.choice(SHAPE_CHOICES)
429
+ else:
430
+ shape_generator = SHAPE_GENERATORS[user_shape]
431
+ for _ in range(num_trials):
432
+ # Pick start coordinates.
433
+ column = rng.integers(max(1, image_shape[1] - min_size))
434
+ row = rng.integers(max(1, image_shape[0] - min_size))
435
+ point = (row, column)
436
+ try:
437
+ indices, label = shape_generator(point, image_shape, shape, rng)
438
+ except ArithmeticError:
439
+ # Couldn't fit the shape, skip it.
440
+ indices = []
441
+ continue
442
+ # Check if there is an overlap where the mask is nonzero.
443
+ if allow_overlap or not filled[indices].any():
444
+ image[indices] = colors[shape_idx]
445
+ filled[indices] = True
446
+ labels.append(label)
447
+ break
448
+ else:
449
+ warn(
450
+ 'Could not fit any shapes to image, '
451
+ 'consider reducing the minimum dimension'
452
+ )
453
+
454
+ if channel_axis is None:
455
+ image = np.squeeze(image, axis=2)
456
+ else:
457
+ image = np.moveaxis(image, -1, channel_axis)
458
+
459
+ return image, labels
infer_4_47_1/lib/python3.10/site-packages/skimage/draw/draw.py ADDED
@@ -0,0 +1,973 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from .._shared._geometry import polygon_clip
4
+ from .._shared.version_requirements import require
5
+ from .._shared.compat import NP_COPY_IF_NEEDED
6
+ from ._draw import (
7
+ _coords_inside_image,
8
+ _line,
9
+ _line_aa,
10
+ _polygon,
11
+ _ellipse_perimeter,
12
+ _circle_perimeter,
13
+ _circle_perimeter_aa,
14
+ _bezier_curve,
15
+ )
16
+
17
+
18
+ def _ellipse_in_shape(shape, center, radii, rotation=0.0):
19
+ """Generate coordinates of points within ellipse bounded by shape.
20
+
21
+ Parameters
22
+ ----------
23
+ shape : iterable of ints
24
+ Shape of the input image. Must be at least length 2. Only the first
25
+ two values are used to determine the extent of the input image.
26
+ center : iterable of floats
27
+ (row, column) position of center inside the given shape.
28
+ radii : iterable of floats
29
+ Size of two half axes (for row and column)
30
+ rotation : float, optional
31
+ Rotation of the ellipse defined by the above, in radians
32
+ in range (-PI, PI), in contra clockwise direction,
33
+ with respect to the column-axis.
34
+
35
+ Returns
36
+ -------
37
+ rows : iterable of ints
38
+ Row coordinates representing values within the ellipse.
39
+ cols : iterable of ints
40
+ Corresponding column coordinates representing values within the ellipse.
41
+ """
42
+ r_lim, c_lim = np.ogrid[0 : float(shape[0]), 0 : float(shape[1])]
43
+ r_org, c_org = center
44
+ r_rad, c_rad = radii
45
+ rotation %= np.pi
46
+ sin_alpha, cos_alpha = np.sin(rotation), np.cos(rotation)
47
+ r, c = (r_lim - r_org), (c_lim - c_org)
48
+ distances = ((r * cos_alpha + c * sin_alpha) / r_rad) ** 2 + (
49
+ (r * sin_alpha - c * cos_alpha) / c_rad
50
+ ) ** 2
51
+ return np.nonzero(distances < 1)
52
+
53
+
54
+ def ellipse(r, c, r_radius, c_radius, shape=None, rotation=0.0):
55
+ """Generate coordinates of pixels within ellipse.
56
+
57
+ Parameters
58
+ ----------
59
+ r, c : double
60
+ Centre coordinate of ellipse.
61
+ r_radius, c_radius : double
62
+ Minor and major semi-axes. ``(r/r_radius)**2 + (c/c_radius)**2 = 1``.
63
+ shape : tuple, optional
64
+ Image shape which is used to determine the maximum extent of output pixel
65
+ coordinates. This is useful for ellipses which exceed the image size.
66
+ By default the full extent of the ellipse are used. Must be at least
67
+ length 2. Only the first two values are used to determine the extent.
68
+ rotation : float, optional (default 0.)
69
+ Set the ellipse rotation (rotation) in range (-PI, PI)
70
+ in contra clock wise direction, so PI/2 degree means swap ellipse axis
71
+
72
+ Returns
73
+ -------
74
+ rr, cc : ndarray of int
75
+ Pixel coordinates of ellipse.
76
+ May be used to directly index into an array, e.g.
77
+ ``img[rr, cc] = 1``.
78
+
79
+ Examples
80
+ --------
81
+ >>> from skimage.draw import ellipse
82
+ >>> img = np.zeros((10, 12), dtype=np.uint8)
83
+ >>> rr, cc = ellipse(5, 6, 3, 5, rotation=np.deg2rad(30))
84
+ >>> img[rr, cc] = 1
85
+ >>> img
86
+ array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
87
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
88
+ [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0],
89
+ [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
90
+ [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0],
91
+ [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
92
+ [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
93
+ [0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
94
+ [0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0],
95
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
96
+
97
+ Notes
98
+ -----
99
+ The ellipse equation::
100
+
101
+ ((x * cos(alpha) + y * sin(alpha)) / x_radius) ** 2 +
102
+ ((x * sin(alpha) - y * cos(alpha)) / y_radius) ** 2 = 1
103
+
104
+
105
+ Note that the positions of `ellipse` without specified `shape` can have
106
+ also, negative values, as this is correct on the plane. On the other hand
107
+ using these ellipse positions for an image afterwards may lead to appearing
108
+ on the other side of image, because ``image[-1, -1] = image[end-1, end-1]``
109
+
110
+ >>> rr, cc = ellipse(1, 2, 3, 6)
111
+ >>> img = np.zeros((6, 12), dtype=np.uint8)
112
+ >>> img[rr, cc] = 1
113
+ >>> img
114
+ array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1],
115
+ [1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1],
116
+ [1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1],
117
+ [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1],
118
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
119
+ [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1]], dtype=uint8)
120
+ """
121
+
122
+ center = np.array([r, c])
123
+ radii = np.array([r_radius, c_radius])
124
+ # allow just rotation with in range +/- 180 degree
125
+ rotation %= np.pi
126
+
127
+ # compute rotated radii by given rotation
128
+ r_radius_rot = abs(r_radius * np.cos(rotation)) + c_radius * np.sin(rotation)
129
+ c_radius_rot = r_radius * np.sin(rotation) + abs(c_radius * np.cos(rotation))
130
+ # The upper_left and lower_right corners of the smallest rectangle
131
+ # containing the ellipse.
132
+ radii_rot = np.array([r_radius_rot, c_radius_rot])
133
+ upper_left = np.ceil(center - radii_rot).astype(int)
134
+ lower_right = np.floor(center + radii_rot).astype(int)
135
+
136
+ if shape is not None:
137
+ # Constrain upper_left and lower_right by shape boundary.
138
+ upper_left = np.maximum(upper_left, np.array([0, 0]))
139
+ lower_right = np.minimum(lower_right, np.array(shape[:2]) - 1)
140
+
141
+ shifted_center = center - upper_left
142
+ bounding_shape = lower_right - upper_left + 1
143
+
144
+ rr, cc = _ellipse_in_shape(bounding_shape, shifted_center, radii, rotation)
145
+ rr.flags.writeable = True
146
+ cc.flags.writeable = True
147
+ rr += upper_left[0]
148
+ cc += upper_left[1]
149
+ return rr, cc
150
+
151
+
152
+ def disk(center, radius, *, shape=None):
153
+ """Generate coordinates of pixels within circle.
154
+
155
+ Parameters
156
+ ----------
157
+ center : tuple
158
+ Center coordinate of disk.
159
+ radius : double
160
+ Radius of disk.
161
+ shape : tuple, optional
162
+ Image shape as a tuple of size 2. Determines the maximum
163
+ extent of output pixel coordinates. This is useful for disks that
164
+ exceed the image size. If None, the full extent of the disk is used.
165
+ The shape might result in negative coordinates and wraparound
166
+ behaviour.
167
+
168
+ Returns
169
+ -------
170
+ rr, cc : ndarray of int
171
+ Pixel coordinates of disk.
172
+ May be used to directly index into an array, e.g.
173
+ ``img[rr, cc] = 1``.
174
+
175
+ Examples
176
+ --------
177
+ >>> import numpy as np
178
+ >>> from skimage.draw import disk
179
+ >>> shape = (4, 4)
180
+ >>> img = np.zeros(shape, dtype=np.uint8)
181
+ >>> rr, cc = disk((0, 0), 2, shape=shape)
182
+ >>> img[rr, cc] = 1
183
+ >>> img
184
+ array([[1, 1, 0, 0],
185
+ [1, 1, 0, 0],
186
+ [0, 0, 0, 0],
187
+ [0, 0, 0, 0]], dtype=uint8)
188
+ >>> img = np.zeros(shape, dtype=np.uint8)
189
+ >>> # Negative coordinates in rr and cc perform a wraparound
190
+ >>> rr, cc = disk((0, 0), 2, shape=None)
191
+ >>> img[rr, cc] = 1
192
+ >>> img
193
+ array([[1, 1, 0, 1],
194
+ [1, 1, 0, 1],
195
+ [0, 0, 0, 0],
196
+ [1, 1, 0, 1]], dtype=uint8)
197
+ >>> img = np.zeros((10, 10), dtype=np.uint8)
198
+ >>> rr, cc = disk((4, 4), 5)
199
+ >>> img[rr, cc] = 1
200
+ >>> img
201
+ array([[0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
202
+ [0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
203
+ [1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
204
+ [1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
205
+ [1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
206
+ [1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
207
+ [1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
208
+ [0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
209
+ [0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
210
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
211
+ """
212
+ r, c = center
213
+ return ellipse(r, c, radius, radius, shape)
214
+
215
+
216
+ @require("matplotlib", ">=3.3")
217
+ def polygon_perimeter(r, c, shape=None, clip=False):
218
+ """Generate polygon perimeter coordinates.
219
+
220
+ Parameters
221
+ ----------
222
+ r : (N,) ndarray
223
+ Row coordinates of vertices of polygon.
224
+ c : (N,) ndarray
225
+ Column coordinates of vertices of polygon.
226
+ shape : tuple, optional
227
+ Image shape which is used to determine maximum extents of output pixel
228
+ coordinates. This is useful for polygons that exceed the image size.
229
+ If None, the full extents of the polygon is used. Must be at least
230
+ length 2. Only the first two values are used to determine the extent of
231
+ the input image.
232
+ clip : bool, optional
233
+ Whether to clip the polygon to the provided shape. If this is set
234
+ to True, the drawn figure will always be a closed polygon with all
235
+ edges visible.
236
+
237
+ Returns
238
+ -------
239
+ rr, cc : ndarray of int
240
+ Pixel coordinates of polygon.
241
+ May be used to directly index into an array, e.g.
242
+ ``img[rr, cc] = 1``.
243
+
244
+ Examples
245
+ --------
246
+ .. testsetup::
247
+ >>> import pytest; _ = pytest.importorskip('matplotlib')
248
+
249
+ >>> from skimage.draw import polygon_perimeter
250
+ >>> img = np.zeros((10, 10), dtype=np.uint8)
251
+ >>> rr, cc = polygon_perimeter([5, -1, 5, 10],
252
+ ... [-1, 5, 11, 5],
253
+ ... shape=img.shape, clip=True)
254
+ >>> img[rr, cc] = 1
255
+ >>> img
256
+ array([[0, 0, 0, 0, 1, 1, 1, 0, 0, 0],
257
+ [0, 0, 0, 1, 0, 0, 0, 1, 0, 0],
258
+ [0, 0, 1, 0, 0, 0, 0, 0, 1, 0],
259
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 1],
260
+ [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
261
+ [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
262
+ [1, 0, 0, 0, 0, 0, 0, 0, 0, 1],
263
+ [0, 1, 1, 0, 0, 0, 0, 0, 0, 1],
264
+ [0, 0, 0, 1, 0, 0, 0, 1, 1, 0],
265
+ [0, 0, 0, 0, 1, 1, 1, 0, 0, 0]], dtype=uint8)
266
+
267
+ """
268
+ if clip:
269
+ if shape is None:
270
+ raise ValueError("Must specify clipping shape")
271
+ clip_box = np.array([0, 0, shape[0] - 1, shape[1] - 1])
272
+ else:
273
+ clip_box = np.array([np.min(r), np.min(c), np.max(r), np.max(c)])
274
+
275
+ # Do the clipping irrespective of whether clip is set. This
276
+ # ensures that the returned polygon is closed and is an array.
277
+ r, c = polygon_clip(r, c, *clip_box)
278
+
279
+ r = np.round(r).astype(int)
280
+ c = np.round(c).astype(int)
281
+
282
+ # Construct line segments
283
+ rr, cc = [], []
284
+ for i in range(len(r) - 1):
285
+ line_r, line_c = line(r[i], c[i], r[i + 1], c[i + 1])
286
+ rr.extend(line_r)
287
+ cc.extend(line_c)
288
+
289
+ rr = np.asarray(rr)
290
+ cc = np.asarray(cc)
291
+
292
+ if shape is None:
293
+ return rr, cc
294
+ else:
295
+ return _coords_inside_image(rr, cc, shape)
296
+
297
+
298
+ def set_color(image, coords, color, alpha=1):
299
+ """Set pixel color in the image at the given coordinates.
300
+
301
+ Note that this function modifies the color of the image in-place.
302
+ Coordinates that exceed the shape of the image will be ignored.
303
+
304
+ Parameters
305
+ ----------
306
+ image : (M, N, C) ndarray
307
+ Image
308
+ coords : tuple of ((K,) ndarray, (K,) ndarray)
309
+ Row and column coordinates of pixels to be colored.
310
+ color : (C,) ndarray
311
+ Color to be assigned to coordinates in the image.
312
+ alpha : scalar or (K,) ndarray
313
+ Alpha values used to blend color with image. 0 is transparent,
314
+ 1 is opaque.
315
+
316
+ Examples
317
+ --------
318
+ >>> from skimage.draw import line, set_color
319
+ >>> img = np.zeros((10, 10), dtype=np.uint8)
320
+ >>> rr, cc = line(1, 1, 20, 20)
321
+ >>> set_color(img, (rr, cc), 1)
322
+ >>> img
323
+ array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
324
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
325
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
326
+ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
327
+ [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
328
+ [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
329
+ [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
330
+ [0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
331
+ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
332
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1]], dtype=uint8)
333
+
334
+ """
335
+ rr, cc = coords
336
+
337
+ if image.ndim == 2:
338
+ image = image[..., np.newaxis]
339
+
340
+ color = np.array(color, ndmin=1, copy=NP_COPY_IF_NEEDED)
341
+
342
+ if image.shape[-1] != color.shape[-1]:
343
+ raise ValueError(
344
+ f'Color shape ({color.shape[0]}) must match last '
345
+ 'image dimension ({image.shape[-1]}).'
346
+ )
347
+
348
+ if np.isscalar(alpha):
349
+ # Can be replaced by ``full_like`` when numpy 1.8 becomes
350
+ # minimum dependency
351
+ alpha = np.ones_like(rr) * alpha
352
+
353
+ rr, cc, alpha = _coords_inside_image(rr, cc, image.shape, val=alpha)
354
+
355
+ alpha = alpha[..., np.newaxis]
356
+
357
+ color = color * alpha
358
+ vals = image[rr, cc] * (1 - alpha)
359
+
360
+ image[rr, cc] = vals + color
361
+
362
+
363
+ def line(r0, c0, r1, c1):
364
+ """Generate line pixel coordinates.
365
+
366
+ Parameters
367
+ ----------
368
+ r0, c0 : int
369
+ Starting position (row, column).
370
+ r1, c1 : int
371
+ End position (row, column).
372
+
373
+ Returns
374
+ -------
375
+ rr, cc : (N,) ndarray of int
376
+ Indices of pixels that belong to the line.
377
+ May be used to directly index into an array, e.g.
378
+ ``img[rr, cc] = 1``.
379
+
380
+ Notes
381
+ -----
382
+ Anti-aliased line generator is available with `line_aa`.
383
+
384
+ Examples
385
+ --------
386
+ >>> from skimage.draw import line
387
+ >>> img = np.zeros((10, 10), dtype=np.uint8)
388
+ >>> rr, cc = line(1, 1, 8, 8)
389
+ >>> img[rr, cc] = 1
390
+ >>> img
391
+ array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
392
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
393
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
394
+ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
395
+ [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
396
+ [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
397
+ [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
398
+ [0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
399
+ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
400
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
401
+ """
402
+ return _line(r0, c0, r1, c1)
403
+
404
+
405
+ def line_aa(r0, c0, r1, c1):
406
+ """Generate anti-aliased line pixel coordinates.
407
+
408
+ Parameters
409
+ ----------
410
+ r0, c0 : int
411
+ Starting position (row, column).
412
+ r1, c1 : int
413
+ End position (row, column).
414
+
415
+ Returns
416
+ -------
417
+ rr, cc, val : (N,) ndarray (int, int, float)
418
+ Indices of pixels (`rr`, `cc`) and intensity values (`val`).
419
+ ``img[rr, cc] = val``.
420
+
421
+ References
422
+ ----------
423
+ .. [1] A Rasterizing Algorithm for Drawing Curves, A. Zingl, 2012
424
+ http://members.chello.at/easyfilter/Bresenham.pdf
425
+
426
+ Examples
427
+ --------
428
+ >>> from skimage.draw import line_aa
429
+ >>> img = np.zeros((10, 10), dtype=np.uint8)
430
+ >>> rr, cc, val = line_aa(1, 1, 8, 8)
431
+ >>> img[rr, cc] = val * 255
432
+ >>> img
433
+ array([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
434
+ [ 0, 255, 74, 0, 0, 0, 0, 0, 0, 0],
435
+ [ 0, 74, 255, 74, 0, 0, 0, 0, 0, 0],
436
+ [ 0, 0, 74, 255, 74, 0, 0, 0, 0, 0],
437
+ [ 0, 0, 0, 74, 255, 74, 0, 0, 0, 0],
438
+ [ 0, 0, 0, 0, 74, 255, 74, 0, 0, 0],
439
+ [ 0, 0, 0, 0, 0, 74, 255, 74, 0, 0],
440
+ [ 0, 0, 0, 0, 0, 0, 74, 255, 74, 0],
441
+ [ 0, 0, 0, 0, 0, 0, 0, 74, 255, 0],
442
+ [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
443
+ """
444
+ return _line_aa(r0, c0, r1, c1)
445
+
446
+
447
+ def polygon(r, c, shape=None):
448
+ """Generate coordinates of pixels inside a polygon.
449
+
450
+ Parameters
451
+ ----------
452
+ r : (N,) array_like
453
+ Row coordinates of the polygon's vertices.
454
+ c : (N,) array_like
455
+ Column coordinates of the polygon's vertices.
456
+ shape : tuple, optional
457
+ Image shape which is used to determine the maximum extent of output
458
+ pixel coordinates. This is useful for polygons that exceed the image
459
+ size. If None, the full extent of the polygon is used. Must be at
460
+ least length 2. Only the first two values are used to determine the
461
+ extent of the input image.
462
+
463
+ Returns
464
+ -------
465
+ rr, cc : ndarray of int
466
+ Pixel coordinates of polygon.
467
+ May be used to directly index into an array, e.g.
468
+ ``img[rr, cc] = 1``.
469
+
470
+ See Also
471
+ --------
472
+ polygon2mask:
473
+ Create a binary mask from a polygon.
474
+
475
+ Notes
476
+ -----
477
+ This function ensures that `rr` and `cc` don't contain negative values.
478
+ Pixels of the polygon that whose coordinates are smaller 0, are not drawn.
479
+
480
+ Examples
481
+ --------
482
+ >>> import skimage as ski
483
+ >>> r = np.array([1, 2, 8])
484
+ >>> c = np.array([1, 7, 4])
485
+ >>> rr, cc = ski.draw.polygon(r, c)
486
+ >>> img = np.zeros((10, 10), dtype=int)
487
+ >>> img[rr, cc] = 1
488
+ >>> img
489
+ array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
490
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
491
+ [0, 0, 1, 1, 1, 1, 1, 1, 0, 0],
492
+ [0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
493
+ [0, 0, 0, 1, 1, 1, 1, 0, 0, 0],
494
+ [0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
495
+ [0, 0, 0, 0, 1, 1, 0, 0, 0, 0],
496
+ [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
497
+ [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
498
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
499
+
500
+ If the image `shape` is defined and vertices / points of the `polygon` are
501
+ outside this coordinate space, only a part (or none at all) of the polygon's
502
+ pixels is returned. Shifting the polygon's vertices by an offset can be used
503
+ to move the polygon around and potentially draw an arbitrary sub-region of
504
+ the polygon.
505
+
506
+ >>> offset = (2, -4)
507
+ >>> rr, cc = ski.draw.polygon(r - offset[0], c - offset[1], shape=img.shape)
508
+ >>> img = np.zeros((10, 10), dtype=int)
509
+ >>> img[rr, cc] = 1
510
+ >>> img
511
+ array([[0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
512
+ [0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
513
+ [0, 0, 0, 0, 0, 0, 0, 1, 1, 1],
514
+ [0, 0, 0, 0, 0, 0, 0, 1, 1, 1],
515
+ [0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
516
+ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
517
+ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
518
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
519
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
520
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])
521
+ """
522
+ return _polygon(r, c, shape)
523
+
524
+
525
+ def circle_perimeter(r, c, radius, method='bresenham', shape=None):
526
+ """Generate circle perimeter coordinates.
527
+
528
+ Parameters
529
+ ----------
530
+ r, c : int
531
+ Centre coordinate of circle.
532
+ radius : int
533
+ Radius of circle.
534
+ method : {'bresenham', 'andres'}, optional
535
+ bresenham : Bresenham method (default)
536
+ andres : Andres method
537
+ shape : tuple, optional
538
+ Image shape which is used to determine the maximum extent of output
539
+ pixel coordinates. This is useful for circles that exceed the image
540
+ size. If None, the full extent of the circle is used. Must be at least
541
+ length 2. Only the first two values are used to determine the extent of
542
+ the input image.
543
+
544
+ Returns
545
+ -------
546
+ rr, cc : (N,) ndarray of int
547
+ Bresenham and Andres' method:
548
+ Indices of pixels that belong to the circle perimeter.
549
+ May be used to directly index into an array, e.g.
550
+ ``img[rr, cc] = 1``.
551
+
552
+ Notes
553
+ -----
554
+ Andres method presents the advantage that concentric
555
+ circles create a disc whereas Bresenham can make holes. There
556
+ is also less distortions when Andres circles are rotated.
557
+ Bresenham method is also known as midpoint circle algorithm.
558
+ Anti-aliased circle generator is available with `circle_perimeter_aa`.
559
+
560
+ References
561
+ ----------
562
+ .. [1] J.E. Bresenham, "Algorithm for computer control of a digital
563
+ plotter", IBM Systems journal, 4 (1965) 25-30.
564
+ .. [2] E. Andres, "Discrete circles, rings and spheres", Computers &
565
+ Graphics, 18 (1994) 695-706.
566
+
567
+ Examples
568
+ --------
569
+ >>> from skimage.draw import circle_perimeter
570
+ >>> img = np.zeros((10, 10), dtype=np.uint8)
571
+ >>> rr, cc = circle_perimeter(4, 4, 3)
572
+ >>> img[rr, cc] = 1
573
+ >>> img
574
+ array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
575
+ [0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
576
+ [0, 0, 1, 0, 0, 0, 1, 0, 0, 0],
577
+ [0, 1, 0, 0, 0, 0, 0, 1, 0, 0],
578
+ [0, 1, 0, 0, 0, 0, 0, 1, 0, 0],
579
+ [0, 1, 0, 0, 0, 0, 0, 1, 0, 0],
580
+ [0, 0, 1, 0, 0, 0, 1, 0, 0, 0],
581
+ [0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
582
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
583
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
584
+ """
585
+ return _circle_perimeter(r, c, radius, method, shape)
586
+
587
+
588
+ def circle_perimeter_aa(r, c, radius, shape=None):
589
+ """Generate anti-aliased circle perimeter coordinates.
590
+
591
+ Parameters
592
+ ----------
593
+ r, c : int
594
+ Centre coordinate of circle.
595
+ radius : int
596
+ Radius of circle.
597
+ shape : tuple, optional
598
+ Image shape which is used to determine the maximum extent of output
599
+ pixel coordinates. This is useful for circles that exceed the image
600
+ size. If None, the full extent of the circle is used. Must be at least
601
+ length 2. Only the first two values are used to determine the extent of
602
+ the input image.
603
+
604
+ Returns
605
+ -------
606
+ rr, cc, val : (N,) ndarray (int, int, float)
607
+ Indices of pixels (`rr`, `cc`) and intensity values (`val`).
608
+ ``img[rr, cc] = val``.
609
+
610
+ Notes
611
+ -----
612
+ Wu's method draws anti-aliased circle. This implementation doesn't use
613
+ lookup table optimization.
614
+
615
+ Use the function ``draw.set_color`` to apply ``circle_perimeter_aa``
616
+ results to color images.
617
+
618
+ References
619
+ ----------
620
+ .. [1] X. Wu, "An efficient antialiasing technique", In ACM SIGGRAPH
621
+ Computer Graphics, 25 (1991) 143-152.
622
+
623
+ Examples
624
+ --------
625
+ >>> from skimage.draw import circle_perimeter_aa
626
+ >>> img = np.zeros((10, 10), dtype=np.uint8)
627
+ >>> rr, cc, val = circle_perimeter_aa(4, 4, 3)
628
+ >>> img[rr, cc] = val * 255
629
+ >>> img
630
+ array([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
631
+ [ 0, 0, 60, 211, 255, 211, 60, 0, 0, 0],
632
+ [ 0, 60, 194, 43, 0, 43, 194, 60, 0, 0],
633
+ [ 0, 211, 43, 0, 0, 0, 43, 211, 0, 0],
634
+ [ 0, 255, 0, 0, 0, 0, 0, 255, 0, 0],
635
+ [ 0, 211, 43, 0, 0, 0, 43, 211, 0, 0],
636
+ [ 0, 60, 194, 43, 0, 43, 194, 60, 0, 0],
637
+ [ 0, 0, 60, 211, 255, 211, 60, 0, 0, 0],
638
+ [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
639
+ [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
640
+
641
+ >>> from skimage import data, draw
642
+ >>> image = data.chelsea()
643
+ >>> rr, cc, val = draw.circle_perimeter_aa(r=100, c=100, radius=75)
644
+ >>> draw.set_color(image, (rr, cc), [1, 0, 0], alpha=val)
645
+ """
646
+ return _circle_perimeter_aa(r, c, radius, shape)
647
+
648
+
649
+ def ellipse_perimeter(r, c, r_radius, c_radius, orientation=0, shape=None):
650
+ """Generate ellipse perimeter coordinates.
651
+
652
+ Parameters
653
+ ----------
654
+ r, c : int
655
+ Centre coordinate of ellipse.
656
+ r_radius, c_radius : int
657
+ Minor and major semi-axes. ``(r/r_radius)**2 + (c/c_radius)**2 = 1``.
658
+ orientation : double, optional
659
+ Major axis orientation in clockwise direction as radians.
660
+ shape : tuple, optional
661
+ Image shape which is used to determine the maximum extent of output
662
+ pixel coordinates. This is useful for ellipses that exceed the image
663
+ size. If None, the full extent of the ellipse is used. Must be at
664
+ least length 2. Only the first two values are used to determine the
665
+ extent of the input image.
666
+
667
+ Returns
668
+ -------
669
+ rr, cc : (N,) ndarray of int
670
+ Indices of pixels that belong to the ellipse perimeter.
671
+ May be used to directly index into an array, e.g.
672
+ ``img[rr, cc] = 1``.
673
+
674
+ References
675
+ ----------
676
+ .. [1] A Rasterizing Algorithm for Drawing Curves, A. Zingl, 2012
677
+ http://members.chello.at/easyfilter/Bresenham.pdf
678
+
679
+ Examples
680
+ --------
681
+ >>> from skimage.draw import ellipse_perimeter
682
+ >>> img = np.zeros((10, 10), dtype=np.uint8)
683
+ >>> rr, cc = ellipse_perimeter(5, 5, 3, 4)
684
+ >>> img[rr, cc] = 1
685
+ >>> img
686
+ array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
687
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
688
+ [0, 0, 0, 1, 1, 1, 1, 1, 0, 0],
689
+ [0, 0, 1, 0, 0, 0, 0, 0, 1, 0],
690
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 1],
691
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 1],
692
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 1],
693
+ [0, 0, 1, 0, 0, 0, 0, 0, 1, 0],
694
+ [0, 0, 0, 1, 1, 1, 1, 1, 0, 0],
695
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
696
+
697
+
698
+ Note that the positions of `ellipse` without specified `shape` can have
699
+ also, negative values, as this is correct on the plane. On the other hand
700
+ using these ellipse positions for an image afterwards may lead to appearing
701
+ on the other side of image, because ``image[-1, -1] = image[end-1, end-1]``
702
+
703
+ >>> rr, cc = ellipse_perimeter(2, 3, 4, 5)
704
+ >>> img = np.zeros((9, 12), dtype=np.uint8)
705
+ >>> img[rr, cc] = 1
706
+ >>> img
707
+ array([[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1],
708
+ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0],
709
+ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0],
710
+ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0],
711
+ [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1],
712
+ [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
713
+ [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
714
+ [0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0],
715
+ [1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]], dtype=uint8)
716
+ """
717
+ return _ellipse_perimeter(r, c, r_radius, c_radius, orientation, shape)
718
+
719
+
720
+ def bezier_curve(r0, c0, r1, c1, r2, c2, weight, shape=None):
721
+ """Generate Bezier curve coordinates.
722
+
723
+ Parameters
724
+ ----------
725
+ r0, c0 : int
726
+ Coordinates of the first control point.
727
+ r1, c1 : int
728
+ Coordinates of the middle control point.
729
+ r2, c2 : int
730
+ Coordinates of the last control point.
731
+ weight : double
732
+ Middle control point weight, it describes the line tension.
733
+ shape : tuple, optional
734
+ Image shape which is used to determine the maximum extent of output
735
+ pixel coordinates. This is useful for curves that exceed the image
736
+ size. If None, the full extent of the curve is used.
737
+
738
+ Returns
739
+ -------
740
+ rr, cc : (N,) ndarray of int
741
+ Indices of pixels that belong to the Bezier curve.
742
+ May be used to directly index into an array, e.g.
743
+ ``img[rr, cc] = 1``.
744
+
745
+ Notes
746
+ -----
747
+ The algorithm is the rational quadratic algorithm presented in
748
+ reference [1]_.
749
+
750
+ References
751
+ ----------
752
+ .. [1] A Rasterizing Algorithm for Drawing Curves, A. Zingl, 2012
753
+ http://members.chello.at/easyfilter/Bresenham.pdf
754
+
755
+ Examples
756
+ --------
757
+ >>> import numpy as np
758
+ >>> from skimage.draw import bezier_curve
759
+ >>> img = np.zeros((10, 10), dtype=np.uint8)
760
+ >>> rr, cc = bezier_curve(1, 5, 5, -2, 8, 8, 2)
761
+ >>> img[rr, cc] = 1
762
+ >>> img
763
+ array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
764
+ [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
765
+ [0, 0, 0, 1, 1, 0, 0, 0, 0, 0],
766
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
767
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
768
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
769
+ [0, 0, 1, 1, 0, 0, 0, 0, 0, 0],
770
+ [0, 0, 0, 0, 1, 1, 1, 0, 0, 0],
771
+ [0, 0, 0, 0, 0, 0, 0, 1, 1, 0],
772
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=uint8)
773
+ """
774
+ return _bezier_curve(r0, c0, r1, c1, r2, c2, weight, shape)
775
+
776
+
777
+ def rectangle(start, end=None, extent=None, shape=None):
778
+ """Generate coordinates of pixels within a rectangle.
779
+
780
+ Parameters
781
+ ----------
782
+ start : tuple
783
+ Origin point of the rectangle, e.g., ``([plane,] row, column)``.
784
+ end : tuple
785
+ End point of the rectangle ``([plane,] row, column)``.
786
+ For a 2D matrix, the slice defined by the rectangle is
787
+ ``[start:(end+1)]``.
788
+ Either `end` or `extent` must be specified.
789
+ extent : tuple
790
+ The extent (size) of the drawn rectangle. E.g.,
791
+ ``([num_planes,] num_rows, num_cols)``.
792
+ Either `end` or `extent` must be specified.
793
+ A negative extent is valid, and will result in a rectangle
794
+ going along the opposite direction. If extent is negative, the
795
+ `start` point is not included.
796
+ shape : tuple, optional
797
+ Image shape used to determine the maximum bounds of the output
798
+ coordinates. This is useful for clipping rectangles that exceed
799
+ the image size. By default, no clipping is done.
800
+
801
+ Returns
802
+ -------
803
+ coords : array of int, shape (Ndim, Npoints)
804
+ The coordinates of all pixels in the rectangle.
805
+
806
+ Notes
807
+ -----
808
+ This function can be applied to N-dimensional images, by passing `start` and
809
+ `end` or `extent` as tuples of length N.
810
+
811
+ Examples
812
+ --------
813
+ >>> import numpy as np
814
+ >>> from skimage.draw import rectangle
815
+ >>> img = np.zeros((5, 5), dtype=np.uint8)
816
+ >>> start = (1, 1)
817
+ >>> extent = (3, 3)
818
+ >>> rr, cc = rectangle(start, extent=extent, shape=img.shape)
819
+ >>> img[rr, cc] = 1
820
+ >>> img
821
+ array([[0, 0, 0, 0, 0],
822
+ [0, 1, 1, 1, 0],
823
+ [0, 1, 1, 1, 0],
824
+ [0, 1, 1, 1, 0],
825
+ [0, 0, 0, 0, 0]], dtype=uint8)
826
+
827
+
828
+ >>> img = np.zeros((5, 5), dtype=np.uint8)
829
+ >>> start = (0, 1)
830
+ >>> end = (3, 3)
831
+ >>> rr, cc = rectangle(start, end=end, shape=img.shape)
832
+ >>> img[rr, cc] = 1
833
+ >>> img
834
+ array([[0, 1, 1, 1, 0],
835
+ [0, 1, 1, 1, 0],
836
+ [0, 1, 1, 1, 0],
837
+ [0, 1, 1, 1, 0],
838
+ [0, 0, 0, 0, 0]], dtype=uint8)
839
+
840
+ >>> import numpy as np
841
+ >>> from skimage.draw import rectangle
842
+ >>> img = np.zeros((6, 6), dtype=np.uint8)
843
+ >>> start = (3, 3)
844
+ >>>
845
+ >>> rr, cc = rectangle(start, extent=(2, 2))
846
+ >>> img[rr, cc] = 1
847
+ >>> rr, cc = rectangle(start, extent=(-2, 2))
848
+ >>> img[rr, cc] = 2
849
+ >>> rr, cc = rectangle(start, extent=(-2, -2))
850
+ >>> img[rr, cc] = 3
851
+ >>> rr, cc = rectangle(start, extent=(2, -2))
852
+ >>> img[rr, cc] = 4
853
+ >>> print(img)
854
+ [[0 0 0 0 0 0]
855
+ [0 3 3 2 2 0]
856
+ [0 3 3 2 2 0]
857
+ [0 4 4 1 1 0]
858
+ [0 4 4 1 1 0]
859
+ [0 0 0 0 0 0]]
860
+
861
+ """
862
+ tl, br = _rectangle_slice(start=start, end=end, extent=extent)
863
+
864
+ if shape is not None:
865
+ n_dim = len(start)
866
+ br = np.minimum(shape[0:n_dim], br)
867
+ tl = np.maximum(np.zeros_like(shape[0:n_dim]), tl)
868
+ coords = np.meshgrid(*[np.arange(st, en) for st, en in zip(tuple(tl), tuple(br))])
869
+ return coords
870
+
871
+
872
+ @require("matplotlib", ">=3.3")
873
+ def rectangle_perimeter(start, end=None, extent=None, shape=None, clip=False):
874
+ """Generate coordinates of pixels that are exactly around a rectangle.
875
+
876
+ Parameters
877
+ ----------
878
+ start : tuple
879
+ Origin point of the inner rectangle, e.g., ``(row, column)``.
880
+ end : tuple
881
+ End point of the inner rectangle ``(row, column)``.
882
+ For a 2D matrix, the slice defined by inner the rectangle is
883
+ ``[start:(end+1)]``.
884
+ Either `end` or `extent` must be specified.
885
+ extent : tuple
886
+ The extent (size) of the inner rectangle. E.g.,
887
+ ``(num_rows, num_cols)``.
888
+ Either `end` or `extent` must be specified.
889
+ Negative extents are permitted. See `rectangle` to better
890
+ understand how they behave.
891
+ shape : tuple, optional
892
+ Image shape used to determine the maximum bounds of the output
893
+ coordinates. This is useful for clipping perimeters that exceed
894
+ the image size. By default, no clipping is done. Must be at least
895
+ length 2. Only the first two values are used to determine the extent of
896
+ the input image.
897
+ clip : bool, optional
898
+ Whether to clip the perimeter to the provided shape. If this is set
899
+ to True, the drawn figure will always be a closed polygon with all
900
+ edges visible.
901
+
902
+ Returns
903
+ -------
904
+ coords : array of int, shape (2, Npoints)
905
+ The coordinates of all pixels in the rectangle.
906
+
907
+ Examples
908
+ --------
909
+ .. testsetup::
910
+ >>> import pytest; _ = pytest.importorskip('matplotlib')
911
+
912
+ >>> import numpy as np
913
+ >>> from skimage.draw import rectangle_perimeter
914
+ >>> img = np.zeros((5, 6), dtype=np.uint8)
915
+ >>> start = (2, 3)
916
+ >>> end = (3, 4)
917
+ >>> rr, cc = rectangle_perimeter(start, end=end, shape=img.shape)
918
+ >>> img[rr, cc] = 1
919
+ >>> img
920
+ array([[0, 0, 0, 0, 0, 0],
921
+ [0, 0, 1, 1, 1, 1],
922
+ [0, 0, 1, 0, 0, 1],
923
+ [0, 0, 1, 0, 0, 1],
924
+ [0, 0, 1, 1, 1, 1]], dtype=uint8)
925
+
926
+ >>> img = np.zeros((5, 5), dtype=np.uint8)
927
+ >>> r, c = rectangle_perimeter(start, (10, 10), shape=img.shape, clip=True)
928
+ >>> img[r, c] = 1
929
+ >>> img
930
+ array([[0, 0, 0, 0, 0],
931
+ [0, 0, 1, 1, 1],
932
+ [0, 0, 1, 0, 1],
933
+ [0, 0, 1, 0, 1],
934
+ [0, 0, 1, 1, 1]], dtype=uint8)
935
+
936
+ """
937
+ top_left, bottom_right = _rectangle_slice(start=start, end=end, extent=extent)
938
+
939
+ top_left -= 1
940
+ r = [top_left[0], top_left[0], bottom_right[0], bottom_right[0], top_left[0]]
941
+ c = [top_left[1], bottom_right[1], bottom_right[1], top_left[1], top_left[1]]
942
+ return polygon_perimeter(r, c, shape=shape, clip=clip)
943
+
944
+
945
+ def _rectangle_slice(start, end=None, extent=None):
946
+ """Return the slice ``(top_left, bottom_right)`` of the rectangle.
947
+
948
+ Returns
949
+ -------
950
+ (top_left, bottom_right)
951
+ The slice you would need to select the region in the rectangle defined
952
+ by the parameters.
953
+ Select it like:
954
+
955
+ ``rect[top_left[0]:bottom_right[0], top_left[1]:bottom_right[1]]``
956
+ """
957
+ if end is None and extent is None:
958
+ raise ValueError("Either `end` or `extent` must be given.")
959
+ if end is not None and extent is not None:
960
+ raise ValueError("Cannot provide both `end` and `extent`.")
961
+
962
+ if extent is not None:
963
+ end = np.asarray(start) + np.asarray(extent)
964
+ top_left = np.minimum(start, end)
965
+ bottom_right = np.maximum(start, end)
966
+
967
+ top_left = np.round(top_left).astype(int)
968
+ bottom_right = np.round(bottom_right).astype(int)
969
+
970
+ if extent is None:
971
+ bottom_right += 1
972
+
973
+ return (top_left, bottom_right)
infer_4_47_1/lib/python3.10/site-packages/skimage/draw/draw3d.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from scipy.special import elliprg
3
+
4
+
5
+ def ellipsoid(a, b, c, spacing=(1.0, 1.0, 1.0), levelset=False):
6
+ """Generate ellipsoid for given semi-axis lengths.
7
+
8
+ The respective semi-axis lengths are given along three dimensions in
9
+ Cartesian coordinates. Each dimension may use a different grid spacing.
10
+
11
+ Parameters
12
+ ----------
13
+ a : float
14
+ Length of semi-axis along x-axis.
15
+ b : float
16
+ Length of semi-axis along y-axis.
17
+ c : float
18
+ Length of semi-axis along z-axis.
19
+ spacing : 3-tuple of floats
20
+ Grid spacing in three spatial dimensions.
21
+ levelset : bool
22
+ If True, returns the level set for this ellipsoid (signed level
23
+ set about zero, with positive denoting interior) as np.float64.
24
+ False returns a binarized version of said level set.
25
+
26
+ Returns
27
+ -------
28
+ ellipsoid : (M, N, P) array
29
+ Ellipsoid centered in a correctly sized array for given `spacing`.
30
+ Boolean dtype unless `levelset=True`, in which case a float array is
31
+ returned with the level set above 0.0 representing the ellipsoid.
32
+
33
+ """
34
+ if (a <= 0) or (b <= 0) or (c <= 0):
35
+ raise ValueError('Parameters a, b, and c must all be > 0')
36
+
37
+ offset = np.r_[1, 1, 1] * np.r_[spacing]
38
+
39
+ # Calculate limits, and ensure output volume is odd & symmetric
40
+ low = np.ceil(-np.r_[a, b, c] - offset)
41
+ high = np.floor(np.r_[a, b, c] + offset + 1)
42
+
43
+ for dim in range(3):
44
+ if (high[dim] - low[dim]) % 2 == 0:
45
+ low[dim] -= 1
46
+ num = np.arange(low[dim], high[dim], spacing[dim])
47
+ if 0 not in num:
48
+ low[dim] -= np.max(num[num < 0])
49
+
50
+ # Generate (anisotropic) spatial grid
51
+ x, y, z = np.mgrid[
52
+ low[0] : high[0] : spacing[0],
53
+ low[1] : high[1] : spacing[1],
54
+ low[2] : high[2] : spacing[2],
55
+ ]
56
+
57
+ if not levelset:
58
+ arr = ((x / float(a)) ** 2 + (y / float(b)) ** 2 + (z / float(c)) ** 2) <= 1
59
+ else:
60
+ arr = ((x / float(a)) ** 2 + (y / float(b)) ** 2 + (z / float(c)) ** 2) - 1
61
+
62
+ return arr
63
+
64
+
65
+ def ellipsoid_stats(a, b, c):
66
+ """Calculate analytical volume and surface area of an ellipsoid.
67
+
68
+ The surface area of an ellipsoid is given by
69
+
70
+ .. math:: S=4\\pi b c R_G\\!\\left(1, \\frac{a^2}{b^2}, \\frac{a^2}{c^2}\\right)
71
+
72
+ where :math:`R_G` is Carlson's completely symmetric elliptic integral of
73
+ the second kind [1]_. The latter is implemented as
74
+ :py:func:`scipy.special.elliprg`.
75
+
76
+ Parameters
77
+ ----------
78
+ a : float
79
+ Length of semi-axis along x-axis.
80
+ b : float
81
+ Length of semi-axis along y-axis.
82
+ c : float
83
+ Length of semi-axis along z-axis.
84
+
85
+ Returns
86
+ -------
87
+ vol : float
88
+ Calculated volume of ellipsoid.
89
+ surf : float
90
+ Calculated surface area of ellipsoid.
91
+
92
+ References
93
+ ----------
94
+ .. [1] Paul Masson (2020). Surface Area of an Ellipsoid.
95
+ https://analyticphysics.com/Mathematical%20Methods/Surface%20Area%20of%20an%20Ellipsoid.htm
96
+
97
+ """
98
+ if (a <= 0) or (b <= 0) or (c <= 0):
99
+ raise ValueError('Parameters a, b, and c must all be > 0')
100
+
101
+ # Volume
102
+ vol = 4 / 3.0 * np.pi * a * b * c
103
+
104
+ # Surface area
105
+ surf = 3 * vol * elliprg(1 / a**2, 1 / b**2, 1 / c**2)
106
+
107
+ return vol, surf
infer_4_47_1/lib/python3.10/site-packages/skimage/draw/draw_nd.py ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ def _round_safe(coords):
5
+ """Round coords while ensuring successive values are less than 1 apart.
6
+
7
+ When rounding coordinates for `line_nd`, we want coordinates that are less
8
+ than 1 apart (always the case, by design) to remain less than one apart.
9
+ However, NumPy rounds values to the nearest *even* integer, so:
10
+
11
+ >>> np.round([0.5, 1.5, 2.5, 3.5, 4.5])
12
+ array([0., 2., 2., 4., 4.])
13
+
14
+ So, for our application, we detect whether the above case occurs, and use
15
+ ``np.floor`` if so. It is sufficient to detect that the first coordinate
16
+ falls on 0.5 and that the second coordinate is 1.0 apart, since we assume
17
+ by construction that the inter-point distance is less than or equal to 1
18
+ and that all successive points are equidistant.
19
+
20
+ Parameters
21
+ ----------
22
+ coords : 1D array of float
23
+ The coordinates array. We assume that all successive values are
24
+ equidistant (``np.all(np.diff(coords) = coords[1] - coords[0])``)
25
+ and that this distance is no more than 1
26
+ (``np.abs(coords[1] - coords[0]) <= 1``).
27
+
28
+ Returns
29
+ -------
30
+ rounded : 1D array of int
31
+ The array correctly rounded for an indexing operation, such that no
32
+ successive indices will be more than 1 apart.
33
+
34
+ Examples
35
+ --------
36
+ >>> coords0 = np.array([0.5, 1.25, 2., 2.75, 3.5])
37
+ >>> _round_safe(coords0)
38
+ array([0, 1, 2, 3, 4])
39
+ >>> coords1 = np.arange(0.5, 8, 1)
40
+ >>> coords1
41
+ array([0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5])
42
+ >>> _round_safe(coords1)
43
+ array([0, 1, 2, 3, 4, 5, 6, 7])
44
+ """
45
+ if len(coords) > 1 and coords[0] % 1 == 0.5 and coords[1] - coords[0] == 1:
46
+ _round_function = np.floor
47
+ else:
48
+ _round_function = np.round
49
+ return _round_function(coords).astype(int)
50
+
51
+
52
+ def line_nd(start, stop, *, endpoint=False, integer=True):
53
+ """Draw a single-pixel thick line in n dimensions.
54
+
55
+ The line produced will be ndim-connected. That is, two subsequent
56
+ pixels in the line will be either direct or diagonal neighbors in
57
+ n dimensions.
58
+
59
+ Parameters
60
+ ----------
61
+ start : array-like, shape (N,)
62
+ The start coordinates of the line.
63
+ stop : array-like, shape (N,)
64
+ The end coordinates of the line.
65
+ endpoint : bool, optional
66
+ Whether to include the endpoint in the returned line. Defaults
67
+ to False, which allows for easy drawing of multi-point paths.
68
+ integer : bool, optional
69
+ Whether to round the coordinates to integer. If True (default),
70
+ the returned coordinates can be used to directly index into an
71
+ array. `False` could be used for e.g. vector drawing.
72
+
73
+ Returns
74
+ -------
75
+ coords : tuple of arrays
76
+ The coordinates of points on the line.
77
+
78
+ Examples
79
+ --------
80
+ >>> lin = line_nd((1, 1), (5, 2.5), endpoint=False)
81
+ >>> lin
82
+ (array([1, 2, 3, 4]), array([1, 1, 2, 2]))
83
+ >>> im = np.zeros((6, 5), dtype=int)
84
+ >>> im[lin] = 1
85
+ >>> im
86
+ array([[0, 0, 0, 0, 0],
87
+ [0, 1, 0, 0, 0],
88
+ [0, 1, 0, 0, 0],
89
+ [0, 0, 1, 0, 0],
90
+ [0, 0, 1, 0, 0],
91
+ [0, 0, 0, 0, 0]])
92
+ >>> line_nd([2, 1, 1], [5, 5, 2.5], endpoint=True)
93
+ (array([2, 3, 4, 4, 5]), array([1, 2, 3, 4, 5]), array([1, 1, 2, 2, 2]))
94
+ """
95
+ start = np.asarray(start)
96
+ stop = np.asarray(stop)
97
+ npoints = int(np.ceil(np.max(np.abs(stop - start))))
98
+ if endpoint:
99
+ npoints += 1
100
+
101
+ coords = np.linspace(start, stop, num=npoints, endpoint=endpoint).T
102
+ if integer:
103
+ for dim in range(len(start)):
104
+ coords[dim, :] = _round_safe(coords[dim, :])
105
+
106
+ coords = coords.astype(int)
107
+
108
+ return tuple(coords)
infer_4_47_1/lib/python3.10/site-packages/skimage/draw/tests/__init__.py ADDED
File without changes
infer_4_47_1/lib/python3.10/site-packages/skimage/draw/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (176 Bytes). View file
 
infer_4_47_1/lib/python3.10/site-packages/skimage/draw/tests/__pycache__/test_draw_nd.cpython-310.pyc ADDED
Binary file (1.07 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/skimage/draw/tests/__pycache__/test_random_shapes.cpython-310.pyc ADDED
Binary file (5.44 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/skimage/draw/tests/test_draw.py ADDED
@@ -0,0 +1,1261 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from numpy.testing import assert_array_equal, assert_equal, assert_almost_equal
3
+ import pytest
4
+
5
+ from skimage._shared.testing import run_in_parallel
6
+ from skimage._shared._dependency_checks import has_mpl
7
+
8
+ from skimage.draw import (
9
+ set_color,
10
+ line,
11
+ line_aa,
12
+ polygon,
13
+ polygon_perimeter,
14
+ disk,
15
+ circle_perimeter,
16
+ circle_perimeter_aa,
17
+ ellipse,
18
+ ellipse_perimeter,
19
+ _bezier_segment,
20
+ bezier_curve,
21
+ rectangle,
22
+ rectangle_perimeter,
23
+ )
24
+ from skimage.measure import regionprops
25
+
26
+
27
+ def test_set_color():
28
+ img = np.zeros((10, 10))
29
+
30
+ rr, cc = line(0, 0, 0, 30)
31
+ set_color(img, (rr, cc), 1)
32
+
33
+ img_ = np.zeros((10, 10))
34
+ img_[0, :] = 1
35
+
36
+ assert_array_equal(img, img_)
37
+
38
+
39
+ def test_set_color_with_alpha():
40
+ img = np.zeros((10, 10))
41
+
42
+ rr, cc, alpha = line_aa(0, 0, 0, 30)
43
+ set_color(img, (rr, cc), 1, alpha=alpha)
44
+
45
+ # Wrong dimensionality color
46
+ with pytest.raises(ValueError):
47
+ set_color(img, (rr, cc), (255, 0, 0), alpha=alpha)
48
+
49
+ img = np.zeros((10, 10, 3))
50
+
51
+ rr, cc, alpha = line_aa(0, 0, 0, 30)
52
+ set_color(img, (rr, cc), (1, 0, 0), alpha=alpha)
53
+
54
+
55
+ @run_in_parallel()
56
+ def test_line_horizontal():
57
+ img = np.zeros((10, 10))
58
+
59
+ rr, cc = line(0, 0, 0, 9)
60
+ img[rr, cc] = 1
61
+
62
+ img_ = np.zeros((10, 10))
63
+ img_[0, :] = 1
64
+
65
+ assert_array_equal(img, img_)
66
+
67
+
68
+ def test_line_vertical():
69
+ img = np.zeros((10, 10))
70
+
71
+ rr, cc = line(0, 0, 9, 0)
72
+ img[rr, cc] = 1
73
+
74
+ img_ = np.zeros((10, 10))
75
+ img_[:, 0] = 1
76
+
77
+ assert_array_equal(img, img_)
78
+
79
+
80
+ def test_line_reverse():
81
+ img = np.zeros((10, 10))
82
+
83
+ rr, cc = line(0, 9, 0, 0)
84
+ img[rr, cc] = 1
85
+
86
+ img_ = np.zeros((10, 10))
87
+ img_[0, :] = 1
88
+
89
+ assert_array_equal(img, img_)
90
+
91
+
92
+ def test_line_diag():
93
+ img = np.zeros((5, 5))
94
+
95
+ rr, cc = line(0, 0, 4, 4)
96
+ img[rr, cc] = 1
97
+
98
+ img_ = np.eye(5)
99
+
100
+ assert_array_equal(img, img_)
101
+
102
+
103
+ def test_line_aa_horizontal():
104
+ img = np.zeros((10, 10))
105
+
106
+ rr, cc, val = line_aa(0, 0, 0, 9)
107
+ set_color(img, (rr, cc), 1, alpha=val)
108
+
109
+ img_ = np.zeros((10, 10))
110
+ img_[0, :] = 1
111
+
112
+ assert_array_equal(img, img_)
113
+
114
+
115
+ def test_line_aa_vertical():
116
+ img = np.zeros((10, 10))
117
+
118
+ rr, cc, val = line_aa(0, 0, 9, 0)
119
+ img[rr, cc] = val
120
+
121
+ img_ = np.zeros((10, 10))
122
+ img_[:, 0] = 1
123
+
124
+ assert_array_equal(img, img_)
125
+
126
+
127
+ def test_line_aa_diagonal():
128
+ img = np.zeros((10, 10))
129
+
130
+ rr, cc, val = line_aa(0, 0, 9, 6)
131
+ img[rr, cc] = 1
132
+
133
+ # Check that each pixel belonging to line,
134
+ # also belongs to line_aa
135
+ r, c = line(0, 0, 9, 6)
136
+ for r_i, c_i in zip(r, c):
137
+ assert_equal(img[r_i, c_i], 1)
138
+
139
+
140
+ def test_line_equal_aliasing_horizontally_vertically():
141
+ img0 = np.zeros((25, 25))
142
+ img1 = np.zeros((25, 25))
143
+
144
+ # Near-horizontal line
145
+ rr, cc, val = line_aa(10, 2, 12, 20)
146
+ img0[rr, cc] = val
147
+
148
+ # Near-vertical (transpose of prior)
149
+ rr, cc, val = line_aa(2, 10, 20, 12)
150
+ img1[rr, cc] = val
151
+
152
+ # Difference - should be zero
153
+ assert_array_equal(img0, img1.T)
154
+
155
+
156
+ def test_polygon_rectangle():
157
+ img = np.zeros((10, 10), 'uint8')
158
+ poly = np.array(((1, 1), (4, 1), (4, 4), (1, 4), (1, 1)))
159
+
160
+ rr, cc = polygon(poly[:, 0], poly[:, 1])
161
+ img[rr, cc] = 1
162
+
163
+ img_ = np.zeros((10, 10), 'uint8')
164
+ img_[1:5, 1:5] = 1
165
+
166
+ assert_array_equal(img, img_)
167
+
168
+
169
+ def test_polygon_rectangle_angular():
170
+ img = np.zeros((10, 10), 'uint8')
171
+ poly = np.array(((0, 3), (4, 7), (7, 4), (3, 0), (0, 3)))
172
+
173
+ rr, cc = polygon(poly[:, 0], poly[:, 1])
174
+ img[rr, cc] = 1
175
+
176
+ img_ = np.array(
177
+ [
178
+ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
179
+ [0, 0, 1, 1, 1, 0, 0, 0, 0, 0],
180
+ [0, 1, 1, 1, 1, 1, 0, 0, 0, 0],
181
+ [1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
182
+ [0, 1, 1, 1, 1, 1, 1, 1, 0, 0],
183
+ [0, 0, 1, 1, 1, 1, 1, 0, 0, 0],
184
+ [0, 0, 0, 1, 1, 1, 0, 0, 0, 0],
185
+ [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
186
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
187
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
188
+ ],
189
+ 'uint8',
190
+ )
191
+
192
+ assert_array_equal(img, img_)
193
+
194
+
195
+ def test_polygon_parallelogram():
196
+ img = np.zeros((10, 10), 'uint8')
197
+ poly = np.array(((1, 1), (5, 1), (7, 6), (3, 6), (1, 1)))
198
+
199
+ rr, cc = polygon(poly[:, 0], poly[:, 1])
200
+ img[rr, cc] = 1
201
+
202
+ img_ = np.array(
203
+ [
204
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
205
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
206
+ [0, 1, 1, 1, 0, 0, 0, 0, 0, 0],
207
+ [0, 1, 1, 1, 1, 1, 1, 0, 0, 0],
208
+ [0, 1, 1, 1, 1, 1, 1, 0, 0, 0],
209
+ [0, 1, 1, 1, 1, 1, 1, 0, 0, 0],
210
+ [0, 0, 0, 0, 1, 1, 1, 0, 0, 0],
211
+ [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
212
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
213
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
214
+ ],
215
+ 'uint8',
216
+ )
217
+
218
+ assert_array_equal(img, img_)
219
+
220
+
221
+ def test_polygon_exceed():
222
+ img = np.zeros((10, 10), 'uint8')
223
+ poly = np.array(((1, -1), (100, -1), (100, 100), (1, 100), (1, 1)))
224
+
225
+ rr, cc = polygon(poly[:, 0], poly[:, 1], img.shape)
226
+ img[rr, cc] = 1
227
+
228
+ img_ = np.zeros((10, 10))
229
+ img_[1:, :] = 1
230
+
231
+ assert_array_equal(img, img_)
232
+
233
+
234
+ def test_polygon_0d_input():
235
+ # Bug reported in #4938: 0d input causes segfault.
236
+ rr, cc = polygon(0, 1)
237
+
238
+ assert rr.size == cc.size == 1
239
+
240
+
241
+ def test_disk():
242
+ img = np.zeros((15, 15), 'uint8')
243
+
244
+ rr, cc = disk((7, 7), 6)
245
+ img[rr, cc] = 1
246
+
247
+ img_ = np.array(
248
+ [
249
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
250
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
251
+ [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
252
+ [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
253
+ [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
254
+ [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
255
+ [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
256
+ [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
257
+ [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
258
+ [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
259
+ [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
260
+ [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],
261
+ [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
262
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
263
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
264
+ ]
265
+ )
266
+
267
+ assert_array_equal(img, img_)
268
+
269
+
270
+ def test_circle_perimeter_bresenham():
271
+ img = np.zeros((15, 15), 'uint8')
272
+ rr, cc = circle_perimeter(7, 7, 0, method='bresenham')
273
+ img[rr, cc] = 1
274
+ assert np.sum(img) == 1
275
+ assert img[7][7] == 1
276
+
277
+ img = np.zeros((17, 15), 'uint8')
278
+ rr, cc = circle_perimeter(7, 7, 7, method='bresenham')
279
+ img[rr, cc] = 1
280
+ img_ = np.array(
281
+ [
282
+ [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
283
+ [0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0],
284
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
285
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
286
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
287
+ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
288
+ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
289
+ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
290
+ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
291
+ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
292
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
293
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
294
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
295
+ [0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0],
296
+ [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
297
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
298
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
299
+ ]
300
+ )
301
+ assert_array_equal(img, img_)
302
+
303
+
304
+ def test_circle_perimeter_bresenham_shape():
305
+ img = np.zeros((15, 20), 'uint8')
306
+ rr, cc = circle_perimeter(7, 10, 9, method='bresenham', shape=(15, 20))
307
+ img[rr, cc] = 1
308
+ shift = 5
309
+ img_ = np.zeros((15 + 2 * shift, 20), 'uint8')
310
+ rr, cc = circle_perimeter(7 + shift, 10, 9, method='bresenham', shape=None)
311
+ img_[rr, cc] = 1
312
+ assert_array_equal(img, img_[shift:-shift, :])
313
+
314
+
315
+ def test_circle_perimeter_andres():
316
+ img = np.zeros((15, 15), 'uint8')
317
+ rr, cc = circle_perimeter(7, 7, 0, method='andres')
318
+ img[rr, cc] = 1
319
+ assert np.sum(img) == 1
320
+ assert img[7][7] == 1
321
+
322
+ img = np.zeros((17, 15), 'uint8')
323
+ rr, cc = circle_perimeter(7, 7, 7, method='andres')
324
+ img[rr, cc] = 1
325
+ img_ = np.array(
326
+ [
327
+ [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
328
+ [0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
329
+ [0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0],
330
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
331
+ [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
332
+ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
333
+ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
334
+ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
335
+ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
336
+ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1],
337
+ [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
338
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
339
+ [0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0],
340
+ [0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0],
341
+ [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
342
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
343
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
344
+ ]
345
+ )
346
+ assert_array_equal(img, img_)
347
+
348
+
349
+ def test_circle_perimeter_aa():
350
+ img = np.zeros((15, 15), 'uint8')
351
+ rr, cc, val = circle_perimeter_aa(7, 7, 0)
352
+ img[rr, cc] = 1
353
+ assert np.sum(img) == 1
354
+ assert img[7][7] == 1
355
+
356
+ img = np.zeros((17, 17), 'uint8')
357
+ rr, cc, val = circle_perimeter_aa(8, 8, 7)
358
+ img[rr, cc] = val * 255
359
+ # fmt: off
360
+ img_ = np.array(
361
+ [[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
362
+ [ 0, 0, 0, 0, 0, 82, 180, 236, 255, 236, 180, 82, 0, 0, 0, 0, 0],
363
+ [ 0, 0, 0, 0, 189, 172, 74, 18, 0, 18, 74, 172, 189, 0, 0, 0, 0],
364
+ [ 0, 0, 0, 229, 25, 0, 0, 0, 0, 0, 0, 0, 25, 229, 0, 0, 0],
365
+ [ 0, 0, 189, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 189, 0, 0],
366
+ [ 0, 82, 172, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 172, 82, 0],
367
+ [ 0, 180, 74, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 74, 180, 0],
368
+ [ 0, 236, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 236, 0],
369
+ [ 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 0],
370
+ [ 0, 236, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 236, 0],
371
+ [ 0, 180, 74, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 74, 180, 0],
372
+ [ 0, 82, 172, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 172, 82, 0],
373
+ [ 0, 0, 189, 25, 0, 0, 0, 0, 0, 0, 0, 0, 0, 25, 189, 0, 0],
374
+ [ 0, 0, 0, 229, 25, 0, 0, 0, 0, 0, 0, 0, 25, 229, 0, 0, 0],
375
+ [ 0, 0, 0, 0, 189, 172, 74, 18, 0, 18, 74, 172, 189, 0, 0, 0, 0],
376
+ [ 0, 0, 0, 0, 0, 82, 180, 236, 255, 236, 180, 82, 0, 0, 0, 0, 0],
377
+ [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
378
+ )
379
+ # fmt: on
380
+ assert_array_equal(img, img_)
381
+
382
+
383
+ def test_circle_perimeter_aa_shape():
384
+ img = np.zeros((15, 20), 'uint8')
385
+ rr, cc, val = circle_perimeter_aa(7, 10, 9, shape=(15, 20))
386
+ img[rr, cc] = val * 255
387
+
388
+ shift = 5
389
+ img_ = np.zeros((15 + 2 * shift, 20), 'uint8')
390
+ rr, cc, val = circle_perimeter_aa(7 + shift, 10, 9, shape=None)
391
+ img_[rr, cc] = val * 255
392
+ assert_array_equal(img, img_[shift:-shift, :])
393
+
394
+
395
+ def test_ellipse_trivial():
396
+ img = np.zeros((2, 2), 'uint8')
397
+ rr, cc = ellipse(0.5, 0.5, 0.5, 0.5)
398
+ img[rr, cc] = 1
399
+ img_correct = np.array([[0, 0], [0, 0]])
400
+ assert_array_equal(img, img_correct)
401
+
402
+ img = np.zeros((2, 2), 'uint8')
403
+ rr, cc = ellipse(0.5, 0.5, 1.1, 1.1)
404
+ img[rr, cc] = 1
405
+ img_correct = np.array(
406
+ [
407
+ [1, 1],
408
+ [1, 1],
409
+ ]
410
+ )
411
+ assert_array_equal(img, img_correct)
412
+
413
+ img = np.zeros((3, 3), 'uint8')
414
+ rr, cc = ellipse(1, 1, 0.9, 0.9)
415
+ img[rr, cc] = 1
416
+ img_correct = np.array(
417
+ [
418
+ [0, 0, 0],
419
+ [0, 1, 0],
420
+ [0, 0, 0],
421
+ ]
422
+ )
423
+ assert_array_equal(img, img_correct)
424
+
425
+ img = np.zeros((3, 3), 'uint8')
426
+ rr, cc = ellipse(1, 1, 1.1, 1.1)
427
+ img[rr, cc] = 1
428
+ img_correct = np.array(
429
+ [
430
+ [0, 1, 0],
431
+ [1, 1, 1],
432
+ [0, 1, 0],
433
+ ]
434
+ )
435
+ assert_array_equal(img, img_correct)
436
+
437
+ img = np.zeros((3, 3), 'uint8')
438
+ rr, cc = ellipse(1, 1, 1.5, 1.5)
439
+ img[rr, cc] = 1
440
+ img_correct = np.array(
441
+ [
442
+ [1, 1, 1],
443
+ [1, 1, 1],
444
+ [1, 1, 1],
445
+ ]
446
+ )
447
+ assert_array_equal(img, img_correct)
448
+
449
+
450
+ def test_ellipse_generic():
451
+ img = np.zeros((4, 4), 'uint8')
452
+ rr, cc = ellipse(1.5, 1.5, 1.1, 1.7)
453
+ img[rr, cc] = 1
454
+ img_ = np.array(
455
+ [
456
+ [0, 0, 0, 0],
457
+ [1, 1, 1, 1],
458
+ [1, 1, 1, 1],
459
+ [0, 0, 0, 0],
460
+ ]
461
+ )
462
+ assert_array_equal(img, img_)
463
+
464
+ img = np.zeros((5, 5), 'uint8')
465
+ rr, cc = ellipse(2, 2, 1.7, 1.7)
466
+ img[rr, cc] = 1
467
+ img_ = np.array(
468
+ [
469
+ [0, 0, 0, 0, 0],
470
+ [0, 1, 1, 1, 0],
471
+ [0, 1, 1, 1, 0],
472
+ [0, 1, 1, 1, 0],
473
+ [0, 0, 0, 0, 0],
474
+ ]
475
+ )
476
+ assert_array_equal(img, img_)
477
+
478
+ img = np.zeros((10, 10), 'uint8')
479
+ rr, cc = ellipse(5, 5, 3, 4)
480
+ img[rr, cc] = 1
481
+ img_ = np.array(
482
+ [
483
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
484
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
485
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
486
+ [0, 0, 0, 1, 1, 1, 1, 1, 0, 0],
487
+ [0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
488
+ [0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
489
+ [0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
490
+ [0, 0, 0, 1, 1, 1, 1, 1, 0, 0],
491
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
492
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
493
+ ]
494
+ )
495
+ assert_array_equal(img, img_)
496
+
497
+ img = np.zeros((10, 10), 'uint8')
498
+ rr, cc = ellipse(4.5, 5, 3.5, 4)
499
+ img[rr, cc] = 1
500
+ img_ = np.array(
501
+ [
502
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
503
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
504
+ [0, 0, 0, 1, 1, 1, 1, 1, 0, 0],
505
+ [0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
506
+ [0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
507
+ [0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
508
+ [0, 0, 1, 1, 1, 1, 1, 1, 1, 0],
509
+ [0, 0, 0, 1, 1, 1, 1, 1, 0, 0],
510
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
511
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
512
+ ]
513
+ )
514
+ assert_array_equal(img, img_)
515
+
516
+ img = np.zeros((15, 15), 'uint8')
517
+ rr, cc = ellipse(7, 7, 3, 7)
518
+ img[rr, cc] = 1
519
+ img_ = np.array(
520
+ [
521
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
522
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
523
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
524
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
525
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
526
+ [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
527
+ [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
528
+ [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
529
+ [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0],
530
+ [0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0],
531
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
532
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
533
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
534
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
535
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
536
+ ]
537
+ )
538
+ assert_array_equal(img, img_)
539
+
540
+
541
+ def test_ellipse_with_shape():
542
+ img = np.zeros((15, 15), 'uint8')
543
+
544
+ rr, cc = ellipse(7, 7, 3, 10, shape=img.shape)
545
+ img[rr, cc] = 1
546
+
547
+ img_ = np.array(
548
+ [
549
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
550
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
551
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
552
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
553
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
554
+ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
555
+ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
556
+ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
557
+ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
558
+ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
559
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
560
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
561
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
562
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
563
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
564
+ ]
565
+ )
566
+
567
+ assert_array_equal(img, img_)
568
+
569
+ img = np.zeros((10, 9, 3), 'uint8')
570
+
571
+ rr, cc = ellipse(7, 7, 3, 10, shape=img.shape)
572
+ img[rr, cc, 0] = 1
573
+
574
+ img_ = np.zeros_like(img)
575
+ img_[..., 0] = np.array(
576
+ [
577
+ [0, 0, 0, 0, 0, 0, 0, 0, 0],
578
+ [0, 0, 0, 0, 0, 0, 0, 0, 0],
579
+ [0, 0, 0, 0, 0, 0, 0, 0, 0],
580
+ [0, 0, 0, 0, 0, 0, 0, 0, 0],
581
+ [0, 0, 0, 0, 0, 0, 0, 0, 0],
582
+ [1, 1, 1, 1, 1, 1, 1, 1, 1],
583
+ [1, 1, 1, 1, 1, 1, 1, 1, 1],
584
+ [1, 1, 1, 1, 1, 1, 1, 1, 1],
585
+ [1, 1, 1, 1, 1, 1, 1, 1, 1],
586
+ [1, 1, 1, 1, 1, 1, 1, 1, 1],
587
+ ],
588
+ )
589
+
590
+ assert_array_equal(img, img_)
591
+
592
+
593
+ def test_ellipse_negative():
594
+ rr, cc = ellipse(-3, -3, 1.7, 1.7)
595
+ rr_, cc_ = np.nonzero(
596
+ np.array(
597
+ [
598
+ [0, 0, 0, 0, 0],
599
+ [0, 1, 1, 1, 0],
600
+ [0, 1, 1, 1, 0],
601
+ [0, 1, 1, 1, 0],
602
+ [0, 0, 0, 0, 0],
603
+ ]
604
+ )
605
+ )
606
+
607
+ assert_array_equal(rr, rr_ - 5)
608
+ assert_array_equal(cc, cc_ - 5)
609
+
610
+
611
+ def test_ellipse_rotation_symmetry():
612
+ img1 = np.zeros((150, 150), dtype=np.uint8)
613
+ img2 = np.zeros((150, 150), dtype=np.uint8)
614
+ for angle in range(0, 180, 15):
615
+ img1.fill(0)
616
+ rr, cc = ellipse(80, 70, 60, 40, rotation=np.deg2rad(angle))
617
+ img1[rr, cc] = 1
618
+ img2.fill(0)
619
+ rr, cc = ellipse(80, 70, 60, 40, rotation=np.deg2rad(angle + 180))
620
+ img2[rr, cc] = 1
621
+ assert_array_equal(img1, img2)
622
+
623
+
624
+ def test_ellipse_rotated():
625
+ img = np.zeros((1000, 1200), dtype=np.uint8)
626
+ for rot in range(0, 180, 10):
627
+ img.fill(0)
628
+ angle = np.deg2rad(rot)
629
+ rr, cc = ellipse(500, 600, 200, 400, rotation=angle)
630
+ img[rr, cc] = 1
631
+ # estimate orientation of ellipse
632
+ angle_estim_raw = regionprops(img)[0].orientation
633
+ angle_estim = np.round(angle_estim_raw, 3) % (np.pi / 2)
634
+ assert_almost_equal(angle_estim, angle % (np.pi / 2), 2)
635
+
636
+
637
+ def test_ellipse_perimeter_dot_zeroangle():
638
+ # dot, angle == 0
639
+ img = np.zeros((30, 15), 'uint8')
640
+ rr, cc = ellipse_perimeter(15, 7, 0, 0, 0)
641
+ img[rr, cc] = 1
642
+ assert np.sum(img) == 1
643
+ assert img[15][7] == 1
644
+
645
+
646
+ def test_ellipse_perimeter_dot_nzeroangle():
647
+ # dot, angle != 0
648
+ img = np.zeros((30, 15), 'uint8')
649
+ rr, cc = ellipse_perimeter(15, 7, 0, 0, 1)
650
+ img[rr, cc] = 1
651
+ assert np.sum(img) == 1
652
+ assert img[15][7] == 1
653
+
654
+
655
+ def test_ellipse_perimeter_flat_zeroangle():
656
+ # flat ellipse
657
+ img = np.zeros((20, 18), 'uint8')
658
+ img_ = np.zeros((20, 18), 'uint8')
659
+ rr, cc = ellipse_perimeter(6, 7, 0, 5, 0)
660
+ img[rr, cc] = 1
661
+ rr, cc = line(6, 2, 6, 12)
662
+ img_[rr, cc] = 1
663
+ assert_array_equal(img, img_)
664
+
665
+
666
+ def test_ellipse_perimeter_zeroangle():
667
+ # angle == 0
668
+ img = np.zeros((30, 15), 'uint8')
669
+ rr, cc = ellipse_perimeter(15, 7, 14, 6, 0)
670
+ img[rr, cc] = 1
671
+ img_ = np.array(
672
+ [
673
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
674
+ [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0],
675
+ [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0],
676
+ [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
677
+ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
678
+ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
679
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
680
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
681
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
682
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
683
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
684
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
685
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
686
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
687
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
688
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
689
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
690
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
691
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
692
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
693
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
694
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
695
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
696
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
697
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
698
+ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
699
+ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
700
+ [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
701
+ [0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0],
702
+ [0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0],
703
+ ]
704
+ )
705
+
706
+ assert_array_equal(img, img_)
707
+
708
+
709
+ def test_ellipse_perimeter_nzeroangle():
710
+ # angle != 0
711
+ img = np.zeros((30, 25), 'uint8')
712
+ rr, cc = ellipse_perimeter(15, 11, 12, 6, 1.1)
713
+ img[rr, cc] = 1
714
+ img_ = np.array(
715
+ [
716
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
717
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
718
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
719
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
720
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
721
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
722
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
723
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
724
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
725
+ [0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
726
+ [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
727
+ [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
728
+ [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
729
+ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
730
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
731
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
732
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
733
+ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
734
+ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
735
+ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
736
+ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0],
737
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
738
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
739
+ [0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
740
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
741
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
742
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
743
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
744
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
745
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
746
+ ]
747
+ )
748
+ assert_array_equal(img, img_)
749
+
750
+
751
+ def test_ellipse_perimeter_shape():
752
+ img = np.zeros((15, 20), 'uint8')
753
+ rr, cc = ellipse_perimeter(7, 10, 9, 9, 0, shape=(15, 20))
754
+ img[rr, cc] = 1
755
+ shift = 5
756
+ img_ = np.zeros((15 + 2 * shift, 20), 'uint8')
757
+ rr, cc = ellipse_perimeter(7 + shift, 10, 9, 9, 0, shape=None)
758
+ img_[rr, cc] = 1
759
+ assert_array_equal(img, img_[shift:-shift, :])
760
+
761
+
762
+ def test_bezier_segment_straight():
763
+ image = np.zeros((200, 200), dtype=int)
764
+ r0, r1, r2 = 50, 150, 150
765
+ c0, c1, c2 = 50, 50, 150
766
+ rr, cc = _bezier_segment(r0, c0, r1, c1, r2, c2, 0)
767
+ image[rr, cc] = 1
768
+
769
+ image2 = np.zeros((200, 200), dtype=int)
770
+ rr, cc = line(r0, c0, r2, c2)
771
+ image2[rr, cc] = 1
772
+ assert_array_equal(image, image2)
773
+
774
+
775
+ def test_bezier_segment_curved():
776
+ img = np.zeros((25, 25), 'uint8')
777
+ r0, c0 = 20, 20
778
+ r1, c1 = 20, 2
779
+ r2, c2 = 2, 2
780
+ rr, cc = _bezier_segment(r0, c0, r1, c1, r2, c2, 1)
781
+ img[rr, cc] = 1
782
+ img_ = np.array(
783
+ [
784
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
785
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
786
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
787
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
788
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
789
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
790
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
791
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
792
+ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
793
+ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
794
+ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
795
+ [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
796
+ [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
797
+ [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
798
+ [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
799
+ [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
800
+ [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
801
+ [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
802
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
803
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
804
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
805
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
806
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
807
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
808
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
809
+ ]
810
+ )
811
+ assert_equal(img[r0, c0], 1)
812
+ assert_equal(img[r2, c2], 1)
813
+ assert_array_equal(img, img_)
814
+
815
+
816
+ def test_bezier_curve_straight():
817
+ image = np.zeros((200, 200), dtype=int)
818
+ r0, c0 = 50, 50
819
+ r1, c1 = 150, 50
820
+ r2, c2 = 150, 150
821
+ rr, cc = bezier_curve(r0, c0, r1, c1, r2, c2, 0)
822
+ image[rr, cc] = 1
823
+
824
+ image2 = np.zeros((200, 200), dtype=int)
825
+ rr, cc = line(r0, c0, r2, c2)
826
+ image2[rr, cc] = 1
827
+ assert_array_equal(image, image2)
828
+
829
+
830
+ def test_bezier_curved_weight_eq_1():
831
+ img = np.zeros((23, 8), 'uint8')
832
+ r0, c0 = 1, 1
833
+ r1, c1 = 11, 11
834
+ r2, c2 = 21, 1
835
+ rr, cc = bezier_curve(r0, c0, r1, c1, r2, c2, 1)
836
+ img[rr, cc] = 1
837
+ assert_equal(img[r0, c0], 1)
838
+ assert_equal(img[r2, c2], 1)
839
+ img_ = np.array(
840
+ [
841
+ [0, 0, 0, 0, 0, 0, 0, 0],
842
+ [0, 1, 0, 0, 0, 0, 0, 0],
843
+ [0, 0, 1, 0, 0, 0, 0, 0],
844
+ [0, 0, 0, 1, 0, 0, 0, 0],
845
+ [0, 0, 0, 0, 1, 0, 0, 0],
846
+ [0, 0, 0, 0, 1, 0, 0, 0],
847
+ [0, 0, 0, 0, 0, 1, 0, 0],
848
+ [0, 0, 0, 0, 0, 1, 0, 0],
849
+ [0, 0, 0, 0, 0, 0, 1, 0],
850
+ [0, 0, 0, 0, 0, 0, 1, 0],
851
+ [0, 0, 0, 0, 0, 0, 1, 0],
852
+ [0, 0, 0, 0, 0, 0, 1, 0],
853
+ [0, 0, 0, 0, 0, 0, 1, 0],
854
+ [0, 0, 0, 0, 0, 0, 1, 0],
855
+ [0, 0, 0, 0, 0, 0, 1, 0],
856
+ [0, 0, 0, 0, 0, 1, 0, 0],
857
+ [0, 0, 0, 0, 0, 1, 0, 0],
858
+ [0, 0, 0, 0, 1, 0, 0, 0],
859
+ [0, 0, 0, 0, 1, 0, 0, 0],
860
+ [0, 0, 0, 1, 0, 0, 0, 0],
861
+ [0, 0, 1, 0, 0, 0, 0, 0],
862
+ [0, 1, 0, 0, 0, 0, 0, 0],
863
+ [0, 0, 0, 0, 0, 0, 0, 0],
864
+ ]
865
+ )
866
+ assert_equal(img, img_)
867
+
868
+
869
+ def test_bezier_curved_weight_neq_1():
870
+ img = np.zeros((23, 10), 'uint8')
871
+ r0, c0 = 1, 1
872
+ r1, c1 = 11, 11
873
+ r2, c2 = 21, 1
874
+ rr, cc = bezier_curve(r0, c0, r1, c1, r2, c2, 2)
875
+ img[rr, cc] = 1
876
+ assert_equal(img[r0, c0], 1)
877
+ assert_equal(img[r2, c2], 1)
878
+ img_ = np.array(
879
+ [
880
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
881
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
882
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
883
+ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
884
+ [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
885
+ [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
886
+ [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
887
+ [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
888
+ [0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
889
+ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
890
+ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
891
+ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
892
+ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
893
+ [0, 0, 0, 0, 0, 0, 0, 0, 1, 0],
894
+ [0, 0, 0, 0, 0, 0, 0, 1, 0, 0],
895
+ [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
896
+ [0, 0, 0, 0, 0, 0, 1, 0, 0, 0],
897
+ [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
898
+ [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
899
+ [0, 0, 0, 1, 0, 0, 0, 0, 0, 0],
900
+ [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],
901
+ [0, 1, 0, 0, 0, 0, 0, 0, 0, 0],
902
+ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
903
+ ]
904
+ )
905
+ assert_equal(img, img_)
906
+
907
+
908
+ def test_bezier_curve_shape():
909
+ img = np.zeros((15, 20), 'uint8')
910
+ r0, c0 = 1, 5
911
+ r1, c1 = 6, 11
912
+ r2, c2 = 1, 14
913
+ rr, cc = bezier_curve(r0, c0, r1, c1, r2, c2, 2, shape=(15, 20))
914
+ img[rr, cc] = 1
915
+ shift = 5
916
+ img_ = np.zeros((15 + 2 * shift, 20), 'uint8')
917
+ r0, c0 = 1 + shift, 5
918
+ r1, c1 = 6 + shift, 11
919
+ r2, c2 = 1 + shift, 14
920
+ rr, cc = bezier_curve(r0, c0, r1, c1, r2, c2, 2, shape=None)
921
+ img_[rr, cc] = 1
922
+ assert_array_equal(img, img_[shift:-shift, :])
923
+
924
+
925
+ @pytest.mark.skipif(not has_mpl, reason="matplotlib not installed")
926
+ def test_polygon_perimeter():
927
+ expected = np.array([[1, 1, 1, 1], [1, 0, 0, 1], [1, 1, 1, 1]])
928
+ out = np.zeros_like(expected)
929
+
930
+ rr, cc = polygon_perimeter([0, 2, 2, 0], [0, 0, 3, 3])
931
+
932
+ out[rr, cc] = 1
933
+ assert_array_equal(out, expected)
934
+
935
+ out = np.zeros_like(expected)
936
+ rr, cc = polygon_perimeter(
937
+ [-1, -1, 3, 3], [-1, 4, 4, -1], shape=out.shape, clip=True
938
+ )
939
+ out[rr, cc] = 1
940
+ assert_array_equal(out, expected)
941
+
942
+ with pytest.raises(ValueError):
943
+ polygon_perimeter([0], [1], clip=True)
944
+
945
+
946
+ @pytest.mark.skipif(not has_mpl, reason="matplotlib not installed")
947
+ def test_polygon_perimeter_outside_image():
948
+ rr, cc = polygon_perimeter([-1, -1, 3, 3], [-1, 4, 4, -1], shape=(3, 4))
949
+ assert_equal(len(rr), 0)
950
+ assert_equal(len(cc), 0)
951
+
952
+
953
+ def test_rectangle_end():
954
+ expected = np.array(
955
+ [
956
+ [0, 1, 1, 1, 0],
957
+ [0, 1, 1, 1, 0],
958
+ [0, 1, 1, 1, 0],
959
+ [0, 1, 1, 1, 0],
960
+ [0, 0, 0, 0, 0],
961
+ ],
962
+ dtype=np.uint8,
963
+ )
964
+ start = (0, 1)
965
+ end = (3, 3)
966
+ img = np.zeros((5, 5), dtype=np.uint8)
967
+ rr, cc = rectangle(start, end=end, shape=img.shape)
968
+ img[rr, cc] = 1
969
+ assert_array_equal(img, expected)
970
+
971
+ # Swap start and end
972
+ img = np.zeros((5, 5), dtype=np.uint8)
973
+ rr, cc = rectangle(end=start, start=end, shape=img.shape)
974
+ img[rr, cc] = 1
975
+ assert_array_equal(img, expected)
976
+
977
+ # Bottom left and top right
978
+ img = np.zeros((5, 5), dtype=np.uint8)
979
+ rr, cc = rectangle(start=(3, 1), end=(0, 3), shape=img.shape)
980
+ img[rr, cc] = 1
981
+ assert_array_equal(img, expected)
982
+
983
+ img = np.zeros((5, 5), dtype=np.uint8)
984
+ rr, cc = rectangle(end=(3, 1), start=(0, 3), shape=img.shape)
985
+ img[rr, cc] = 1
986
+ assert_array_equal(img, expected)
987
+
988
+
989
+ def test_rectangle_float_input():
990
+ expected = np.array(
991
+ [
992
+ [0, 1, 1, 1, 0],
993
+ [0, 1, 1, 1, 0],
994
+ [0, 1, 1, 1, 0],
995
+ [0, 1, 1, 1, 0],
996
+ [0, 0, 0, 0, 0],
997
+ ],
998
+ dtype=np.uint8,
999
+ )
1000
+ start = (0.2, 0.8)
1001
+ end = (3.1, 2.9)
1002
+ img = np.zeros((5, 5), dtype=np.uint8)
1003
+ rr, cc = rectangle(start, end=end, shape=img.shape)
1004
+ img[rr, cc] = 1
1005
+ assert_array_equal(img, expected)
1006
+
1007
+ # Swap start and end
1008
+ img = np.zeros((5, 5), dtype=np.uint8)
1009
+ rr, cc = rectangle(end=start, start=end, shape=img.shape)
1010
+ img[rr, cc] = 1
1011
+ assert_array_equal(img, expected)
1012
+
1013
+ # Bottom left and top right
1014
+ img = np.zeros((5, 5), dtype=np.uint8)
1015
+ rr, cc = rectangle(start=(3.1, 0.8), end=(0.2, 2.9), shape=img.shape)
1016
+ img[rr, cc] = 1
1017
+ assert_array_equal(img, expected)
1018
+
1019
+ img = np.zeros((5, 5), dtype=np.uint8)
1020
+ rr, cc = rectangle(end=(3.1, 0.8), start=(0.2, 2.9), shape=img.shape)
1021
+ img[rr, cc] = 1
1022
+ assert_array_equal(img, expected)
1023
+
1024
+
1025
+ def test_rectangle_extent():
1026
+ expected = np.array(
1027
+ [
1028
+ [0, 0, 0, 0, 0],
1029
+ [0, 1, 1, 1, 0],
1030
+ [0, 1, 1, 1, 0],
1031
+ [0, 1, 1, 1, 0],
1032
+ [0, 0, 0, 0, 0],
1033
+ ],
1034
+ dtype=np.uint8,
1035
+ )
1036
+ start = (1, 1)
1037
+ extent = (3, 3)
1038
+ img = np.zeros((5, 5), dtype=np.uint8)
1039
+ rr, cc = rectangle(start, extent=extent, shape=img.shape)
1040
+ img[rr, cc] = 1
1041
+ assert_array_equal(img, expected)
1042
+
1043
+ img = np.zeros((5, 5, 3), dtype=np.uint8)
1044
+ rr, cc = rectangle(start, extent=extent, shape=img.shape)
1045
+ img[rr, cc, 0] = 1
1046
+ expected_2 = np.zeros_like(img)
1047
+ expected_2[..., 0] = expected
1048
+ assert_array_equal(img, expected_2)
1049
+
1050
+
1051
+ @pytest.mark.skipif(not has_mpl, reason="matplotlib not installed")
1052
+ def test_rectangle_extent_negative():
1053
+ # These two tests should be done together.
1054
+ expected = np.array(
1055
+ [
1056
+ [0, 0, 0, 0, 0, 0],
1057
+ [0, 0, 1, 1, 1, 1],
1058
+ [0, 0, 1, 2, 2, 1],
1059
+ [0, 0, 1, 1, 1, 1],
1060
+ [0, 0, 0, 0, 0, 0],
1061
+ ],
1062
+ dtype=np.uint8,
1063
+ )
1064
+
1065
+ start = (3, 5)
1066
+ extent = (-1, -2)
1067
+ img = np.zeros(expected.shape, dtype=np.uint8)
1068
+ rr, cc = rectangle_perimeter(start, extent=extent, shape=img.shape)
1069
+ img[rr, cc] = 1
1070
+
1071
+ rr, cc = rectangle(start, extent=extent, shape=img.shape)
1072
+ img[rr, cc] = 2
1073
+ assert_array_equal(img, expected)
1074
+
1075
+ # Ensure that rr and cc have no overlap
1076
+ img = np.zeros(expected.shape, dtype=np.uint8)
1077
+ rr, cc = rectangle(start, extent=extent, shape=img.shape)
1078
+ img[rr, cc] = 2
1079
+
1080
+ rr, cc = rectangle_perimeter(start, extent=extent, shape=img.shape)
1081
+ img[rr, cc] = 1
1082
+ assert_array_equal(img, expected)
1083
+
1084
+
1085
+ @pytest.mark.skipif(not has_mpl, reason="matplotlib not installed")
1086
+ def test_rectangle_perimiter():
1087
+ expected = np.array(
1088
+ [
1089
+ [0, 0, 0, 0, 0, 0],
1090
+ [0, 0, 1, 1, 1, 1],
1091
+ [0, 0, 1, 0, 0, 1],
1092
+ [0, 0, 1, 1, 1, 1],
1093
+ [0, 0, 0, 0, 0, 0],
1094
+ ],
1095
+ dtype=np.uint8,
1096
+ )
1097
+ start = (2, 3)
1098
+ end = (2, 4)
1099
+ img = np.zeros(expected.shape, dtype=np.uint8)
1100
+ # Test that the default parameter is indeed end
1101
+ rr, cc = rectangle_perimeter(start, end, shape=img.shape)
1102
+ img[rr, cc] = 1
1103
+ assert_array_equal(img, expected)
1104
+
1105
+ # Swap start and end
1106
+ img = np.zeros(expected.shape, dtype=np.uint8)
1107
+ rr, cc = rectangle_perimeter(end=start, start=end, shape=img.shape)
1108
+ img[rr, cc] = 1
1109
+ assert_array_equal(img, expected)
1110
+
1111
+ img = np.zeros(expected.shape, dtype=np.uint8)
1112
+ start = (2, 3)
1113
+ extent = (1, 2)
1114
+ rr, cc = rectangle_perimeter(start, extent=extent, shape=img.shape)
1115
+ img[rr, cc] = 1
1116
+ assert_array_equal(img, expected)
1117
+
1118
+
1119
+ @pytest.mark.skipif(not has_mpl, reason="matplotlib not installed")
1120
+ def test_rectangle_perimiter_clip_bottom_right():
1121
+ # clip=False
1122
+ expected = np.array(
1123
+ [
1124
+ [0, 0, 0, 0, 0],
1125
+ [0, 1, 1, 1, 1],
1126
+ [0, 1, 0, 0, 0],
1127
+ [0, 1, 0, 0, 0],
1128
+ [0, 1, 0, 0, 0],
1129
+ ],
1130
+ dtype=np.uint8,
1131
+ )
1132
+ img = np.zeros((5, 5), dtype=np.uint8)
1133
+ start = (2, 2)
1134
+ extent = (10, 10)
1135
+ rr, cc = rectangle_perimeter(start, extent=extent, shape=img.shape, clip=False)
1136
+ img[rr, cc] = 1
1137
+ assert_array_equal(img, expected)
1138
+
1139
+ # clip=True
1140
+ expected = np.array(
1141
+ [
1142
+ [0, 0, 0, 0, 0],
1143
+ [0, 1, 1, 1, 1],
1144
+ [0, 1, 0, 0, 1],
1145
+ [0, 1, 0, 0, 1],
1146
+ [0, 1, 1, 1, 1],
1147
+ ],
1148
+ dtype=np.uint8,
1149
+ )
1150
+ img = np.zeros((5, 5), dtype=np.uint8)
1151
+ rr, cc = rectangle_perimeter(start, extent=extent, shape=img.shape, clip=True)
1152
+ img[rr, cc] = 1
1153
+ assert_array_equal(img, expected)
1154
+
1155
+
1156
+ @pytest.mark.skipif(not has_mpl, reason="matplotlib not installed")
1157
+ def test_rectangle_perimiter_clip_top_left():
1158
+ # clip=False
1159
+ expected = np.array(
1160
+ [
1161
+ [0, 0, 0, 1, 0],
1162
+ [0, 0, 0, 1, 0],
1163
+ [0, 0, 0, 1, 0],
1164
+ [1, 1, 1, 1, 0],
1165
+ [0, 0, 0, 0, 0],
1166
+ ],
1167
+ dtype=np.uint8,
1168
+ )
1169
+ img = np.zeros((5, 5), dtype=np.uint8)
1170
+ start = (-5, -5)
1171
+ end = (2, 2)
1172
+ rr, cc = rectangle_perimeter(start, end=end, shape=img.shape, clip=False)
1173
+ img[rr, cc] = 1
1174
+ assert_array_equal(img, expected)
1175
+
1176
+ # clip=True
1177
+ expected = np.array(
1178
+ [
1179
+ [1, 1, 1, 1, 0],
1180
+ [1, 0, 0, 1, 0],
1181
+ [1, 0, 0, 1, 0],
1182
+ [1, 1, 1, 1, 0],
1183
+ [0, 0, 0, 0, 0],
1184
+ ],
1185
+ dtype=np.uint8,
1186
+ )
1187
+ img = np.zeros((5, 5), dtype=np.uint8)
1188
+ rr, cc = rectangle_perimeter(start, end=end, shape=img.shape, clip=True)
1189
+ img[rr, cc] = 1
1190
+ assert_array_equal(img, expected)
1191
+
1192
+
1193
+ @pytest.mark.skipif(not has_mpl, reason="matplotlib not installed")
1194
+ def test_rectangle_perimiter_clip_top_right():
1195
+ expected = np.array(
1196
+ [
1197
+ [0, 1, 1, 1, 1],
1198
+ [0, 1, 0, 0, 1],
1199
+ [0, 1, 0, 0, 1],
1200
+ [0, 1, 1, 1, 1],
1201
+ [0, 0, 0, 0, 0],
1202
+ ],
1203
+ dtype=np.uint8,
1204
+ )
1205
+ img = np.zeros((5, 5), dtype=np.uint8)
1206
+ start = (-10, 2)
1207
+ end = (2, 10)
1208
+ rr, cc = rectangle_perimeter(start, end=end, shape=img.shape, clip=True)
1209
+ img[rr, cc] = 1
1210
+ assert_array_equal(img, expected)
1211
+
1212
+ expected = np.array(
1213
+ [
1214
+ [0, 1, 0, 0, 0],
1215
+ [0, 1, 0, 0, 0],
1216
+ [0, 1, 0, 0, 0],
1217
+ [0, 1, 1, 1, 1],
1218
+ [0, 0, 0, 0, 0],
1219
+ ],
1220
+ dtype=np.uint8,
1221
+ )
1222
+ img = np.zeros((5, 5), dtype=np.uint8)
1223
+ rr, cc = rectangle_perimeter(start, end=end, shape=img.shape, clip=False)
1224
+ img[rr, cc] = 1
1225
+ assert_array_equal(img, expected)
1226
+
1227
+
1228
+ @pytest.mark.skipif(not has_mpl, reason="matplotlib not installed")
1229
+ def test_rectangle_perimiter_clip_bottom_left():
1230
+ expected = np.array(
1231
+ [
1232
+ [0, 0, 0, 0, 0],
1233
+ [1, 1, 1, 0, 0],
1234
+ [1, 0, 1, 0, 0],
1235
+ [1, 0, 1, 0, 0],
1236
+ [1, 1, 1, 0, 0],
1237
+ ],
1238
+ dtype=np.uint8,
1239
+ )
1240
+ img = np.zeros((5, 5), dtype=np.uint8)
1241
+ start = (2, -3)
1242
+ end = (10, 1)
1243
+ rr, cc = rectangle_perimeter(start, end=end, shape=img.shape, clip=True)
1244
+ img[rr, cc] = 1
1245
+ assert_array_equal(img, expected)
1246
+
1247
+ expected = np.array(
1248
+ [
1249
+ [0, 0, 0, 0, 0],
1250
+ [1, 1, 1, 0, 0],
1251
+ [0, 0, 1, 0, 0],
1252
+ [0, 0, 1, 0, 0],
1253
+ [0, 0, 1, 0, 0],
1254
+ ],
1255
+ dtype=np.uint8,
1256
+ )
1257
+
1258
+ img = np.zeros((5, 5), dtype=np.uint8)
1259
+ rr, cc = rectangle_perimeter(start, end=end, shape=img.shape, clip=False)
1260
+ img[rr, cc] = 1
1261
+ assert_array_equal(img, expected)
infer_4_47_1/lib/python3.10/site-packages/skimage/draw/tests/test_draw3d.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from skimage._shared.testing import assert_array_equal, assert_allclose
3
+
4
+ from skimage.draw import ellipsoid, ellipsoid_stats, rectangle
5
+ from skimage._shared import testing
6
+
7
+
8
+ def test_ellipsoid_sign_parameters1():
9
+ with testing.raises(ValueError):
10
+ ellipsoid(-1, 2, 2)
11
+
12
+
13
+ def test_ellipsoid_sign_parameters2():
14
+ with testing.raises(ValueError):
15
+ ellipsoid(0, 2, 2)
16
+
17
+
18
+ def test_ellipsoid_sign_parameters3():
19
+ with testing.raises(ValueError):
20
+ ellipsoid(-3, -2, 2)
21
+
22
+
23
+ def test_ellipsoid_bool():
24
+ test = ellipsoid(2, 2, 2)[1:-1, 1:-1, 1:-1]
25
+ test_anisotropic = ellipsoid(2, 2, 4, spacing=(1.0, 1.0, 2.0))
26
+ test_anisotropic = test_anisotropic[1:-1, 1:-1, 1:-1]
27
+
28
+ expected = np.array(
29
+ [
30
+ [
31
+ [0, 0, 0, 0, 0],
32
+ [0, 0, 0, 0, 0],
33
+ [0, 0, 1, 0, 0],
34
+ [0, 0, 0, 0, 0],
35
+ [0, 0, 0, 0, 0],
36
+ ],
37
+ [
38
+ [0, 0, 0, 0, 0],
39
+ [0, 1, 1, 1, 0],
40
+ [0, 1, 1, 1, 0],
41
+ [0, 1, 1, 1, 0],
42
+ [0, 0, 0, 0, 0],
43
+ ],
44
+ [
45
+ [0, 0, 1, 0, 0],
46
+ [0, 1, 1, 1, 0],
47
+ [1, 1, 1, 1, 1],
48
+ [0, 1, 1, 1, 0],
49
+ [0, 0, 1, 0, 0],
50
+ ],
51
+ [
52
+ [0, 0, 0, 0, 0],
53
+ [0, 1, 1, 1, 0],
54
+ [0, 1, 1, 1, 0],
55
+ [0, 1, 1, 1, 0],
56
+ [0, 0, 0, 0, 0],
57
+ ],
58
+ [
59
+ [0, 0, 0, 0, 0],
60
+ [0, 0, 0, 0, 0],
61
+ [0, 0, 1, 0, 0],
62
+ [0, 0, 0, 0, 0],
63
+ [0, 0, 0, 0, 0],
64
+ ],
65
+ ]
66
+ )
67
+
68
+ assert_array_equal(test, expected.astype(bool))
69
+ assert_array_equal(test_anisotropic, expected.astype(bool))
70
+
71
+
72
+ def test_ellipsoid_levelset():
73
+ test = ellipsoid(2, 2, 2, levelset=True)[1:-1, 1:-1, 1:-1]
74
+ test_anisotropic = ellipsoid(2, 2, 4, spacing=(1.0, 1.0, 2.0), levelset=True)
75
+ test_anisotropic = test_anisotropic[1:-1, 1:-1, 1:-1]
76
+
77
+ expected = np.array(
78
+ [
79
+ [
80
+ [2.0, 1.25, 1.0, 1.25, 2.0],
81
+ [1.25, 0.5, 0.25, 0.5, 1.25],
82
+ [1.0, 0.25, 0.0, 0.25, 1.0],
83
+ [1.25, 0.5, 0.25, 0.5, 1.25],
84
+ [2.0, 1.25, 1.0, 1.25, 2.0],
85
+ ],
86
+ [
87
+ [1.25, 0.5, 0.25, 0.5, 1.25],
88
+ [0.5, -0.25, -0.5, -0.25, 0.5],
89
+ [0.25, -0.5, -0.75, -0.5, 0.25],
90
+ [0.5, -0.25, -0.5, -0.25, 0.5],
91
+ [1.25, 0.5, 0.25, 0.5, 1.25],
92
+ ],
93
+ [
94
+ [1.0, 0.25, 0.0, 0.25, 1.0],
95
+ [0.25, -0.5, -0.75, -0.5, 0.25],
96
+ [0.0, -0.75, -1.0, -0.75, 0.0],
97
+ [0.25, -0.5, -0.75, -0.5, 0.25],
98
+ [1.0, 0.25, 0.0, 0.25, 1.0],
99
+ ],
100
+ [
101
+ [1.25, 0.5, 0.25, 0.5, 1.25],
102
+ [0.5, -0.25, -0.5, -0.25, 0.5],
103
+ [0.25, -0.5, -0.75, -0.5, 0.25],
104
+ [0.5, -0.25, -0.5, -0.25, 0.5],
105
+ [1.25, 0.5, 0.25, 0.5, 1.25],
106
+ ],
107
+ [
108
+ [2.0, 1.25, 1.0, 1.25, 2.0],
109
+ [1.25, 0.5, 0.25, 0.5, 1.25],
110
+ [1.0, 0.25, 0.0, 0.25, 1.0],
111
+ [1.25, 0.5, 0.25, 0.5, 1.25],
112
+ [2.0, 1.25, 1.0, 1.25, 2.0],
113
+ ],
114
+ ]
115
+ )
116
+
117
+ assert_allclose(test, expected)
118
+ assert_allclose(test_anisotropic, expected)
119
+
120
+
121
+ def test_ellipsoid_stats():
122
+ # Test comparison values generated by Wolfram Alpha
123
+ vol, surf = ellipsoid_stats(6, 10, 16)
124
+ assert_allclose(1280 * np.pi, vol, atol=1e-6)
125
+ assert_allclose(1383.2828269179892359787, surf, atol=1e-6)
126
+
127
+ # Test when a <= b <= c does not hold
128
+ vol, surf = ellipsoid_stats(16, 6, 10)
129
+ assert_allclose(1280 * np.pi, vol, atol=1e-6)
130
+ assert_allclose(1383.2828269179892359787, surf, atol=1e-6)
131
+
132
+ # Larger test to ensure reliability over broad range
133
+ vol, surf = ellipsoid_stats(17, 27, 169)
134
+ assert_allclose(103428 * np.pi, vol, atol=1e-4)
135
+ assert_allclose(37426.253635465972897880, surf, atol=1e-6)
136
+
137
+ # For equal a, b, c values
138
+ vol, surf = ellipsoid_stats(10, 10, 10)
139
+ assert_allclose(4000 * np.pi / 3, vol, atol=1e-6)
140
+ assert_allclose(400 * np.pi, surf, atol=1e-6)
141
+
142
+
143
+ def test_rect_3d_extent():
144
+ expected = np.array(
145
+ [
146
+ [
147
+ [0, 0, 1, 1, 1],
148
+ [0, 0, 1, 1, 1],
149
+ [0, 0, 0, 0, 0],
150
+ [0, 0, 0, 0, 0],
151
+ [0, 0, 0, 0, 0],
152
+ ],
153
+ [
154
+ [0, 0, 1, 1, 1],
155
+ [0, 0, 1, 1, 1],
156
+ [0, 0, 0, 0, 0],
157
+ [0, 0, 0, 0, 0],
158
+ [0, 0, 0, 0, 0],
159
+ ],
160
+ [
161
+ [0, 0, 1, 1, 1],
162
+ [0, 0, 1, 1, 1],
163
+ [0, 0, 0, 0, 0],
164
+ [0, 0, 0, 0, 0],
165
+ [0, 0, 0, 0, 0],
166
+ ],
167
+ [
168
+ [0, 0, 1, 1, 1],
169
+ [0, 0, 1, 1, 1],
170
+ [0, 0, 0, 0, 0],
171
+ [0, 0, 0, 0, 0],
172
+ [0, 0, 0, 0, 0],
173
+ ],
174
+ ],
175
+ dtype=np.uint8,
176
+ )
177
+ img = np.zeros((4, 5, 5), dtype=np.uint8)
178
+ start = (0, 0, 2)
179
+ extent = (5, 2, 3)
180
+ pp, rr, cc = rectangle(start, extent=extent, shape=img.shape)
181
+ img[pp, rr, cc] = 1
182
+ assert_array_equal(img, expected)
183
+
184
+
185
+ def test_rect_3d_end():
186
+ expected = np.array(
187
+ [
188
+ [
189
+ [0, 0, 0, 0, 0],
190
+ [0, 0, 0, 0, 0],
191
+ [0, 0, 0, 0, 0],
192
+ [0, 0, 0, 0, 0],
193
+ [0, 0, 0, 0, 0],
194
+ ],
195
+ [
196
+ [0, 0, 1, 1, 0],
197
+ [0, 0, 1, 1, 0],
198
+ [0, 0, 1, 1, 0],
199
+ [0, 0, 0, 0, 0],
200
+ [0, 0, 0, 0, 0],
201
+ ],
202
+ [
203
+ [0, 0, 1, 1, 0],
204
+ [0, 0, 1, 1, 0],
205
+ [0, 0, 1, 1, 0],
206
+ [0, 0, 0, 0, 0],
207
+ [0, 0, 0, 0, 0],
208
+ ],
209
+ [
210
+ [0, 0, 1, 1, 0],
211
+ [0, 0, 1, 1, 0],
212
+ [0, 0, 1, 1, 0],
213
+ [0, 0, 0, 0, 0],
214
+ [0, 0, 0, 0, 0],
215
+ ],
216
+ ],
217
+ dtype=np.uint8,
218
+ )
219
+ img = np.zeros((4, 5, 5), dtype=np.uint8)
220
+ start = (1, 0, 2)
221
+ end = (3, 2, 3)
222
+ pp, rr, cc = rectangle(start, end=end, shape=img.shape)
223
+ img[pp, rr, cc] = 1
224
+ assert_array_equal(img, expected)
infer_4_47_1/lib/python3.10/site-packages/skimage/draw/tests/test_draw_nd.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from skimage.draw import line_nd
2
+ from skimage._shared.testing import assert_equal
3
+
4
+
5
+ def test_empty_line():
6
+ coords = line_nd((1, 1, 1), (1, 1, 1))
7
+ assert len(coords) == 3
8
+ assert all(len(c) == 0 for c in coords)
9
+
10
+
11
+ def test_zero_line():
12
+ coords = line_nd((-1, -1), (2, 2))
13
+ assert_equal(coords, [[-1, 0, 1], [-1, 0, 1]])
14
+
15
+
16
+ def test_no_round():
17
+ coords = line_nd((0.5, 0), (2.5, 0), integer=False, endpoint=True)
18
+ assert_equal(coords, [[0.5, 1.5, 2.5], [0, 0, 0]])
infer_4_47_1/lib/python3.10/site-packages/skimage/draw/tests/test_polygon2mask.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from skimage import draw
4
+
5
+
6
+ image_shape = (512, 512)
7
+ polygon = np.array(
8
+ [[80, 111, 146, 234, 407, 300, 187, 45], [465, 438, 499, 380, 450, 287, 210, 167]]
9
+ ).T
10
+
11
+
12
+ def test_polygon2mask():
13
+ mask = draw.polygon2mask(image_shape, polygon)
14
+ assert mask.shape == image_shape
15
+ assert mask.sum() == 57653
infer_4_47_1/lib/python3.10/site-packages/skimage/draw/tests/test_random_shapes.py ADDED
@@ -0,0 +1,178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from skimage._shared import testing
5
+ from skimage._shared._warnings import expected_warnings
6
+ from skimage.draw import random_shapes
7
+
8
+
9
+ def test_generates_color_images_with_correct_shape():
10
+ image, _ = random_shapes((128, 128), max_shapes=10)
11
+ assert image.shape == (128, 128, 3)
12
+
13
+
14
+ def test_generates_gray_images_with_correct_shape():
15
+ image, _ = random_shapes(
16
+ (4567, 123), min_shapes=3, max_shapes=20, channel_axis=None
17
+ )
18
+ assert image.shape == (4567, 123)
19
+
20
+
21
+ def test_generates_gray_images_with_correct_shape_deprecated_multichannel():
22
+ image, _ = random_shapes(
23
+ (4567, 123), min_shapes=3, max_shapes=20, channel_axis=None
24
+ )
25
+ assert image.shape == (4567, 123)
26
+
27
+
28
+ @pytest.mark.parametrize('channel_axis', [None, 0, 1, 2])
29
+ def test_generated_shape_for_channel_axis(channel_axis):
30
+ shape = (128, 64)
31
+ num_channels = 5
32
+
33
+ image, _ = random_shapes(
34
+ shape,
35
+ num_channels=num_channels,
36
+ min_shapes=3,
37
+ max_shapes=10,
38
+ channel_axis=channel_axis,
39
+ )
40
+
41
+ if channel_axis is None:
42
+ expected_shape = shape
43
+ else:
44
+ expected_shape = tuple(np.insert(shape, channel_axis, num_channels))
45
+
46
+ assert image.shape == expected_shape
47
+
48
+
49
+ def test_generates_correct_bounding_boxes_for_rectangles():
50
+ image, labels = random_shapes((128, 128), max_shapes=1, shape='rectangle', rng=42)
51
+
52
+ assert len(labels) == 1
53
+ label, bbox = labels[0]
54
+ assert label == 'rectangle', label
55
+
56
+ crop = image[bbox[0][0] : bbox[0][1], bbox[1][0] : bbox[1][1]]
57
+
58
+ # The crop is filled.
59
+ assert (crop >= 0).all() and (crop < 255).all()
60
+
61
+ # The crop is complete.
62
+ image[bbox[0][0] : bbox[0][1], bbox[1][0] : bbox[1][1]] = 255
63
+ assert (image == 255).all()
64
+
65
+
66
+ def test_generates_correct_bounding_boxes_for_triangles():
67
+ image, labels = random_shapes((128, 128), max_shapes=1, shape='triangle', rng=42)
68
+ assert len(labels) == 1
69
+ label, bbox = labels[0]
70
+ assert label == 'triangle', label
71
+
72
+ crop = image[bbox[0][0] : bbox[0][1], bbox[1][0] : bbox[1][1]]
73
+
74
+ # The crop is filled.
75
+ assert (crop >= 0).any() and (crop < 255).any()
76
+
77
+ # The crop is complete.
78
+ image[bbox[0][0] : bbox[0][1], bbox[1][0] : bbox[1][1]] = 255
79
+ assert (image == 255).all()
80
+
81
+
82
+ def test_generates_correct_bounding_boxes_for_circles():
83
+ image, labels = random_shapes(
84
+ (43, 44), max_shapes=1, min_size=20, max_size=20, shape='circle', rng=42
85
+ )
86
+ assert len(labels) == 1
87
+ label, bbox = labels[0]
88
+ assert label == 'circle', label
89
+
90
+ crop = image[bbox[0][0] : bbox[0][1], bbox[1][0] : bbox[1][1]]
91
+
92
+ # The crop is filled.
93
+ assert (crop >= 0).any() and (crop < 255).any()
94
+
95
+ # The crop is complete.
96
+ image[bbox[0][0] : bbox[0][1], bbox[1][0] : bbox[1][1]] = 255
97
+ assert (image == 255).all()
98
+
99
+
100
+ def test_generates_correct_bounding_boxes_for_ellipses():
101
+ image, labels = random_shapes(
102
+ (43, 44), max_shapes=1, min_size=20, max_size=20, shape='ellipse', rng=42
103
+ )
104
+ assert len(labels) == 1
105
+ label, bbox = labels[0]
106
+ assert label == 'ellipse', label
107
+
108
+ crop = image[bbox[0][0] : bbox[0][1], bbox[1][0] : bbox[1][1]]
109
+
110
+ # The crop is filled.
111
+ assert (crop >= 0).any() and (crop < 255).any()
112
+
113
+ # The crop is complete.
114
+ image[bbox[0][0] : bbox[0][1], bbox[1][0] : bbox[1][1]] = 255
115
+ assert (image == 255).all()
116
+
117
+
118
+ def test_generate_circle_throws_when_size_too_small():
119
+ with testing.raises(ValueError):
120
+ random_shapes((64, 128), max_shapes=1, min_size=1, max_size=1, shape='circle')
121
+
122
+
123
+ def test_generate_ellipse_throws_when_size_too_small():
124
+ with testing.raises(ValueError):
125
+ random_shapes((64, 128), max_shapes=1, min_size=1, max_size=1, shape='ellipse')
126
+
127
+
128
+ def test_generate_triangle_throws_when_size_too_small():
129
+ with testing.raises(ValueError):
130
+ random_shapes((128, 64), max_shapes=1, min_size=1, max_size=1, shape='triangle')
131
+
132
+
133
+ def test_can_generate_one_by_one_rectangle():
134
+ image, labels = random_shapes(
135
+ (50, 128), max_shapes=1, min_size=1, max_size=1, shape='rectangle'
136
+ )
137
+ assert len(labels) == 1
138
+ _, bbox = labels[0]
139
+ crop = image[bbox[0][0] : bbox[0][1], bbox[1][0] : bbox[1][1]]
140
+
141
+ # rgb
142
+ assert np.shape(crop) == (1, 1, 3) and np.any(crop >= 1) and np.any(crop < 255)
143
+
144
+
145
+ def test_throws_when_intensity_range_out_of_range():
146
+ with testing.raises(ValueError):
147
+ random_shapes(
148
+ (1000, 1234), max_shapes=1, channel_axis=None, intensity_range=(0, 256)
149
+ )
150
+ with testing.raises(ValueError):
151
+ random_shapes((2, 2), max_shapes=1, intensity_range=((-1, 255),))
152
+
153
+
154
+ def test_returns_empty_labels_and_white_image_when_cannot_fit_shape():
155
+ # The circle will never fit this.
156
+ with expected_warnings(['Could not fit']):
157
+ image, labels = random_shapes(
158
+ (10000, 10000), max_shapes=1, min_size=10000, shape='circle'
159
+ )
160
+ assert len(labels) == 0
161
+ assert (image == 255).all()
162
+
163
+
164
+ def test_random_shapes_is_reproducible_with_seed():
165
+ random_seed = 42
166
+ labels = []
167
+ for _ in range(5):
168
+ _, label = random_shapes((128, 128), max_shapes=5, rng=random_seed)
169
+ labels.append(label)
170
+ assert all(other == labels[0] for other in labels[1:])
171
+
172
+
173
+ def test_generates_white_image_when_intensity_range_255():
174
+ image, labels = random_shapes(
175
+ (128, 128), max_shapes=3, intensity_range=((255, 255),), rng=42
176
+ )
177
+ assert len(labels) > 0
178
+ assert (image == 255).all()
infer_4_47_1/lib/python3.10/site-packages/skimage/feature/_texture.cpython-310-x86_64-linux-gnu.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91efbe3cf5cda615657a302daea1bbeb1ed270401c795fa85dd7871656f6dcdc
3
+ size 398936
infer_4_47_1/lib/python3.10/site-packages/skimage/morphology/__pycache__/_util.cpython-310.pyc ADDED
Binary file (11.1 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/skimage/morphology/__pycache__/gray.cpython-310.pyc ADDED
Binary file (23.9 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/skimage/morphology/_convex_hull.cpython-310-x86_64-linux-gnu.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd110bbb9d540f7168ffe264050861f0629facfed8ef40e52ff57e2e8c0db7ef
3
+ size 236312
infer_4_47_1/lib/python3.10/site-packages/skimage/morphology/_grayreconstruct.cpython-310-x86_64-linux-gnu.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fe6f109ed45a049f330ef30144c19422287b6e2bf209150e70a58d4f90cb6c1
3
+ size 294480
infer_4_47_1/lib/python3.10/site-packages/skimage/morphology/ball_decompositions.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f9eb51f361fd7d7d22d342dec7bb98178a21aa9c944507f25898b8ca213e54d
3
+ size 431
infer_4_47_1/lib/python3.10/site-packages/skimage/morphology/tests/__pycache__/test_skeletonize.cpython-310.pyc ADDED
Binary file (13.2 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/skimage/registration/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ """Image registration algorithms, e.g., optical flow or phase cross correlation."""
2
+
3
+ import lazy_loader as _lazy
4
+
5
+ __getattr__, __dir__, __all__ = _lazy.attach_stub(__name__, __file__)
infer_4_47_1/lib/python3.10/site-packages/skimage/registration/__init__.pyi ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ # Explicitly setting `__all__` is necessary for type inference engines
2
+ # to know which symbols are exported. See
3
+ # https://peps.python.org/pep-0484/#stub-files
4
+
5
+ __all__ = ['optical_flow_ilk', 'optical_flow_tvl1', 'phase_cross_correlation']
6
+
7
+ from ._optical_flow import optical_flow_tvl1, optical_flow_ilk
8
+ from ._phase_cross_correlation import phase_cross_correlation
infer_4_47_1/lib/python3.10/site-packages/skimage/registration/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (386 Bytes). View file
 
infer_4_47_1/lib/python3.10/site-packages/skimage/registration/__pycache__/_masked_phase_cross_correlation.cpython-310.pyc ADDED
Binary file (8.97 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/skimage/registration/__pycache__/_optical_flow.cpython-310.pyc ADDED
Binary file (12.3 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/skimage/registration/__pycache__/_phase_cross_correlation.cpython-310.pyc ADDED
Binary file (15.1 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/skimage/registration/_masked_phase_cross_correlation.py ADDED
@@ -0,0 +1,306 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Implementation of the masked normalized cross-correlation.
3
+
4
+ Based on the following publication:
5
+ D. Padfield. Masked object registration in the Fourier domain.
6
+ IEEE Transactions on Image Processing (2012)
7
+
8
+ and the author's original MATLAB implementation, available on this website:
9
+ http://www.dirkpadfield.com/
10
+ """
11
+
12
+ from functools import partial
13
+
14
+ import numpy as np
15
+ import scipy.fft as fftmodule
16
+ from scipy.fft import next_fast_len
17
+
18
+ from .._shared.utils import _supported_float_type
19
+
20
+
21
+ def _masked_phase_cross_correlation(
22
+ reference_image, moving_image, reference_mask, moving_mask=None, overlap_ratio=0.3
23
+ ):
24
+ """Masked image translation registration by masked normalized
25
+ cross-correlation.
26
+
27
+ Parameters
28
+ ----------
29
+ reference_image : ndarray
30
+ Reference image.
31
+ moving_image : ndarray
32
+ Image to register. Must be same dimensionality as ``reference_image``,
33
+ but not necessarily the same size.
34
+ reference_mask : ndarray
35
+ Boolean mask for ``reference_image``. The mask should evaluate
36
+ to ``True`` (or 1) on valid pixels. ``reference_mask`` should
37
+ have the same shape as ``reference_image``.
38
+ moving_mask : ndarray or None, optional
39
+ Boolean mask for ``moving_image``. The mask should evaluate to ``True``
40
+ (or 1) on valid pixels. ``moving_mask`` should have the same shape
41
+ as ``moving_image``. If ``None``, ``reference_mask`` will be used.
42
+ overlap_ratio : float, optional
43
+ Minimum allowed overlap ratio between images. The correlation for
44
+ translations corresponding with an overlap ratio lower than this
45
+ threshold will be ignored. A lower `overlap_ratio` leads to smaller
46
+ maximum translation, while a higher `overlap_ratio` leads to greater
47
+ robustness against spurious matches due to small overlap between
48
+ masked images.
49
+
50
+ Returns
51
+ -------
52
+ shifts : ndarray
53
+ Shift vector (in pixels) required to register ``moving_image``
54
+ with ``reference_image``. Axis ordering is consistent with numpy.
55
+
56
+ References
57
+ ----------
58
+ .. [1] Dirk Padfield. Masked Object Registration in the Fourier Domain.
59
+ IEEE Transactions on Image Processing, vol. 21(5),
60
+ pp. 2706-2718 (2012). :DOI:`10.1109/TIP.2011.2181402`
61
+ .. [2] D. Padfield. "Masked FFT registration". In Proc. Computer Vision and
62
+ Pattern Recognition, pp. 2918-2925 (2010).
63
+ :DOI:`10.1109/CVPR.2010.5540032`
64
+
65
+ """
66
+ if moving_mask is None:
67
+ if reference_image.shape != moving_image.shape:
68
+ raise ValueError(
69
+ "Input images have different shapes, moving_mask must "
70
+ "be explicitly set."
71
+ )
72
+ moving_mask = reference_mask.astype(bool)
73
+
74
+ # We need masks to be of the same size as their respective images
75
+ for im, mask in [(reference_image, reference_mask), (moving_image, moving_mask)]:
76
+ if im.shape != mask.shape:
77
+ raise ValueError("Image sizes must match their respective mask sizes.")
78
+
79
+ xcorr = cross_correlate_masked(
80
+ moving_image,
81
+ reference_image,
82
+ moving_mask,
83
+ reference_mask,
84
+ axes=tuple(range(moving_image.ndim)),
85
+ mode='full',
86
+ overlap_ratio=overlap_ratio,
87
+ )
88
+
89
+ # Generalize to the average of multiple equal maxima
90
+ maxima = np.stack(np.nonzero(xcorr == xcorr.max()), axis=1)
91
+ center = np.mean(maxima, axis=0)
92
+ shifts = center - np.array(reference_image.shape) + 1
93
+
94
+ # The mismatch in size will impact the center location of the
95
+ # cross-correlation
96
+ size_mismatch = np.array(moving_image.shape) - np.array(reference_image.shape)
97
+
98
+ return -shifts + (size_mismatch / 2)
99
+
100
+
101
+ def cross_correlate_masked(
102
+ arr1, arr2, m1, m2, mode='full', axes=(-2, -1), overlap_ratio=0.3
103
+ ):
104
+ """
105
+ Masked normalized cross-correlation between arrays.
106
+
107
+ Parameters
108
+ ----------
109
+ arr1 : ndarray
110
+ First array.
111
+ arr2 : ndarray
112
+ Seconds array. The dimensions of `arr2` along axes that are not
113
+ transformed should be equal to that of `arr1`.
114
+ m1 : ndarray
115
+ Mask of `arr1`. The mask should evaluate to `True`
116
+ (or 1) on valid pixels. `m1` should have the same shape as `arr1`.
117
+ m2 : ndarray
118
+ Mask of `arr2`. The mask should evaluate to `True`
119
+ (or 1) on valid pixels. `m2` should have the same shape as `arr2`.
120
+ mode : {'full', 'same'}, optional
121
+ 'full':
122
+ This returns the convolution at each point of overlap. At
123
+ the end-points of the convolution, the signals do not overlap
124
+ completely, and boundary effects may be seen.
125
+ 'same':
126
+ The output is the same size as `arr1`, centered with respect
127
+ to the `‘full’` output. Boundary effects are less prominent.
128
+ axes : tuple of ints, optional
129
+ Axes along which to compute the cross-correlation.
130
+ overlap_ratio : float, optional
131
+ Minimum allowed overlap ratio between images. The correlation for
132
+ translations corresponding with an overlap ratio lower than this
133
+ threshold will be ignored. A lower `overlap_ratio` leads to smaller
134
+ maximum translation, while a higher `overlap_ratio` leads to greater
135
+ robustness against spurious matches due to small overlap between
136
+ masked images.
137
+
138
+ Returns
139
+ -------
140
+ out : ndarray
141
+ Masked normalized cross-correlation.
142
+
143
+ Raises
144
+ ------
145
+ ValueError : if correlation `mode` is not valid, or array dimensions along
146
+ non-transformation axes are not equal.
147
+
148
+ References
149
+ ----------
150
+ .. [1] Dirk Padfield. Masked Object Registration in the Fourier Domain.
151
+ IEEE Transactions on Image Processing, vol. 21(5),
152
+ pp. 2706-2718 (2012). :DOI:`10.1109/TIP.2011.2181402`
153
+ .. [2] D. Padfield. "Masked FFT registration". In Proc. Computer Vision and
154
+ Pattern Recognition, pp. 2918-2925 (2010).
155
+ :DOI:`10.1109/CVPR.2010.5540032`
156
+ """
157
+ if mode not in {'full', 'same'}:
158
+ raise ValueError(f"Correlation mode '{mode}' is not valid.")
159
+
160
+ fixed_image = np.asarray(arr1)
161
+ moving_image = np.asarray(arr2)
162
+ float_dtype = _supported_float_type((fixed_image.dtype, moving_image.dtype))
163
+ if float_dtype.kind == 'c':
164
+ raise ValueError("complex-valued arr1, arr2 are not supported")
165
+
166
+ fixed_image = fixed_image.astype(float_dtype)
167
+ fixed_mask = np.array(m1, dtype=bool)
168
+ moving_image = moving_image.astype(float_dtype)
169
+ moving_mask = np.array(m2, dtype=bool)
170
+ eps = np.finfo(float_dtype).eps
171
+
172
+ # Array dimensions along non-transformation axes should be equal.
173
+ all_axes = set(range(fixed_image.ndim))
174
+ for axis in all_axes - set(axes):
175
+ if fixed_image.shape[axis] != moving_image.shape[axis]:
176
+ raise ValueError(
177
+ f'Array shapes along non-transformation axes should be '
178
+ f'equal, but dimensions along axis {axis} are not.'
179
+ )
180
+
181
+ # Determine final size along transformation axes
182
+ # Note that it might be faster to compute Fourier transform in a slightly
183
+ # larger shape (`fast_shape`). Then, after all fourier transforms are done,
184
+ # we slice back to`final_shape` using `final_slice`.
185
+ final_shape = list(arr1.shape)
186
+ for axis in axes:
187
+ final_shape[axis] = fixed_image.shape[axis] + moving_image.shape[axis] - 1
188
+ final_shape = tuple(final_shape)
189
+ final_slice = tuple([slice(0, int(sz)) for sz in final_shape])
190
+
191
+ # Extent transform axes to the next fast length (i.e. multiple of 3, 5, or
192
+ # 7)
193
+ fast_shape = tuple([next_fast_len(final_shape[ax]) for ax in axes])
194
+
195
+ # We use the new scipy.fft because they allow leaving the transform axes
196
+ # unchanged which was not possible with scipy.fftpack's
197
+ # fftn/ifftn in older versions of SciPy.
198
+ # E.g. arr shape (2, 3, 7), transform along axes (0, 1) with shape (4, 4)
199
+ # results in arr_fft shape (4, 4, 7)
200
+ fft = partial(fftmodule.fftn, s=fast_shape, axes=axes)
201
+ _ifft = partial(fftmodule.ifftn, s=fast_shape, axes=axes)
202
+
203
+ def ifft(x):
204
+ return _ifft(x).real
205
+
206
+ fixed_image[np.logical_not(fixed_mask)] = 0.0
207
+ moving_image[np.logical_not(moving_mask)] = 0.0
208
+
209
+ # N-dimensional analog to rotation by 180deg is flip over all relevant axes.
210
+ # See [1] for discussion.
211
+ rotated_moving_image = _flip(moving_image, axes=axes)
212
+ rotated_moving_mask = _flip(moving_mask, axes=axes)
213
+
214
+ fixed_fft = fft(fixed_image)
215
+ rotated_moving_fft = fft(rotated_moving_image)
216
+ fixed_mask_fft = fft(fixed_mask.astype(float_dtype))
217
+ rotated_moving_mask_fft = fft(rotated_moving_mask.astype(float_dtype))
218
+
219
+ # Calculate overlap of masks at every point in the convolution.
220
+ # Locations with high overlap should not be taken into account.
221
+ number_overlap_masked_px = ifft(rotated_moving_mask_fft * fixed_mask_fft)
222
+ number_overlap_masked_px[:] = np.round(number_overlap_masked_px)
223
+ number_overlap_masked_px[:] = np.fmax(number_overlap_masked_px, eps)
224
+ masked_correlated_fixed_fft = ifft(rotated_moving_mask_fft * fixed_fft)
225
+ masked_correlated_rotated_moving_fft = ifft(fixed_mask_fft * rotated_moving_fft)
226
+
227
+ numerator = ifft(rotated_moving_fft * fixed_fft)
228
+ numerator -= (
229
+ masked_correlated_fixed_fft
230
+ * masked_correlated_rotated_moving_fft
231
+ / number_overlap_masked_px
232
+ )
233
+
234
+ fixed_squared_fft = fft(np.square(fixed_image))
235
+ fixed_denom = ifft(rotated_moving_mask_fft * fixed_squared_fft)
236
+ fixed_denom -= np.square(masked_correlated_fixed_fft) / number_overlap_masked_px
237
+ fixed_denom[:] = np.fmax(fixed_denom, 0.0)
238
+
239
+ rotated_moving_squared_fft = fft(np.square(rotated_moving_image))
240
+ moving_denom = ifft(fixed_mask_fft * rotated_moving_squared_fft)
241
+ moving_denom -= (
242
+ np.square(masked_correlated_rotated_moving_fft) / number_overlap_masked_px
243
+ )
244
+ moving_denom[:] = np.fmax(moving_denom, 0.0)
245
+
246
+ denom = np.sqrt(fixed_denom * moving_denom)
247
+
248
+ # Slice back to expected convolution shape.
249
+ numerator = numerator[final_slice]
250
+ denom = denom[final_slice]
251
+ number_overlap_masked_px = number_overlap_masked_px[final_slice]
252
+
253
+ if mode == 'same':
254
+ _centering = partial(_centered, newshape=fixed_image.shape, axes=axes)
255
+ denom = _centering(denom)
256
+ numerator = _centering(numerator)
257
+ number_overlap_masked_px = _centering(number_overlap_masked_px)
258
+
259
+ # Pixels where `denom` is very small will introduce large
260
+ # numbers after division. To get around this problem,
261
+ # we zero-out problematic pixels.
262
+ tol = 1e3 * eps * np.max(np.abs(denom), axis=axes, keepdims=True)
263
+ nonzero_indices = denom > tol
264
+
265
+ # explicitly set out dtype for compatibility with SciPy < 1.4, where
266
+ # fftmodule will be numpy.fft which always uses float64 dtype.
267
+ out = np.zeros_like(denom, dtype=float_dtype)
268
+ out[nonzero_indices] = numerator[nonzero_indices] / denom[nonzero_indices]
269
+ np.clip(out, a_min=-1, a_max=1, out=out)
270
+
271
+ # Apply overlap ratio threshold
272
+ number_px_threshold = overlap_ratio * np.max(
273
+ number_overlap_masked_px, axis=axes, keepdims=True
274
+ )
275
+ out[number_overlap_masked_px < number_px_threshold] = 0.0
276
+
277
+ return out
278
+
279
+
280
+ def _centered(arr, newshape, axes):
281
+ """Return the center `newshape` portion of `arr`, leaving axes not
282
+ in `axes` untouched."""
283
+ newshape = np.asarray(newshape)
284
+ currshape = np.array(arr.shape)
285
+
286
+ slices = [slice(None, None)] * arr.ndim
287
+
288
+ for ax in axes:
289
+ startind = (currshape[ax] - newshape[ax]) // 2
290
+ endind = startind + newshape[ax]
291
+ slices[ax] = slice(startind, endind)
292
+
293
+ return arr[tuple(slices)]
294
+
295
+
296
+ def _flip(arr, axes=None):
297
+ """Reverse array over many axes. Generalization of arr[::-1] for many
298
+ dimensions. If `axes` is `None`, flip along all axes."""
299
+ if axes is None:
300
+ reverse = [slice(None, None, -1)] * arr.ndim
301
+ else:
302
+ reverse = [slice(None, None, None)] * arr.ndim
303
+ for axis in axes:
304
+ reverse[axis] = slice(None, None, -1)
305
+
306
+ return arr[tuple(reverse)]
infer_4_47_1/lib/python3.10/site-packages/skimage/registration/_optical_flow.py ADDED
@@ -0,0 +1,429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """TV-L1 optical flow algorithm implementation."""
2
+
3
+ from functools import partial
4
+ from itertools import combinations_with_replacement
5
+
6
+ import numpy as np
7
+ from scipy import ndimage as ndi
8
+
9
+ from .._shared.filters import gaussian as gaussian_filter
10
+ from .._shared.utils import _supported_float_type
11
+ from ..transform import warp
12
+ from ._optical_flow_utils import _coarse_to_fine, _get_warp_points
13
+
14
+
15
+ def _tvl1(
16
+ reference_image,
17
+ moving_image,
18
+ flow0,
19
+ attachment,
20
+ tightness,
21
+ num_warp,
22
+ num_iter,
23
+ tol,
24
+ prefilter,
25
+ ):
26
+ """TV-L1 solver for optical flow estimation.
27
+
28
+ Parameters
29
+ ----------
30
+ reference_image : ndarray, shape (M, N[, P[, ...]])
31
+ The first grayscale image of the sequence.
32
+ moving_image : ndarray, shape (M, N[, P[, ...]])
33
+ The second grayscale image of the sequence.
34
+ flow0 : ndarray, shape (image0.ndim, M, N[, P[, ...]])
35
+ Initialization for the vector field.
36
+ attachment : float
37
+ Attachment parameter. The smaller this parameter is,
38
+ the smoother is the solutions.
39
+ tightness : float
40
+ Tightness parameter. It should have a small value in order to
41
+ maintain attachment and regularization parts in
42
+ correspondence.
43
+ num_warp : int
44
+ Number of times moving_image is warped.
45
+ num_iter : int
46
+ Number of fixed point iteration.
47
+ tol : float
48
+ Tolerance used as stopping criterion based on the L² distance
49
+ between two consecutive values of (u, v).
50
+ prefilter : bool
51
+ Whether to prefilter the estimated optical flow before each
52
+ image warp.
53
+
54
+ Returns
55
+ -------
56
+ flow : ndarray, shape (image0.ndim, M, N[, P[, ...]])
57
+ The estimated optical flow components for each axis.
58
+
59
+ """
60
+
61
+ dtype = reference_image.dtype
62
+ grid = np.meshgrid(
63
+ *[np.arange(n, dtype=dtype) for n in reference_image.shape],
64
+ indexing='ij',
65
+ sparse=True,
66
+ )
67
+
68
+ # dt corresponds to tau in [3]_, i.e. the time step
69
+ dt = 0.5 / reference_image.ndim
70
+ reg_num_iter = 2
71
+ f0 = attachment * tightness
72
+ f1 = dt / tightness
73
+ tol *= reference_image.size
74
+
75
+ flow_current = flow_previous = flow0
76
+
77
+ g = np.zeros((reference_image.ndim,) + reference_image.shape, dtype=dtype)
78
+ proj = np.zeros(
79
+ (
80
+ reference_image.ndim,
81
+ reference_image.ndim,
82
+ )
83
+ + reference_image.shape,
84
+ dtype=dtype,
85
+ )
86
+
87
+ s_g = [
88
+ slice(None),
89
+ ] * g.ndim
90
+ s_p = [
91
+ slice(None),
92
+ ] * proj.ndim
93
+ s_d = [
94
+ slice(None),
95
+ ] * (proj.ndim - 2)
96
+
97
+ for _ in range(num_warp):
98
+ if prefilter:
99
+ flow_current = ndi.median_filter(
100
+ flow_current, [1] + reference_image.ndim * [3]
101
+ )
102
+
103
+ image1_warp = warp(
104
+ moving_image, _get_warp_points(grid, flow_current), mode='edge'
105
+ )
106
+ grad = np.array(np.gradient(image1_warp))
107
+ NI = (grad * grad).sum(0)
108
+ NI[NI == 0] = 1
109
+
110
+ rho_0 = image1_warp - reference_image - (grad * flow_current).sum(0)
111
+
112
+ for _ in range(num_iter):
113
+ # Data term
114
+
115
+ rho = rho_0 + (grad * flow_current).sum(0)
116
+
117
+ idx = abs(rho) <= f0 * NI
118
+
119
+ flow_auxiliary = flow_current
120
+
121
+ flow_auxiliary[:, idx] -= rho[idx] * grad[:, idx] / NI[idx]
122
+
123
+ idx = ~idx
124
+ srho = f0 * np.sign(rho[idx])
125
+ flow_auxiliary[:, idx] -= srho * grad[:, idx]
126
+
127
+ # Regularization term
128
+ flow_current = flow_auxiliary.copy()
129
+
130
+ for idx in range(reference_image.ndim):
131
+ s_p[0] = idx
132
+ for _ in range(reg_num_iter):
133
+ for ax in range(reference_image.ndim):
134
+ s_g[0] = ax
135
+ s_g[ax + 1] = slice(0, -1)
136
+ g[tuple(s_g)] = np.diff(flow_current[idx], axis=ax)
137
+ s_g[ax + 1] = slice(None)
138
+
139
+ norm = np.sqrt((g**2).sum(0))[np.newaxis, ...]
140
+ norm *= f1
141
+ norm += 1.0
142
+ proj[idx] -= dt * g
143
+ proj[idx] /= norm
144
+
145
+ # d will be the (negative) divergence of proj[idx]
146
+ d = -proj[idx].sum(0)
147
+ for ax in range(reference_image.ndim):
148
+ s_p[1] = ax
149
+ s_p[ax + 2] = slice(0, -1)
150
+ s_d[ax] = slice(1, None)
151
+ d[tuple(s_d)] += proj[tuple(s_p)]
152
+ s_p[ax + 2] = slice(None)
153
+ s_d[ax] = slice(None)
154
+
155
+ flow_current[idx] = flow_auxiliary[idx] + d
156
+
157
+ flow_previous -= flow_current # The difference as stopping criteria
158
+ if (flow_previous * flow_previous).sum() < tol:
159
+ break
160
+
161
+ flow_previous = flow_current
162
+
163
+ return flow_current
164
+
165
+
166
+ def optical_flow_tvl1(
167
+ reference_image,
168
+ moving_image,
169
+ *,
170
+ attachment=15,
171
+ tightness=0.3,
172
+ num_warp=5,
173
+ num_iter=10,
174
+ tol=1e-4,
175
+ prefilter=False,
176
+ dtype=np.float32,
177
+ ):
178
+ r"""Coarse to fine optical flow estimator.
179
+
180
+ The TV-L1 solver is applied at each level of the image
181
+ pyramid. TV-L1 is a popular algorithm for optical flow estimation
182
+ introduced by Zack et al. [1]_, improved in [2]_ and detailed in [3]_.
183
+
184
+ Parameters
185
+ ----------
186
+ reference_image : ndarray, shape (M, N[, P[, ...]])
187
+ The first grayscale image of the sequence.
188
+ moving_image : ndarray, shape (M, N[, P[, ...]])
189
+ The second grayscale image of the sequence.
190
+ attachment : float, optional
191
+ Attachment parameter (:math:`\lambda` in [1]_). The smaller
192
+ this parameter is, the smoother the returned result will be.
193
+ tightness : float, optional
194
+ Tightness parameter (:math:`\theta` in [1]_). It should have
195
+ a small value in order to maintain attachment and
196
+ regularization parts in correspondence.
197
+ num_warp : int, optional
198
+ Number of times moving_image is warped.
199
+ num_iter : int, optional
200
+ Number of fixed point iteration.
201
+ tol : float, optional
202
+ Tolerance used as stopping criterion based on the L² distance
203
+ between two consecutive values of (u, v).
204
+ prefilter : bool, optional
205
+ Whether to prefilter the estimated optical flow before each
206
+ image warp. When True, a median filter with window size 3
207
+ along each axis is applied. This helps to remove potential
208
+ outliers.
209
+ dtype : dtype, optional
210
+ Output data type: must be floating point. Single precision
211
+ provides good results and saves memory usage and computation
212
+ time compared to double precision.
213
+
214
+ Returns
215
+ -------
216
+ flow : ndarray, shape (image0.ndim, M, N[, P[, ...]])
217
+ The estimated optical flow components for each axis.
218
+
219
+ Notes
220
+ -----
221
+ Color images are not supported.
222
+
223
+ References
224
+ ----------
225
+ .. [1] Zach, C., Pock, T., & Bischof, H. (2007, September). A
226
+ duality based approach for realtime TV-L 1 optical flow. In Joint
227
+ pattern recognition symposium (pp. 214-223). Springer, Berlin,
228
+ Heidelberg. :DOI:`10.1007/978-3-540-74936-3_22`
229
+ .. [2] Wedel, A., Pock, T., Zach, C., Bischof, H., & Cremers,
230
+ D. (2009). An improved algorithm for TV-L 1 optical flow. In
231
+ Statistical and geometrical approaches to visual motion analysis
232
+ (pp. 23-45). Springer, Berlin, Heidelberg.
233
+ :DOI:`10.1007/978-3-642-03061-1_2`
234
+ .. [3] Pérez, J. S., Meinhardt-Llopis, E., & Facciolo,
235
+ G. (2013). TV-L1 optical flow estimation. Image Processing On
236
+ Line, 2013, 137-150. :DOI:`10.5201/ipol.2013.26`
237
+
238
+ Examples
239
+ --------
240
+ >>> from skimage.color import rgb2gray
241
+ >>> from skimage.data import stereo_motorcycle
242
+ >>> from skimage.registration import optical_flow_tvl1
243
+ >>> image0, image1, disp = stereo_motorcycle()
244
+ >>> # --- Convert the images to gray level: color is not supported.
245
+ >>> image0 = rgb2gray(image0)
246
+ >>> image1 = rgb2gray(image1)
247
+ >>> flow = optical_flow_tvl1(image1, image0)
248
+
249
+ """
250
+
251
+ solver = partial(
252
+ _tvl1,
253
+ attachment=attachment,
254
+ tightness=tightness,
255
+ num_warp=num_warp,
256
+ num_iter=num_iter,
257
+ tol=tol,
258
+ prefilter=prefilter,
259
+ )
260
+
261
+ if np.dtype(dtype) != _supported_float_type(dtype):
262
+ msg = f"dtype={dtype} is not supported. Try 'float32' or 'float64.'"
263
+ raise ValueError(msg)
264
+
265
+ return _coarse_to_fine(reference_image, moving_image, solver, dtype=dtype)
266
+
267
+
268
+ def _ilk(reference_image, moving_image, flow0, radius, num_warp, gaussian, prefilter):
269
+ """Iterative Lucas-Kanade (iLK) solver for optical flow estimation.
270
+
271
+ Parameters
272
+ ----------
273
+ reference_image : ndarray, shape (M, N[, P[, ...]])
274
+ The first grayscale image of the sequence.
275
+ moving_image : ndarray, shape (M, N[, P[, ...]])
276
+ The second grayscale image of the sequence.
277
+ flow0 : ndarray, shape (reference_image.ndim, M, N[, P[, ...]])
278
+ Initialization for the vector field.
279
+ radius : int
280
+ Radius of the window considered around each pixel.
281
+ num_warp : int
282
+ Number of times moving_image is warped.
283
+ gaussian : bool
284
+ if True, a gaussian kernel is used for the local
285
+ integration. Otherwise, a uniform kernel is used.
286
+ prefilter : bool
287
+ Whether to prefilter the estimated optical flow before each
288
+ image warp. This helps to remove potential outliers.
289
+
290
+ Returns
291
+ -------
292
+ flow : ndarray, shape (reference_image.ndim, M, N[, P[, ...]])
293
+ The estimated optical flow components for each axis.
294
+
295
+ """
296
+ dtype = reference_image.dtype
297
+ ndim = reference_image.ndim
298
+ size = 2 * radius + 1
299
+
300
+ if gaussian:
301
+ sigma = ndim * (size / 4,)
302
+ filter_func = partial(gaussian_filter, sigma=sigma, mode='mirror')
303
+ else:
304
+ filter_func = partial(ndi.uniform_filter, size=ndim * (size,), mode='mirror')
305
+
306
+ flow = flow0
307
+ # For each pixel location (i, j), the optical flow X = flow[:, i, j]
308
+ # is the solution of the ndim x ndim linear system
309
+ # A[i, j] * X = b[i, j]
310
+ A = np.zeros(reference_image.shape + (ndim, ndim), dtype=dtype)
311
+ b = np.zeros(reference_image.shape + (ndim, 1), dtype=dtype)
312
+
313
+ grid = np.meshgrid(
314
+ *[np.arange(n, dtype=dtype) for n in reference_image.shape],
315
+ indexing='ij',
316
+ sparse=True,
317
+ )
318
+
319
+ for _ in range(num_warp):
320
+ if prefilter:
321
+ flow = ndi.median_filter(flow, (1,) + ndim * (3,))
322
+
323
+ moving_image_warp = warp(
324
+ moving_image, _get_warp_points(grid, flow), mode='edge'
325
+ )
326
+ grad = np.stack(np.gradient(moving_image_warp), axis=0)
327
+ error_image = (grad * flow).sum(axis=0) + reference_image - moving_image_warp
328
+
329
+ # Local linear systems creation
330
+ for i, j in combinations_with_replacement(range(ndim), 2):
331
+ A[..., i, j] = A[..., j, i] = filter_func(grad[i] * grad[j])
332
+
333
+ for i in range(ndim):
334
+ b[..., i, 0] = filter_func(grad[i] * error_image)
335
+
336
+ # Don't consider badly conditioned linear systems
337
+ idx = abs(np.linalg.det(A)) < 1e-14
338
+ A[idx] = np.eye(ndim, dtype=dtype)
339
+ b[idx] = 0
340
+
341
+ # Solve the local linear systems
342
+ flow = np.moveaxis(np.linalg.solve(A, b)[..., 0], ndim, 0)
343
+
344
+ return flow
345
+
346
+
347
+ def optical_flow_ilk(
348
+ reference_image,
349
+ moving_image,
350
+ *,
351
+ radius=7,
352
+ num_warp=10,
353
+ gaussian=False,
354
+ prefilter=False,
355
+ dtype=np.float32,
356
+ ):
357
+ """Coarse to fine optical flow estimator.
358
+
359
+ The iterative Lucas-Kanade (iLK) solver is applied at each level
360
+ of the image pyramid. iLK [1]_ is a fast and robust alternative to
361
+ TVL1 algorithm although less accurate for rendering flat surfaces
362
+ and object boundaries (see [2]_).
363
+
364
+ Parameters
365
+ ----------
366
+ reference_image : ndarray, shape (M, N[, P[, ...]])
367
+ The first grayscale image of the sequence.
368
+ moving_image : ndarray, shape (M, N[, P[, ...]])
369
+ The second grayscale image of the sequence.
370
+ radius : int, optional
371
+ Radius of the window considered around each pixel.
372
+ num_warp : int, optional
373
+ Number of times moving_image is warped.
374
+ gaussian : bool, optional
375
+ If True, a Gaussian kernel is used for the local
376
+ integration. Otherwise, a uniform kernel is used.
377
+ prefilter : bool, optional
378
+ Whether to prefilter the estimated optical flow before each
379
+ image warp. When True, a median filter with window size 3
380
+ along each axis is applied. This helps to remove potential
381
+ outliers.
382
+ dtype : dtype, optional
383
+ Output data type: must be floating point. Single precision
384
+ provides good results and saves memory usage and computation
385
+ time compared to double precision.
386
+
387
+ Returns
388
+ -------
389
+ flow : ndarray, shape (reference_image.ndim, M, N[, P[, ...]])
390
+ The estimated optical flow components for each axis.
391
+
392
+ Notes
393
+ -----
394
+ - The implemented algorithm is described in **Table2** of [1]_.
395
+ - Color images are not supported.
396
+
397
+ References
398
+ ----------
399
+ .. [1] Le Besnerais, G., & Champagnat, F. (2005, September). Dense
400
+ optical flow by iterative local window registration. In IEEE
401
+ International Conference on Image Processing 2005 (Vol. 1,
402
+ pp. I-137). IEEE. :DOI:`10.1109/ICIP.2005.1529706`
403
+ .. [2] Plyer, A., Le Besnerais, G., & Champagnat,
404
+ F. (2016). Massively parallel Lucas Kanade optical flow for
405
+ real-time video processing applications. Journal of Real-Time
406
+ Image Processing, 11(4), 713-730. :DOI:`10.1007/s11554-014-0423-0`
407
+
408
+ Examples
409
+ --------
410
+ >>> from skimage.color import rgb2gray
411
+ >>> from skimage.data import stereo_motorcycle
412
+ >>> from skimage.registration import optical_flow_ilk
413
+ >>> reference_image, moving_image, disp = stereo_motorcycle()
414
+ >>> # --- Convert the images to gray level: color is not supported.
415
+ >>> reference_image = rgb2gray(reference_image)
416
+ >>> moving_image = rgb2gray(moving_image)
417
+ >>> flow = optical_flow_ilk(moving_image, reference_image)
418
+
419
+ """
420
+
421
+ solver = partial(
422
+ _ilk, radius=radius, num_warp=num_warp, gaussian=gaussian, prefilter=prefilter
423
+ )
424
+
425
+ if np.dtype(dtype) != _supported_float_type(dtype):
426
+ msg = f"dtype={dtype} is not supported. Try 'float32' or 'float64.'"
427
+ raise ValueError(msg)
428
+
429
+ return _coarse_to_fine(reference_image, moving_image, solver, dtype=dtype)
infer_4_47_1/lib/python3.10/site-packages/skimage/registration/_optical_flow_utils.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Common tools to optical flow algorithms."""
2
+
3
+ import numpy as np
4
+ from scipy import ndimage as ndi
5
+
6
+ from ..transform import pyramid_reduce
7
+ from ..util.dtype import _convert
8
+
9
+
10
+ def _get_warp_points(grid, flow):
11
+ """Compute warp point coordinates.
12
+
13
+ Parameters
14
+ ----------
15
+ grid : iterable
16
+ The sparse grid to be warped (obtained using
17
+ ``np.meshgrid(..., sparse=True)).``)
18
+ flow : ndarray
19
+ The warping motion field.
20
+
21
+ Returns
22
+ -------
23
+ out : ndarray
24
+ The warp point coordinates.
25
+
26
+ """
27
+ out = flow.copy()
28
+ for idx, g in enumerate(grid):
29
+ out[idx, ...] += g
30
+ return out
31
+
32
+
33
+ def _resize_flow(flow, shape):
34
+ """Rescale the values of the vector field (u, v) to the desired shape.
35
+
36
+ The values of the output vector field are scaled to the new
37
+ resolution.
38
+
39
+ Parameters
40
+ ----------
41
+ flow : ndarray
42
+ The motion field to be processed.
43
+ shape : iterable
44
+ Couple of integers representing the output shape.
45
+
46
+ Returns
47
+ -------
48
+ rflow : ndarray
49
+ The resized and rescaled motion field.
50
+
51
+ """
52
+
53
+ scale = [n / o for n, o in zip(shape, flow.shape[1:])]
54
+ scale_factor = np.array(scale, dtype=flow.dtype)
55
+
56
+ for _ in shape:
57
+ scale_factor = scale_factor[..., np.newaxis]
58
+
59
+ rflow = scale_factor * ndi.zoom(
60
+ flow, [1] + scale, order=0, mode='nearest', prefilter=False
61
+ )
62
+
63
+ return rflow
64
+
65
+
66
+ def _get_pyramid(I, downscale=2.0, nlevel=10, min_size=16):
67
+ """Construct image pyramid.
68
+
69
+ Parameters
70
+ ----------
71
+ I : ndarray
72
+ The image to be preprocessed (Grayscale or RGB).
73
+ downscale : float
74
+ The pyramid downscale factor.
75
+ nlevel : int
76
+ The maximum number of pyramid levels.
77
+ min_size : int
78
+ The minimum size for any dimension of the pyramid levels.
79
+
80
+ Returns
81
+ -------
82
+ pyramid : list[ndarray]
83
+ The coarse to fine images pyramid.
84
+
85
+ """
86
+
87
+ pyramid = [I]
88
+ size = min(I.shape)
89
+ count = 1
90
+
91
+ while (count < nlevel) and (size > downscale * min_size):
92
+ J = pyramid_reduce(pyramid[-1], downscale, channel_axis=None)
93
+ pyramid.append(J)
94
+ size = min(J.shape)
95
+ count += 1
96
+
97
+ return pyramid[::-1]
98
+
99
+
100
+ def _coarse_to_fine(
101
+ I0, I1, solver, downscale=2, nlevel=10, min_size=16, dtype=np.float32
102
+ ):
103
+ """Generic coarse to fine solver.
104
+
105
+ Parameters
106
+ ----------
107
+ I0 : ndarray
108
+ The first grayscale image of the sequence.
109
+ I1 : ndarray
110
+ The second grayscale image of the sequence.
111
+ solver : callable
112
+ The solver applied at each pyramid level.
113
+ downscale : float
114
+ The pyramid downscale factor.
115
+ nlevel : int
116
+ The maximum number of pyramid levels.
117
+ min_size : int
118
+ The minimum size for any dimension of the pyramid levels.
119
+ dtype : dtype
120
+ Output data type.
121
+
122
+ Returns
123
+ -------
124
+ flow : ndarray
125
+ The estimated optical flow components for each axis.
126
+
127
+ """
128
+
129
+ if I0.shape != I1.shape:
130
+ raise ValueError("Input images should have the same shape")
131
+
132
+ if np.dtype(dtype).char not in 'efdg':
133
+ raise ValueError("Only floating point data type are valid" " for optical flow")
134
+
135
+ pyramid = list(
136
+ zip(
137
+ _get_pyramid(_convert(I0, dtype), downscale, nlevel, min_size),
138
+ _get_pyramid(_convert(I1, dtype), downscale, nlevel, min_size),
139
+ )
140
+ )
141
+
142
+ # Initialization to 0 at coarsest level.
143
+ flow = np.zeros((pyramid[0][0].ndim,) + pyramid[0][0].shape, dtype=dtype)
144
+
145
+ flow = solver(pyramid[0][0], pyramid[0][1], flow)
146
+
147
+ for J0, J1 in pyramid[1:]:
148
+ flow = solver(J0, J1, _resize_flow(flow, J0.shape))
149
+
150
+ return flow
infer_4_47_1/lib/python3.10/site-packages/skimage/registration/_phase_cross_correlation.py ADDED
@@ -0,0 +1,420 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Port of Manuel Guizar's code from:
3
+ http://www.mathworks.com/matlabcentral/fileexchange/18401-efficient-subpixel-image-registration-by-cross-correlation
4
+ """
5
+
6
+ import itertools
7
+ import warnings
8
+
9
+ import numpy as np
10
+ from scipy.fft import fftn, ifftn, fftfreq
11
+ from scipy import ndimage as ndi
12
+
13
+ from ._masked_phase_cross_correlation import _masked_phase_cross_correlation
14
+
15
+
16
+ def _upsampled_dft(data, upsampled_region_size, upsample_factor=1, axis_offsets=None):
17
+ """
18
+ Upsampled DFT by matrix multiplication.
19
+
20
+ This code is intended to provide the same result as if the following
21
+ operations were performed:
22
+ - Embed the array "data" in an array that is ``upsample_factor`` times
23
+ larger in each dimension. ifftshift to bring the center of the
24
+ image to (1,1).
25
+ - Take the FFT of the larger array.
26
+ - Extract an ``[upsampled_region_size]`` region of the result, starting
27
+ with the ``[axis_offsets+1]`` element.
28
+
29
+ It achieves this result by computing the DFT in the output array without
30
+ the need to zeropad. Much faster and memory efficient than the zero-padded
31
+ FFT approach if ``upsampled_region_size`` is much smaller than
32
+ ``data.size * upsample_factor``.
33
+
34
+ Parameters
35
+ ----------
36
+ data : array
37
+ The input data array (DFT of original data) to upsample.
38
+ upsampled_region_size : integer or tuple of integers, optional
39
+ The size of the region to be sampled. If one integer is provided, it
40
+ is duplicated up to the dimensionality of ``data``.
41
+ upsample_factor : integer, optional
42
+ The upsampling factor. Defaults to 1.
43
+ axis_offsets : tuple of integers, optional
44
+ The offsets of the region to be sampled. Defaults to None (uses
45
+ image center)
46
+
47
+ Returns
48
+ -------
49
+ output : ndarray
50
+ The upsampled DFT of the specified region.
51
+ """
52
+ # if people pass in an integer, expand it to a list of equal-sized sections
53
+ if not hasattr(upsampled_region_size, "__iter__"):
54
+ upsampled_region_size = [
55
+ upsampled_region_size,
56
+ ] * data.ndim
57
+ else:
58
+ if len(upsampled_region_size) != data.ndim:
59
+ raise ValueError(
60
+ "shape of upsampled region sizes must be equal "
61
+ "to input data's number of dimensions."
62
+ )
63
+
64
+ if axis_offsets is None:
65
+ axis_offsets = [
66
+ 0,
67
+ ] * data.ndim
68
+ else:
69
+ if len(axis_offsets) != data.ndim:
70
+ raise ValueError(
71
+ "number of axis offsets must be equal to input "
72
+ "data's number of dimensions."
73
+ )
74
+
75
+ im2pi = 1j * 2 * np.pi
76
+
77
+ dim_properties = list(zip(data.shape, upsampled_region_size, axis_offsets))
78
+
79
+ for n_items, ups_size, ax_offset in dim_properties[::-1]:
80
+ kernel = (np.arange(ups_size) - ax_offset)[:, None] * fftfreq(
81
+ n_items, upsample_factor
82
+ )
83
+ kernel = np.exp(-im2pi * kernel)
84
+ # use kernel with same precision as the data
85
+ kernel = kernel.astype(data.dtype, copy=False)
86
+
87
+ # Equivalent to:
88
+ # data[i, j, k] = kernel[i, :] @ data[j, k].T
89
+ data = np.tensordot(kernel, data, axes=(1, -1))
90
+ return data
91
+
92
+
93
+ def _compute_phasediff(cross_correlation_max):
94
+ """
95
+ Compute global phase difference between the two images (should be
96
+ zero if images are non-negative).
97
+
98
+ Parameters
99
+ ----------
100
+ cross_correlation_max : complex
101
+ The complex value of the cross correlation at its maximum point.
102
+ """
103
+ return np.arctan2(cross_correlation_max.imag, cross_correlation_max.real)
104
+
105
+
106
+ def _compute_error(cross_correlation_max, src_amp, target_amp):
107
+ """
108
+ Compute RMS error metric between ``src_image`` and ``target_image``.
109
+
110
+ Parameters
111
+ ----------
112
+ cross_correlation_max : complex
113
+ The complex value of the cross correlation at its maximum point.
114
+ src_amp : float
115
+ The normalized average image intensity of the source image
116
+ target_amp : float
117
+ The normalized average image intensity of the target image
118
+ """
119
+ amp = src_amp * target_amp
120
+ if amp == 0:
121
+ warnings.warn(
122
+ "Could not determine RMS error between images with the normalized "
123
+ f"average intensities {src_amp!r} and {target_amp!r}. Either the "
124
+ "reference or moving image may be empty.",
125
+ UserWarning,
126
+ stacklevel=3,
127
+ )
128
+ with np.errstate(invalid="ignore"):
129
+ error = 1.0 - cross_correlation_max * cross_correlation_max.conj() / amp
130
+ return np.sqrt(np.abs(error))
131
+
132
+
133
+ def _disambiguate_shift(reference_image, moving_image, shift):
134
+ """Determine the correct real-space shift based on periodic shift.
135
+
136
+ When determining a translation shift from phase cross-correlation in
137
+ Fourier space, the shift is only correct to within a period of the image
138
+ size along each axis, resulting in $2^n$ possible shifts, where $n$ is the
139
+ number of dimensions of the image. This function checks the
140
+ cross-correlation in real space for each of those shifts, and returns the
141
+ one with the highest cross-correlation.
142
+
143
+ The strategy we use is to perform the shift on the moving image *using the
144
+ 'grid-wrap' mode* in `scipy.ndimage`. The moving image's original borders
145
+ then define $2^n$ quadrants, which we cross-correlate with the reference
146
+ image in turn using slicing. The entire operation is thus $O(2^n + m)$,
147
+ where $m$ is the number of pixels in the image (and typically dominates).
148
+
149
+ Parameters
150
+ ----------
151
+ reference_image : numpy array
152
+ The reference (non-moving) image.
153
+ moving_image : numpy array
154
+ The moving image: applying the shift to this image overlays it on the
155
+ reference image. Must be the same shape as the reference image.
156
+ shift : ndarray
157
+ The shift to apply to each axis of the moving image, *modulo* image
158
+ size. The length of ``shift`` must be equal to ``moving_image.ndim``.
159
+
160
+ Returns
161
+ -------
162
+ real_shift : ndarray
163
+ The shift disambiguated in real space.
164
+ """
165
+ shape = reference_image.shape
166
+ positive_shift = [shift_i % s for shift_i, s in zip(shift, shape)]
167
+ negative_shift = [shift_i - s for shift_i, s in zip(positive_shift, shape)]
168
+ subpixel = np.any(np.array(shift) % 1 != 0)
169
+ interp_order = 3 if subpixel else 0
170
+ shifted = ndi.shift(moving_image, shift, mode='grid-wrap', order=interp_order)
171
+ indices = np.round(positive_shift).astype(int)
172
+ splits_per_dim = [(slice(0, i), slice(i, None)) for i in indices]
173
+ max_corr = -1.0
174
+ max_slice = None
175
+ for test_slice in itertools.product(*splits_per_dim):
176
+ reference_tile = np.reshape(reference_image[test_slice], -1)
177
+ moving_tile = np.reshape(shifted[test_slice], -1)
178
+ corr = -1.0
179
+ if reference_tile.size > 2:
180
+ # In the case of zero std, np.corrcoef returns NaN and warns
181
+ # about division by zero. This is expected and handled below.
182
+ with warnings.catch_warnings():
183
+ warnings.filterwarnings("ignore", category=RuntimeWarning)
184
+ corr = np.corrcoef(reference_tile, moving_tile)[0, 1]
185
+ if corr > max_corr:
186
+ max_corr = corr
187
+ max_slice = test_slice
188
+ if max_slice is None:
189
+ warnings.warn(
190
+ f"Could not determine real-space shift for periodic shift {shift!r} "
191
+ f"as requested by `disambiguate=True` (disambiguation is degenerate).",
192
+ stacklevel=3,
193
+ )
194
+ return shift
195
+ real_shift_acc = []
196
+ for sl, pos_shift, neg_shift in zip(max_slice, positive_shift, negative_shift):
197
+ real_shift_acc.append(pos_shift if sl.stop is None else neg_shift)
198
+
199
+ return np.array(real_shift_acc)
200
+
201
+
202
+ def phase_cross_correlation(
203
+ reference_image,
204
+ moving_image,
205
+ *,
206
+ upsample_factor=1,
207
+ space="real",
208
+ disambiguate=False,
209
+ reference_mask=None,
210
+ moving_mask=None,
211
+ overlap_ratio=0.3,
212
+ normalization="phase",
213
+ ):
214
+ """Efficient subpixel image translation registration by cross-correlation.
215
+
216
+ This code gives the same precision as the FFT upsampled cross-correlation
217
+ in a fraction of the computation time and with reduced memory requirements.
218
+ It obtains an initial estimate of the cross-correlation peak by an FFT and
219
+ then refines the shift estimation by upsampling the DFT only in a small
220
+ neighborhood of that estimate by means of a matrix-multiply DFT [1]_.
221
+
222
+ Parameters
223
+ ----------
224
+ reference_image : array
225
+ Reference image.
226
+ moving_image : array
227
+ Image to register. Must be same dimensionality as
228
+ ``reference_image``.
229
+ upsample_factor : int, optional
230
+ Upsampling factor. Images will be registered to within
231
+ ``1 / upsample_factor`` of a pixel. For example
232
+ ``upsample_factor == 20`` means the images will be registered
233
+ within 1/20th of a pixel. Default is 1 (no upsampling).
234
+ Not used if any of ``reference_mask`` or ``moving_mask`` is not None.
235
+ space : string, one of "real" or "fourier", optional
236
+ Defines how the algorithm interprets input data. "real" means
237
+ data will be FFT'd to compute the correlation, while "fourier"
238
+ data will bypass FFT of input data. Case insensitive. Not
239
+ used if any of ``reference_mask`` or ``moving_mask`` is not
240
+ None.
241
+ disambiguate : bool
242
+ The shift returned by this function is only accurate *modulo* the
243
+ image shape, due to the periodic nature of the Fourier transform. If
244
+ this parameter is set to ``True``, the *real* space cross-correlation
245
+ is computed for each possible shift, and the shift with the highest
246
+ cross-correlation within the overlapping area is returned.
247
+ reference_mask : ndarray
248
+ Boolean mask for ``reference_image``. The mask should evaluate
249
+ to ``True`` (or 1) on valid pixels. ``reference_mask`` should
250
+ have the same shape as ``reference_image``.
251
+ moving_mask : ndarray or None, optional
252
+ Boolean mask for ``moving_image``. The mask should evaluate to ``True``
253
+ (or 1) on valid pixels. ``moving_mask`` should have the same shape
254
+ as ``moving_image``. If ``None``, ``reference_mask`` will be used.
255
+ overlap_ratio : float, optional
256
+ Minimum allowed overlap ratio between images. The correlation for
257
+ translations corresponding with an overlap ratio lower than this
258
+ threshold will be ignored. A lower `overlap_ratio` leads to smaller
259
+ maximum translation, while a higher `overlap_ratio` leads to greater
260
+ robustness against spurious matches due to small overlap between
261
+ masked images. Used only if one of ``reference_mask`` or
262
+ ``moving_mask`` is not None.
263
+ normalization : {"phase", None}
264
+ The type of normalization to apply to the cross-correlation. This
265
+ parameter is unused when masks (`reference_mask` and `moving_mask`) are
266
+ supplied.
267
+
268
+ Returns
269
+ -------
270
+ shift : ndarray
271
+ Shift vector (in pixels) required to register ``moving_image``
272
+ with ``reference_image``. Axis ordering is consistent with
273
+ the axis order of the input array.
274
+ error : float
275
+ Translation invariant normalized RMS error between
276
+ ``reference_image`` and ``moving_image``. For masked cross-correlation
277
+ this error is not available and NaN is returned.
278
+ phasediff : float
279
+ Global phase difference between the two images (should be
280
+ zero if images are non-negative). For masked cross-correlation
281
+ this phase difference is not available and NaN is returned.
282
+
283
+ Notes
284
+ -----
285
+ The use of cross-correlation to estimate image translation has a long
286
+ history dating back to at least [2]_. The "phase correlation"
287
+ method (selected by ``normalization="phase"``) was first proposed in [3]_.
288
+ Publications [1]_ and [2]_ use an unnormalized cross-correlation
289
+ (``normalization=None``). Which form of normalization is better is
290
+ application-dependent. For example, the phase correlation method works
291
+ well in registering images under different illumination, but is not very
292
+ robust to noise. In a high noise scenario, the unnormalized method may be
293
+ preferable.
294
+
295
+ When masks are provided, a masked normalized cross-correlation algorithm is
296
+ used [5]_, [6]_.
297
+
298
+ References
299
+ ----------
300
+ .. [1] Manuel Guizar-Sicairos, Samuel T. Thurman, and James R. Fienup,
301
+ "Efficient subpixel image registration algorithms,"
302
+ Optics Letters 33, 156-158 (2008). :DOI:`10.1364/OL.33.000156`
303
+ .. [2] P. Anuta, Spatial registration of multispectral and multitemporal
304
+ digital imagery using fast Fourier transform techniques, IEEE Trans.
305
+ Geosci. Electron., vol. 8, no. 4, pp. 353–368, Oct. 1970.
306
+ :DOI:`10.1109/TGE.1970.271435`.
307
+ .. [3] C. D. Kuglin D. C. Hines. The phase correlation image alignment
308
+ method, Proceeding of IEEE International Conference on Cybernetics
309
+ and Society, pp. 163-165, New York, NY, USA, 1975, pp. 163–165.
310
+ .. [4] James R. Fienup, "Invariant error metrics for image reconstruction"
311
+ Optics Letters 36, 8352-8357 (1997). :DOI:`10.1364/AO.36.008352`
312
+ .. [5] Dirk Padfield. Masked Object Registration in the Fourier Domain.
313
+ IEEE Transactions on Image Processing, vol. 21(5),
314
+ pp. 2706-2718 (2012). :DOI:`10.1109/TIP.2011.2181402`
315
+ .. [6] D. Padfield. "Masked FFT registration". In Proc. Computer Vision and
316
+ Pattern Recognition, pp. 2918-2925 (2010).
317
+ :DOI:`10.1109/CVPR.2010.5540032`
318
+ """
319
+ if (reference_mask is not None) or (moving_mask is not None):
320
+ shift = _masked_phase_cross_correlation(
321
+ reference_image, moving_image, reference_mask, moving_mask, overlap_ratio
322
+ )
323
+ return shift, np.nan, np.nan
324
+
325
+ # images must be the same shape
326
+ if reference_image.shape != moving_image.shape:
327
+ raise ValueError("images must be same shape")
328
+
329
+ # assume complex data is already in Fourier space
330
+ if space.lower() == 'fourier':
331
+ src_freq = reference_image
332
+ target_freq = moving_image
333
+ # real data needs to be fft'd.
334
+ elif space.lower() == 'real':
335
+ src_freq = fftn(reference_image)
336
+ target_freq = fftn(moving_image)
337
+ else:
338
+ raise ValueError('space argument must be "real" of "fourier"')
339
+
340
+ # Whole-pixel shift - Compute cross-correlation by an IFFT
341
+ shape = src_freq.shape
342
+ image_product = src_freq * target_freq.conj()
343
+ if normalization == "phase":
344
+ eps = np.finfo(image_product.real.dtype).eps
345
+ image_product /= np.maximum(np.abs(image_product), 100 * eps)
346
+ elif normalization is not None:
347
+ raise ValueError("normalization must be either phase or None")
348
+ cross_correlation = ifftn(image_product)
349
+
350
+ # Locate maximum
351
+ maxima = np.unravel_index(
352
+ np.argmax(np.abs(cross_correlation)), cross_correlation.shape
353
+ )
354
+ midpoint = np.array([np.fix(axis_size / 2) for axis_size in shape])
355
+
356
+ float_dtype = image_product.real.dtype
357
+
358
+ shift = np.stack(maxima).astype(float_dtype, copy=False)
359
+ shift[shift > midpoint] -= np.array(shape)[shift > midpoint]
360
+
361
+ if upsample_factor == 1:
362
+ src_amp = np.sum(np.real(src_freq * src_freq.conj()))
363
+ src_amp /= src_freq.size
364
+ target_amp = np.sum(np.real(target_freq * target_freq.conj()))
365
+ target_amp /= target_freq.size
366
+ CCmax = cross_correlation[maxima]
367
+ # If upsampling > 1, then refine estimate with matrix multiply DFT
368
+ else:
369
+ # Initial shift estimate in upsampled grid
370
+ upsample_factor = np.array(upsample_factor, dtype=float_dtype)
371
+ shift = np.round(shift * upsample_factor) / upsample_factor
372
+ upsampled_region_size = np.ceil(upsample_factor * 1.5)
373
+ # Center of output array at dftshift + 1
374
+ dftshift = np.fix(upsampled_region_size / 2.0)
375
+ # Matrix multiply DFT around the current shift estimate
376
+ sample_region_offset = dftshift - shift * upsample_factor
377
+ cross_correlation = _upsampled_dft(
378
+ image_product.conj(),
379
+ upsampled_region_size,
380
+ upsample_factor,
381
+ sample_region_offset,
382
+ ).conj()
383
+ # Locate maximum and map back to original pixel grid
384
+ maxima = np.unravel_index(
385
+ np.argmax(np.abs(cross_correlation)), cross_correlation.shape
386
+ )
387
+ CCmax = cross_correlation[maxima]
388
+
389
+ maxima = np.stack(maxima).astype(float_dtype, copy=False)
390
+ maxima -= dftshift
391
+
392
+ shift += maxima / upsample_factor
393
+
394
+ src_amp = np.sum(np.real(src_freq * src_freq.conj()))
395
+ target_amp = np.sum(np.real(target_freq * target_freq.conj()))
396
+
397
+ # If its only one row or column the shift along that dimension has no
398
+ # effect. We set to zero.
399
+ for dim in range(src_freq.ndim):
400
+ if shape[dim] == 1:
401
+ shift[dim] = 0
402
+
403
+ if disambiguate:
404
+ if space.lower() != 'real':
405
+ reference_image = ifftn(reference_image)
406
+ moving_image = ifftn(moving_image)
407
+ shift = _disambiguate_shift(reference_image, moving_image, shift)
408
+
409
+ # Redirect user to masked_phase_cross_correlation if NaNs are observed
410
+ if np.isnan(CCmax) or np.isnan(src_amp) or np.isnan(target_amp):
411
+ raise ValueError(
412
+ "NaN values found, please remove NaNs from your "
413
+ "input data or use the `reference_mask`/`moving_mask` "
414
+ "keywords, eg: "
415
+ "phase_cross_correlation(reference_image, moving_image, "
416
+ "reference_mask=~np.isnan(reference_image), "
417
+ "moving_mask=~np.isnan(moving_image))"
418
+ )
419
+
420
+ return shift, _compute_error(CCmax, src_amp, target_amp), _compute_phasediff(CCmax)
infer_4_47_1/lib/python3.10/site-packages/skimage/registration/tests/__init__.py ADDED
File without changes
infer_4_47_1/lib/python3.10/site-packages/skimage/registration/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (184 Bytes). View file
 
infer_4_47_1/lib/python3.10/site-packages/skimage/registration/tests/__pycache__/test_ilk.cpython-310.pyc ADDED
Binary file (2.75 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/skimage/registration/tests/__pycache__/test_masked_phase_cross_correlation.cpython-310.pyc ADDED
Binary file (7.47 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/skimage/registration/tests/__pycache__/test_phase_cross_correlation.cpython-310.pyc ADDED
Binary file (7.79 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/skimage/registration/tests/__pycache__/test_tvl1.cpython-310.pyc ADDED
Binary file (3.67 kB). View file
 
infer_4_47_1/lib/python3.10/site-packages/skimage/registration/tests/test_ilk.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from skimage._shared.utils import _supported_float_type
5
+ from skimage.registration import optical_flow_ilk
6
+ from .test_tvl1 import _sin_flow_gen
7
+
8
+
9
+ @pytest.mark.parametrize('dtype', [np.float16, np.float32, np.float64])
10
+ @pytest.mark.parametrize('gaussian', [True, False])
11
+ @pytest.mark.parametrize('prefilter', [True, False])
12
+ def test_2d_motion(dtype, gaussian, prefilter):
13
+ # Generate synthetic data
14
+ rng = np.random.default_rng(0)
15
+ image0 = rng.normal(size=(256, 256))
16
+ gt_flow, image1 = _sin_flow_gen(image0)
17
+ image1 = image1.astype(dtype, copy=False)
18
+ float_dtype = _supported_float_type(dtype)
19
+ # Estimate the flow
20
+ flow = optical_flow_ilk(
21
+ image0, image1, gaussian=gaussian, prefilter=prefilter, dtype=float_dtype
22
+ )
23
+ assert flow.dtype == _supported_float_type(dtype)
24
+ # Assert that the average absolute error is less then half a pixel
25
+ assert abs(flow - gt_flow).mean() < 0.5
26
+
27
+ if dtype != float_dtype:
28
+ with pytest.raises(ValueError):
29
+ optical_flow_ilk(
30
+ image0, image1, gaussian=gaussian, prefilter=prefilter, dtype=dtype
31
+ )
32
+
33
+
34
+ @pytest.mark.parametrize('gaussian', [True, False])
35
+ @pytest.mark.parametrize('prefilter', [True, False])
36
+ def test_3d_motion(gaussian, prefilter):
37
+ # Generate synthetic data
38
+ rng = np.random.default_rng(123)
39
+ image0 = rng.normal(size=(50, 55, 60))
40
+ gt_flow, image1 = _sin_flow_gen(image0, npics=3)
41
+ # Estimate the flow
42
+ flow = optical_flow_ilk(
43
+ image0, image1, radius=5, gaussian=gaussian, prefilter=prefilter
44
+ )
45
+
46
+ # Assert that the average absolute error is less then half a pixel
47
+ assert abs(flow - gt_flow).mean() < 0.5
48
+
49
+
50
+ def test_no_motion_2d():
51
+ rng = np.random.default_rng(0)
52
+ img = rng.normal(size=(256, 256))
53
+
54
+ flow = optical_flow_ilk(img, img)
55
+
56
+ assert np.all(flow == 0)
57
+
58
+
59
+ def test_no_motion_3d():
60
+ rng = np.random.default_rng(0)
61
+ img = rng.normal(size=(64, 64, 64))
62
+
63
+ flow = optical_flow_ilk(img, img)
64
+
65
+ assert np.all(flow == 0)
66
+
67
+
68
+ def test_optical_flow_dtype():
69
+ # Generate synthetic data
70
+ rng = np.random.default_rng(0)
71
+ image0 = rng.normal(size=(256, 256))
72
+ gt_flow, image1 = _sin_flow_gen(image0)
73
+ # Estimate the flow at double precision
74
+ flow_f64 = optical_flow_ilk(image0, image1, dtype='float64')
75
+
76
+ assert flow_f64.dtype == 'float64'
77
+
78
+ # Estimate the flow at single precision
79
+ flow_f32 = optical_flow_ilk(image0, image1, dtype='float32')
80
+
81
+ assert flow_f32.dtype == 'float32'
82
+
83
+ # Assert that floating point precision does not affect the quality
84
+ # of the estimated flow
85
+
86
+ assert abs(flow_f64 - flow_f32).mean() < 1e-3
87
+
88
+
89
+ def test_incompatible_shapes():
90
+ rng = np.random.default_rng(0)
91
+ I0 = rng.normal(size=(256, 256))
92
+ I1 = rng.normal(size=(255, 256))
93
+ with pytest.raises(ValueError):
94
+ u, v = optical_flow_ilk(I0, I1)
95
+
96
+
97
+ def test_wrong_dtype():
98
+ rng = np.random.default_rng(0)
99
+ img = rng.normal(size=(256, 256))
100
+ with pytest.raises(ValueError):
101
+ u, v = optical_flow_ilk(img, img, dtype='int')
infer_4_47_1/lib/python3.10/site-packages/skimage/registration/tests/test_masked_phase_cross_correlation.py ADDED
@@ -0,0 +1,278 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+ from numpy.testing import (
4
+ assert_almost_equal,
5
+ assert_array_almost_equal,
6
+ assert_array_equal,
7
+ assert_array_less,
8
+ assert_equal,
9
+ )
10
+ from scipy.ndimage import fourier_shift, shift as real_shift
11
+ import scipy.fft as fft
12
+
13
+ from skimage._shared.testing import fetch
14
+ from skimage._shared.utils import _supported_float_type
15
+ from skimage.data import camera, brain
16
+
17
+
18
+ from skimage.io import imread
19
+ from skimage.registration._masked_phase_cross_correlation import (
20
+ _masked_phase_cross_correlation as masked_register_translation,
21
+ cross_correlate_masked,
22
+ )
23
+ from skimage.registration import phase_cross_correlation
24
+
25
+
26
+ def test_masked_registration_vs_phase_cross_correlation():
27
+ """masked_register_translation should give the same results as
28
+ phase_cross_correlation in the case of trivial masks."""
29
+ reference_image = camera()
30
+ shift = (-7, 12)
31
+ shifted = np.real(fft.ifft2(fourier_shift(fft.fft2(reference_image), shift)))
32
+ trivial_mask = np.ones_like(reference_image)
33
+
34
+ nonmasked_result, *_ = phase_cross_correlation(reference_image, shifted)
35
+ masked_result = masked_register_translation(
36
+ reference_image, shifted, reference_mask=trivial_mask, overlap_ratio=1 / 10
37
+ )
38
+
39
+ assert_equal(nonmasked_result, masked_result)
40
+
41
+
42
+ def test_masked_registration_random_masks():
43
+ """masked_register_translation should be able to register translations
44
+ between images even with random masks."""
45
+ # See random number generator for reproducible results
46
+ np.random.seed(23)
47
+
48
+ reference_image = camera()
49
+ shift = (-7, 12)
50
+ shifted = np.real(fft.ifft2(fourier_shift(fft.fft2(reference_image), shift)))
51
+
52
+ # Random masks with 75% of pixels being valid
53
+ ref_mask = np.random.choice([True, False], reference_image.shape, p=[3 / 4, 1 / 4])
54
+ shifted_mask = np.random.choice([True, False], shifted.shape, p=[3 / 4, 1 / 4])
55
+
56
+ measured_shift = masked_register_translation(
57
+ reference_image, shifted, reference_mask=ref_mask, moving_mask=shifted_mask
58
+ )
59
+ assert_equal(measured_shift, -np.array(shift))
60
+
61
+
62
+ def test_masked_registration_3d_contiguous_mask():
63
+ """masked_register_translation should be able to register translations
64
+ between volumes with contiguous masks."""
65
+ ref_vol = brain()[:, ::2, ::2]
66
+
67
+ offset = (1, -5, 10)
68
+
69
+ # create square mask
70
+ ref_mask = np.zeros_like(ref_vol, dtype=bool)
71
+ ref_mask[:-2, 75:100, 75:100] = True
72
+ ref_shifted = real_shift(ref_vol, offset)
73
+
74
+ measured_offset = masked_register_translation(
75
+ ref_vol, ref_shifted, reference_mask=ref_mask, moving_mask=ref_mask
76
+ )
77
+
78
+ assert_equal(offset, -np.array(measured_offset))
79
+
80
+
81
+ def test_masked_registration_random_masks_non_equal_sizes():
82
+ """masked_register_translation should be able to register
83
+ translations between images that are not the same size even
84
+ with random masks."""
85
+ # See random number generator for reproducible results
86
+ np.random.seed(23)
87
+
88
+ reference_image = camera()
89
+ shift = (-7, 12)
90
+ shifted = np.real(fft.ifft2(fourier_shift(fft.fft2(reference_image), shift)))
91
+
92
+ # Crop the shifted image
93
+ shifted = shifted[64:-64, 64:-64]
94
+
95
+ # Random masks with 75% of pixels being valid
96
+ ref_mask = np.random.choice([True, False], reference_image.shape, p=[3 / 4, 1 / 4])
97
+ shifted_mask = np.random.choice([True, False], shifted.shape, p=[3 / 4, 1 / 4])
98
+
99
+ measured_shift = masked_register_translation(
100
+ reference_image,
101
+ shifted,
102
+ reference_mask=np.ones_like(ref_mask),
103
+ moving_mask=np.ones_like(shifted_mask),
104
+ )
105
+ assert_equal(measured_shift, -np.array(shift))
106
+
107
+
108
+ def test_masked_registration_padfield_data():
109
+ """Masked translation registration should behave like in the original
110
+ publication"""
111
+ # Test translated from MATLABimplementation `MaskedFFTRegistrationTest`
112
+ # file. You can find the source code here:
113
+ # http://www.dirkpadfield.com/Home/MaskedFFTRegistrationCode.zip
114
+
115
+ shifts = [(75, 75), (-130, 130), (130, 130)]
116
+ for xi, yi in shifts:
117
+ fixed_image = imread(fetch(f'registration/tests/data/OriginalX{xi}Y{yi}.png'))
118
+ moving_image = imread(
119
+ fetch(f'registration/tests/data/TransformedX{xi}Y{yi}.png')
120
+ )
121
+
122
+ # Valid pixels are 1
123
+ fixed_mask = fixed_image != 0
124
+ moving_mask = moving_image != 0
125
+
126
+ # Note that shifts in x and y and shifts in cols and rows
127
+ shift_y, shift_x = masked_register_translation(
128
+ fixed_image,
129
+ moving_image,
130
+ reference_mask=fixed_mask,
131
+ moving_mask=moving_mask,
132
+ overlap_ratio=0.1,
133
+ )
134
+ # Note: by looking at the test code from Padfield's
135
+ # MaskedFFTRegistrationCode repository, the
136
+ # shifts were not xi and yi, but xi and -yi
137
+ assert_equal((shift_x, shift_y), (-xi, yi))
138
+
139
+
140
+ @pytest.mark.parametrize('dtype', [np.float16, np.float32, np.float64])
141
+ def test_cross_correlate_masked_output_shape(dtype):
142
+ """Masked normalized cross-correlation should return a shape
143
+ of N + M + 1 for each transform axis."""
144
+ shape1 = (15, 4, 5)
145
+ shape2 = (6, 12, 7)
146
+ expected_full_shape = tuple(np.array(shape1) + np.array(shape2) - 1)
147
+ expected_same_shape = shape1
148
+
149
+ arr1 = np.zeros(shape1, dtype=dtype)
150
+ arr2 = np.zeros(shape2, dtype=dtype)
151
+ # Trivial masks
152
+ m1 = np.ones_like(arr1)
153
+ m2 = np.ones_like(arr2)
154
+
155
+ float_dtype = _supported_float_type(dtype)
156
+
157
+ full_xcorr = cross_correlate_masked(arr1, arr2, m1, m2, axes=(0, 1, 2), mode='full')
158
+ assert_equal(full_xcorr.shape, expected_full_shape)
159
+ assert full_xcorr.dtype == float_dtype
160
+
161
+ same_xcorr = cross_correlate_masked(arr1, arr2, m1, m2, axes=(0, 1, 2), mode='same')
162
+ assert_equal(same_xcorr.shape, expected_same_shape)
163
+ assert same_xcorr.dtype == float_dtype
164
+
165
+
166
+ def test_cross_correlate_masked_test_against_mismatched_dimensions():
167
+ """Masked normalized cross-correlation should raise an error if array
168
+ dimensions along non-transformation axes are mismatched."""
169
+ shape1 = (23, 1, 1)
170
+ shape2 = (6, 2, 2)
171
+
172
+ arr1 = np.zeros(shape1)
173
+ arr2 = np.zeros(shape2)
174
+
175
+ # Trivial masks
176
+ m1 = np.ones_like(arr1)
177
+ m2 = np.ones_like(arr2)
178
+
179
+ with pytest.raises(ValueError):
180
+ cross_correlate_masked(arr1, arr2, m1, m2, axes=(1, 2))
181
+
182
+
183
+ def test_cross_correlate_masked_output_range():
184
+ """Masked normalized cross-correlation should return between 1 and -1."""
185
+ # See random number generator for reproducible results
186
+ np.random.seed(23)
187
+
188
+ # Array dimensions must match along non-transformation axes, in
189
+ # this case
190
+ # axis 0
191
+ shape1 = (15, 4, 5)
192
+ shape2 = (15, 12, 7)
193
+
194
+ # Initial array ranges between -5 and 5
195
+ arr1 = 10 * np.random.random(shape1) - 5
196
+ arr2 = 10 * np.random.random(shape2) - 5
197
+
198
+ # random masks
199
+ m1 = np.random.choice([True, False], arr1.shape)
200
+ m2 = np.random.choice([True, False], arr2.shape)
201
+
202
+ xcorr = cross_correlate_masked(arr1, arr2, m1, m2, axes=(1, 2))
203
+
204
+ # No assert array less or equal, so we add an eps
205
+ # Also could not find an `assert_array_greater`, Use (-xcorr) instead
206
+ eps = np.finfo(float).eps
207
+ assert_array_less(xcorr, 1 + eps)
208
+ assert_array_less(-xcorr, 1 + eps)
209
+
210
+
211
+ def test_cross_correlate_masked_side_effects():
212
+ """Masked normalized cross-correlation should not modify the inputs."""
213
+ shape1 = (2, 2, 2)
214
+ shape2 = (2, 2, 2)
215
+
216
+ arr1 = np.zeros(shape1)
217
+ arr2 = np.zeros(shape2)
218
+
219
+ # Trivial masks
220
+ m1 = np.ones_like(arr1)
221
+ m2 = np.ones_like(arr2)
222
+
223
+ for arr in (arr1, arr2, m1, m2):
224
+ arr.setflags(write=False)
225
+
226
+ cross_correlate_masked(arr1, arr2, m1, m2)
227
+
228
+
229
+ def test_cross_correlate_masked_over_axes():
230
+ """Masked normalized cross-correlation over axes should be
231
+ equivalent to a loop over non-transform axes."""
232
+ # See random number generator for reproducible results
233
+ np.random.seed(23)
234
+
235
+ arr1 = np.random.random((8, 8, 5))
236
+ arr2 = np.random.random((8, 8, 5))
237
+
238
+ m1 = np.random.choice([True, False], arr1.shape)
239
+ m2 = np.random.choice([True, False], arr2.shape)
240
+
241
+ # Loop over last axis
242
+ with_loop = np.empty_like(arr1, dtype=complex)
243
+ for index in range(arr1.shape[-1]):
244
+ with_loop[:, :, index] = cross_correlate_masked(
245
+ arr1[:, :, index],
246
+ arr2[:, :, index],
247
+ m1[:, :, index],
248
+ m2[:, :, index],
249
+ axes=(0, 1),
250
+ mode='same',
251
+ )
252
+
253
+ over_axes = cross_correlate_masked(arr1, arr2, m1, m2, axes=(0, 1), mode='same')
254
+
255
+ assert_array_almost_equal(with_loop, over_axes)
256
+
257
+
258
+ def test_cross_correlate_masked_autocorrelation_trivial_masks():
259
+ """Masked normalized cross-correlation between identical arrays
260
+ should reduce to an autocorrelation even with random masks."""
261
+ # See random number generator for reproducible results
262
+ np.random.seed(23)
263
+
264
+ arr1 = camera()
265
+
266
+ # Random masks with 75% of pixels being valid
267
+ m1 = np.random.choice([True, False], arr1.shape, p=[3 / 4, 1 / 4])
268
+ m2 = np.random.choice([True, False], arr1.shape, p=[3 / 4, 1 / 4])
269
+
270
+ xcorr = cross_correlate_masked(
271
+ arr1, arr1, m1, m2, axes=(0, 1), mode='same', overlap_ratio=0
272
+ ).real
273
+ max_index = np.unravel_index(np.argmax(xcorr), xcorr.shape)
274
+
275
+ # Autocorrelation should have maximum in center of array
276
+ # uint8 inputs will be processed in float32, so reduce decimal to 5
277
+ assert_almost_equal(xcorr.max(), 1, decimal=5)
278
+ assert_array_equal(max_index, np.array(arr1.shape) / 2)
infer_4_47_1/lib/python3.10/site-packages/skimage/registration/tests/test_phase_cross_correlation.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import itertools
2
+ import warnings
3
+
4
+ import numpy as np
5
+ import pytest
6
+ from numpy.testing import assert_allclose
7
+ from scipy.ndimage import fourier_shift
8
+ import scipy.fft as fft
9
+
10
+ from skimage import img_as_float
11
+ from skimage._shared._warnings import expected_warnings
12
+ from skimage._shared.testing import assert_stacklevel
13
+ from skimage._shared.utils import _supported_float_type
14
+ from skimage.data import camera, binary_blobs, eagle
15
+ from skimage.registration._phase_cross_correlation import (
16
+ phase_cross_correlation,
17
+ _upsampled_dft,
18
+ )
19
+
20
+
21
+ @pytest.mark.parametrize('normalization', [None, 'phase'])
22
+ def test_correlation(normalization):
23
+ reference_image = fft.fftn(camera())
24
+ shift = (-7, 12)
25
+ shifted_image = fourier_shift(reference_image, shift)
26
+
27
+ # pixel precision
28
+ result, _, _ = phase_cross_correlation(
29
+ reference_image, shifted_image, space="fourier", normalization=normalization
30
+ )
31
+ assert_allclose(result[:2], -np.array(shift))
32
+
33
+
34
+ @pytest.mark.parametrize('normalization', ['nonexisting'])
35
+ def test_correlation_invalid_normalization(normalization):
36
+ reference_image = fft.fftn(camera())
37
+ shift = (-7, 12)
38
+ shifted_image = fourier_shift(reference_image, shift)
39
+
40
+ # pixel precision
41
+ with pytest.raises(ValueError):
42
+ phase_cross_correlation(
43
+ reference_image, shifted_image, space="fourier", normalization=normalization
44
+ )
45
+
46
+
47
+ @pytest.mark.parametrize('normalization', [None, 'phase'])
48
+ def test_subpixel_precision(normalization):
49
+ reference_image = fft.fftn(camera())
50
+ subpixel_shift = (-2.4, 1.32)
51
+ shifted_image = fourier_shift(reference_image, subpixel_shift)
52
+
53
+ # subpixel precision
54
+ result, _, _ = phase_cross_correlation(
55
+ reference_image,
56
+ shifted_image,
57
+ upsample_factor=100,
58
+ space="fourier",
59
+ normalization=normalization,
60
+ )
61
+ assert_allclose(result[:2], -np.array(subpixel_shift), atol=0.05)
62
+
63
+
64
+ @pytest.mark.parametrize('dtype', [np.float16, np.float32, np.float64])
65
+ def test_real_input(dtype):
66
+ reference_image = camera().astype(dtype, copy=False)
67
+ subpixel_shift = (-2.4, 1.32)
68
+ shifted_image = fourier_shift(fft.fftn(reference_image), subpixel_shift)
69
+ shifted_image = fft.ifftn(shifted_image).real.astype(dtype, copy=False)
70
+
71
+ # subpixel precision
72
+ result, error, diffphase = phase_cross_correlation(
73
+ reference_image, shifted_image, upsample_factor=100
74
+ )
75
+ assert result.dtype == _supported_float_type(dtype)
76
+ assert_allclose(result[:2], -np.array(subpixel_shift), atol=0.05)
77
+
78
+
79
+ def test_size_one_dimension_input():
80
+ # take a strip of the input image
81
+ reference_image = fft.fftn(camera()[:, 15]).reshape((-1, 1))
82
+ subpixel_shift = (-2.4, 4)
83
+ shifted_image = fourier_shift(reference_image, subpixel_shift)
84
+
85
+ # subpixel precision
86
+ result, error, diffphase = phase_cross_correlation(
87
+ reference_image, shifted_image, upsample_factor=20, space="fourier"
88
+ )
89
+ assert_allclose(result[:2], -np.array((-2.4, 0)), atol=0.05)
90
+
91
+
92
+ def test_3d_input():
93
+ phantom = img_as_float(binary_blobs(length=32, n_dim=3))
94
+ reference_image = fft.fftn(phantom)
95
+ shift = (-2.0, 1.0, 5.0)
96
+ shifted_image = fourier_shift(reference_image, shift)
97
+
98
+ result, error, diffphase = phase_cross_correlation(
99
+ reference_image, shifted_image, space="fourier"
100
+ )
101
+ assert_allclose(result, -np.array(shift), atol=0.05)
102
+
103
+ # subpixel precision now available for 3-D data
104
+
105
+ subpixel_shift = (-2.3, 1.7, 5.4)
106
+ shifted_image = fourier_shift(reference_image, subpixel_shift)
107
+ result, error, diffphase = phase_cross_correlation(
108
+ reference_image, shifted_image, upsample_factor=100, space="fourier"
109
+ )
110
+ assert_allclose(result, -np.array(subpixel_shift), atol=0.05)
111
+
112
+
113
+ def test_unknown_space_input():
114
+ image = np.ones((5, 5))
115
+ with pytest.raises(ValueError):
116
+ phase_cross_correlation(image, image, space="frank")
117
+
118
+
119
+ def test_wrong_input():
120
+ # Dimensionality mismatch
121
+ image = np.ones((5, 5, 1))
122
+ template = np.ones((5, 5))
123
+ with pytest.raises(ValueError):
124
+ phase_cross_correlation(template, image)
125
+
126
+ # Size mismatch
127
+ image = np.ones((5, 5))
128
+ template = np.ones((4, 4))
129
+ with pytest.raises(ValueError):
130
+ phase_cross_correlation(template, image)
131
+
132
+ # NaN values in data
133
+ image = np.ones((5, 5))
134
+ image[0][0] = np.nan
135
+ template = np.ones((5, 5))
136
+ with expected_warnings(
137
+ [
138
+ r"invalid value encountered in true_divide"
139
+ + r"|"
140
+ + r"invalid value encountered in divide"
141
+ + r"|\A\Z"
142
+ ]
143
+ ):
144
+ with pytest.raises(ValueError):
145
+ phase_cross_correlation(template, image)
146
+
147
+
148
+ def test_4d_input_pixel():
149
+ phantom = img_as_float(binary_blobs(length=32, n_dim=4))
150
+ reference_image = fft.fftn(phantom)
151
+ shift = (-2.0, 1.0, 5.0, -3)
152
+ shifted_image = fourier_shift(reference_image, shift)
153
+ result, error, diffphase = phase_cross_correlation(
154
+ reference_image, shifted_image, space="fourier"
155
+ )
156
+ assert_allclose(result, -np.array(shift), atol=0.05)
157
+
158
+
159
+ def test_4d_input_subpixel():
160
+ phantom = img_as_float(binary_blobs(length=32, n_dim=4))
161
+ reference_image = fft.fftn(phantom)
162
+ subpixel_shift = (-2.3, 1.7, 5.4, -3.2)
163
+ shifted_image = fourier_shift(reference_image, subpixel_shift)
164
+ result, error, diffphase = phase_cross_correlation(
165
+ reference_image, shifted_image, upsample_factor=10, space="fourier"
166
+ )
167
+ assert_allclose(result, -np.array(subpixel_shift), atol=0.05)
168
+
169
+
170
+ def test_mismatch_upsampled_region_size():
171
+ with pytest.raises(ValueError):
172
+ _upsampled_dft(np.ones((4, 4)), upsampled_region_size=[3, 2, 1, 4])
173
+
174
+
175
+ def test_mismatch_offsets_size():
176
+ with pytest.raises(ValueError):
177
+ _upsampled_dft(np.ones((4, 4)), 3, axis_offsets=[3, 2, 1, 4])
178
+
179
+
180
+ @pytest.mark.parametrize(
181
+ ('shift0', 'shift1'),
182
+ itertools.product((100, -100, 350, -350), (100, -100, 350, -350)),
183
+ )
184
+ def test_disambiguate_2d(shift0, shift1):
185
+ image = eagle()[500:, 900:] # use a highly textured part of image
186
+ shift = (shift0, shift1)
187
+ origin0 = []
188
+ for s in shift:
189
+ if s > 0:
190
+ origin0.append(0)
191
+ else:
192
+ origin0.append(-s)
193
+ origin1 = np.array(origin0) + shift
194
+ slice0 = tuple(slice(o, o + 450) for o in origin0)
195
+ slice1 = tuple(slice(o, o + 450) for o in origin1)
196
+ reference = image[slice0]
197
+ moving = image[slice1]
198
+ computed_shift, _, _ = phase_cross_correlation(
199
+ reference,
200
+ moving,
201
+ disambiguate=True,
202
+ )
203
+ np.testing.assert_equal(shift, computed_shift)
204
+
205
+
206
+ def test_invalid_value_in_division_warnings():
207
+ """Regression test for https://github.com/scikit-image/scikit-image/issues/7146."""
208
+ im1 = np.zeros((100, 100))
209
+ im1[50, 50] = 1
210
+ im2 = np.zeros((100, 100))
211
+ im2[60, 60] = 1
212
+ with warnings.catch_warnings():
213
+ warnings.simplefilter("error")
214
+ phase_cross_correlation(im1, im2, disambiguate=True)
215
+
216
+
217
+ @pytest.mark.parametrize('disambiguate', [True, False])
218
+ def test_disambiguate_zero_shift(disambiguate):
219
+ """When the shift is 0, disambiguation becomes degenerate.
220
+
221
+ Some quadrants become size 0, which prevents computation of
222
+ cross-correlation. This test ensures that nothing bad happens in that
223
+ scenario.
224
+ """
225
+ image = camera()
226
+ computed_shift, _, _ = phase_cross_correlation(
227
+ image,
228
+ image,
229
+ disambiguate=disambiguate,
230
+ )
231
+ assert isinstance(computed_shift, np.ndarray)
232
+ np.testing.assert_array_equal(computed_shift, np.array((0.0, 0.0)))
233
+
234
+
235
+ @pytest.mark.parametrize('null_images', [(1, 0), (0, 1), (0, 0)])
236
+ def test_disambiguate_empty_image(null_images):
237
+ """When the image is empty, disambiguation becomes degenerate."""
238
+ image = camera()
239
+ with pytest.warns(UserWarning) as records:
240
+ shift, error, phasediff = phase_cross_correlation(
241
+ image * null_images[0], image * null_images[1], disambiguate=True
242
+ )
243
+ assert_stacklevel(records, offset=-3)
244
+ np.testing.assert_array_equal(shift, np.array([0.0, 0.0]))
245
+ assert np.isnan(error)
246
+ assert phasediff == 0.0
247
+
248
+ # Check warnings
249
+ assert len(records) == 2
250
+ assert "Could not determine real-space shift" in records[0].message.args[0]
251
+ assert "Could not determine RMS error between images" in records[1].message.args[0]
infer_4_47_1/lib/python3.10/site-packages/skimage/registration/tests/test_tvl1.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from skimage._shared.utils import _supported_float_type
5
+ from skimage.registration import optical_flow_tvl1
6
+ from skimage.transform import warp
7
+
8
+
9
+ def _sin_flow_gen(image0, max_motion=4.5, npics=5):
10
+ """Generate a synthetic ground truth optical flow with a sinusoid as
11
+ first component.
12
+
13
+ Parameters
14
+ ----------
15
+ image0: ndarray
16
+ The base image to be warped.
17
+ max_motion: float
18
+ Maximum flow magnitude.
19
+ npics: int
20
+ Number of sinusoid pics.
21
+
22
+ Returns
23
+ -------
24
+ flow, image1 : ndarray
25
+ The synthetic ground truth optical flow with a sinusoid as
26
+ first component and the corresponding warped image.
27
+
28
+ """
29
+ grid = np.meshgrid(*[np.arange(n) for n in image0.shape], indexing='ij')
30
+ grid = np.stack(grid)
31
+ gt_flow = np.zeros_like(grid, dtype=float)
32
+ gt_flow[0, ...] = max_motion * np.sin(grid[0] / grid[0].max() * npics * np.pi)
33
+ image1 = warp(image0, grid - gt_flow, mode='edge')
34
+ return gt_flow, image1
35
+
36
+
37
+ @pytest.mark.parametrize('dtype', [np.float16, np.float32, np.float64])
38
+ def test_2d_motion(dtype):
39
+ # Generate synthetic data
40
+ rng = np.random.default_rng(0)
41
+ image0 = rng.normal(size=(256, 256))
42
+ gt_flow, image1 = _sin_flow_gen(image0)
43
+ image1 = image1.astype(dtype, copy=False)
44
+ float_dtype = _supported_float_type(dtype)
45
+ # Estimate the flow
46
+ flow = optical_flow_tvl1(image0, image1, attachment=5, dtype=float_dtype)
47
+ assert flow.dtype == float_dtype
48
+ # Assert that the average absolute error is less then half a pixel
49
+ assert abs(flow - gt_flow).mean() < 0.5
50
+
51
+ if dtype != float_dtype:
52
+ with pytest.raises(ValueError):
53
+ optical_flow_tvl1(image0, image1, attachment=5, dtype=dtype)
54
+
55
+
56
+ def test_3d_motion():
57
+ # Generate synthetic data
58
+ rng = np.random.default_rng(0)
59
+ image0 = rng.normal(size=(100, 100, 100))
60
+ gt_flow, image1 = _sin_flow_gen(image0)
61
+ # Estimate the flow
62
+ flow = optical_flow_tvl1(image0, image1, attachment=10)
63
+ # Assert that the average absolute error is less then half a pixel
64
+ assert abs(flow - gt_flow).mean() < 0.5
65
+
66
+
67
+ def test_no_motion_2d():
68
+ rng = np.random.default_rng(0)
69
+ img = rng.normal(size=(256, 256))
70
+
71
+ flow = optical_flow_tvl1(img, img)
72
+
73
+ assert np.all(flow == 0)
74
+
75
+
76
+ def test_no_motion_3d():
77
+ rng = np.random.default_rng(0)
78
+ img = rng.normal(size=(64, 64, 64))
79
+
80
+ flow = optical_flow_tvl1(img, img)
81
+
82
+ assert np.all(flow == 0)
83
+
84
+
85
+ def test_optical_flow_dtype():
86
+ # Generate synthetic data
87
+ rng = np.random.default_rng(0)
88
+ image0 = rng.normal(size=(256, 256))
89
+ gt_flow, image1 = _sin_flow_gen(image0)
90
+ # Estimate the flow at double precision
91
+ flow_f64 = optical_flow_tvl1(image0, image1, attachment=5, dtype=np.float64)
92
+
93
+ assert flow_f64.dtype == np.float64
94
+
95
+ # Estimate the flow at single precision
96
+ flow_f32 = optical_flow_tvl1(image0, image1, attachment=5, dtype=np.float32)
97
+
98
+ assert flow_f32.dtype == np.float32
99
+
100
+ # Assert that floating point precision does not affect the quality
101
+ # of the estimated flow
102
+
103
+ assert np.abs(flow_f64 - flow_f32).mean() < 1e-3
104
+
105
+
106
+ def test_incompatible_shapes():
107
+ rng = np.random.default_rng(0)
108
+ I0 = rng.normal(size=(256, 256))
109
+ I1 = rng.normal(size=(128, 256))
110
+ with pytest.raises(ValueError):
111
+ u, v = optical_flow_tvl1(I0, I1)
112
+
113
+
114
+ def test_wrong_dtype():
115
+ rng = np.random.default_rng(0)
116
+ img = rng.normal(size=(256, 256))
117
+ with pytest.raises(ValueError):
118
+ u, v = optical_flow_tvl1(img, img, dtype=np.int64)
infer_4_47_1/lib/python3.10/site-packages/skimage/transform/__init__.pyi ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Explicitly setting `__all__` is necessary for type inference engines
2
+ # to know which symbols are exported. See
3
+ # https://peps.python.org/pep-0484/#stub-files
4
+
5
+ __all__ = [
6
+ 'hough_circle',
7
+ 'hough_ellipse',
8
+ 'hough_line',
9
+ 'probabilistic_hough_line',
10
+ 'hough_circle_peaks',
11
+ 'hough_line_peaks',
12
+ 'radon',
13
+ 'iradon',
14
+ 'iradon_sart',
15
+ 'order_angles_golden_ratio',
16
+ 'frt2',
17
+ 'ifrt2',
18
+ 'integral_image',
19
+ 'integrate',
20
+ 'warp',
21
+ 'warp_coords',
22
+ 'warp_polar',
23
+ 'estimate_transform',
24
+ 'matrix_transform',
25
+ 'EuclideanTransform',
26
+ 'SimilarityTransform',
27
+ 'AffineTransform',
28
+ 'ProjectiveTransform',
29
+ 'EssentialMatrixTransform',
30
+ 'FundamentalMatrixTransform',
31
+ 'PolynomialTransform',
32
+ 'PiecewiseAffineTransform',
33
+ 'ThinPlateSplineTransform',
34
+ 'swirl',
35
+ 'resize',
36
+ 'resize_local_mean',
37
+ 'rotate',
38
+ 'rescale',
39
+ 'downscale_local_mean',
40
+ 'pyramid_reduce',
41
+ 'pyramid_expand',
42
+ 'pyramid_gaussian',
43
+ 'pyramid_laplacian',
44
+ ]
45
+
46
+ from .hough_transform import (
47
+ hough_line,
48
+ hough_line_peaks,
49
+ probabilistic_hough_line,
50
+ hough_circle,
51
+ hough_circle_peaks,
52
+ hough_ellipse,
53
+ )
54
+ from .radon_transform import radon, iradon, iradon_sart, order_angles_golden_ratio
55
+ from .finite_radon_transform import frt2, ifrt2
56
+ from .integral import integral_image, integrate
57
+ from ._geometric import (
58
+ estimate_transform,
59
+ matrix_transform,
60
+ EuclideanTransform,
61
+ SimilarityTransform,
62
+ AffineTransform,
63
+ ProjectiveTransform,
64
+ FundamentalMatrixTransform,
65
+ EssentialMatrixTransform,
66
+ PolynomialTransform,
67
+ PiecewiseAffineTransform,
68
+ )
69
+ from ._thin_plate_splines import ThinPlateSplineTransform
70
+ from ._warps import (
71
+ swirl,
72
+ resize,
73
+ rotate,
74
+ rescale,
75
+ downscale_local_mean,
76
+ warp,
77
+ warp_coords,
78
+ warp_polar,
79
+ resize_local_mean,
80
+ )
81
+ from .pyramids import (
82
+ pyramid_reduce,
83
+ pyramid_expand,
84
+ pyramid_gaussian,
85
+ pyramid_laplacian,
86
+ )