--- configs: - config_name: gsm8k_araeng data_files: - split: test path: - "gsm8k/gsm8k_araeng.csv" - config_name: gsm8k_chieng data_files: - split: test path: - "gsm8k/gsm8k_chieng.csv" - config_name: gsm8k_hineng data_files: - split: test path: - "gsm8k/gsm8k_hineng.csv" - config_name: gsm8k_spaeng data_files: - split: test path: - "gsm8k/gsm8k_spaeng.csv" - config_name: lid_chieng data_files: - split: test path: - "lid/lid_chieng.csv" - config_name: lid_fridut data_files: - split: test path: - "lid/lid_fridut.csv" - config_name: lid_gereng data_files: - split: test path: - "lid/lid_gereng.csv" - config_name: lid_guaspa data_files: - split: test path: - "lid/lid_guaspa.csv" - config_name: lid_hineng data_files: - split: test path: - "lid/lid_hineng.csv" - config_name: lid_hokman data_files: - split: test path: - "lid/lid_hokman.csv" - config_name: lid_mareng data_files: - split: test path: - "lid/lid_mareng.csv" - config_name: lid_msaea data_files: - split: test path: - "lid/lid_msaea.csv" - config_name: lid_nepeng data_files: - split: test path: - "lid/lid_nepeng.csv" - config_name: mmlu_araeng data_files: - split: test path: - "mmlu/mmlu_araeng.csv" - config_name: mmlu_beneng data_files: - split: test path: - "mmlu/mmlu_beneng.csv" - config_name: mmlu_chieng data_files: - split: test path: - "mmlu/mmlu_chieng.csv" - config_name: mmlu_duteng data_files: - split: test path: - "mmlu/mmlu_duteng.csv" - config_name: mmlu_freeng data_files: - split: test path: - "mmlu/mmlu_freeng.csv" - config_name: mmlu_gereng data_files: - split: test path: - "mmlu/mmlu_gereng.csv" - config_name: mmlu_hineng data_files: - split: test path: - "mmlu/mmlu_hineng.csv" - config_name: mmlu_mareng data_files: - split: test path: - "mmlu/mmlu_mareng.csv" - config_name: mmlu_nepeng data_files: - split: test path: - "mmlu/mmlu_nepeng.csv" - config_name: mmlu_spaeng data_files: - split: test path: - "mmlu/mmlu_spaeng.csv" - config_name: mmlu_tameng data_files: - split: test path: - "mmlu/mmlu_tameng.csv" - config_name: mt_araeng_eng data_files: - split: test path: - "mt/mt_araeng_eng.csv" - config_name: mt_beneng_eng data_files: - split: test path: - "mt/mt_beneng_eng.csv" - config_name: mt_chieng_chi data_files: - split: test path: - "mt/mt_chieng_chi.csv" - config_name: mt_chieng_eng data_files: - split: test path: - "mt/mt_chieng_eng.csv" - config_name: mt_hineng_eng data_files: - split: test path: - "mt/mt_hineng_eng.csv" - config_name: mt_hokman_man data_files: - split: test path: - "mt/mt_hokman_man.csv" - config_name: mt_mareng_eng data_files: - split: test path: - "mt/mt_mareng_eng.csv" - config_name: mt_spaeng_eng data_files: - split: test path: - "mt/mt_spaeng_eng.csv" - config_name: ner_guaspa data_files: - split: test path: - "ner/ner_guaspa.csv" - config_name: ner_hineng data_files: - split: test path: - "ner/ner_hineng.csv" - config_name: ner_msaea data_files: - split: test path: - "ner/ner_msaea.csv" - config_name: ner_spaeng data_files: - split: test path: - "ner/ner_spaeng.csv" - config_name: pos_chieng data_files: - split: test path: - "pos/pos_chieng.csv" - config_name: pos_fridut data_files: - split: test path: - "pos/pos_fridut.csv" - config_name: pos_hineng data_files: - split: test path: - "pos/pos_hineng.csv" - config_name: pos_spaeng data_files: - split: test path: - "pos/pos_spaeng.csv" - config_name: sa_beneng data_files: - split: test path: - "sa/sa_beneng.csv" - config_name: sa_hineng data_files: - split: test path: - "sa/sa_hineng.csv" - config_name: sa_maleng data_files: - split: test path: - "sa/sa_maleng.csv" - config_name: sa_mareng data_files: - split: test path: - "sa/sa_mareng.csv" - config_name: sa_nepeng data_files: - split: test path: - "sa/sa_nepeng.csv" - config_name: sa_spaeng data_files: - split: test path: - "sa/sa_spaeng.csv" - config_name: sa_tameng data_files: - split: test path: - "sa/sa_tameng.csv" - config_name: truthfulqa_araeng data_files: - split: test path: - "truthfulqa/truthfulqa_araeng.csv" - config_name: truthfulqa_chieng data_files: - split: test path: - "truthfulqa/truthfulqa_chieng.csv" - config_name: truthfulqa_hineng data_files: - split: test path: - "truthfulqa/truthfulqa_hineng.csv" - config_name: truthfulqa_spaeng data_files: - split: test path: - "truthfulqa/truthfulqa_spaeng.csv" license: apache-2.0 language: - zh - en - es - hi - de - nl - fy - fr - ar - bn - mr - ne - ta - ml - gn - ne size_categories: - 10K Github Paper EMNLP 2025 Code-mixing is a linguistic phenomenon where multilingual speakers switch or mix two or more languages within a single utterance or conversation. To evaluate LLMs’ comprehension of multilingual code-mixed texts, we introduce CodeMixBench, a benchmark comprising eight tasks across 18 languages. ![Statistics of 18 languages](./pics/18_languages.png) ## 🔎Dataset Details Our benchmark comprises synthesized datasets targeting knowledge reasoning, mathematical reasoning, and truthfulness tasks, along with LID, POS, NER, SA, and MT tasks, which have been adapted from open-source studies. ### CodeMixBench vs. Others Previous benchmarks, such as GLUECoS and LinCE, primarily focus on traditional NLP tasks and are limited to a small number of languages. LinCE includes four language pairs and five NLP tasks: Language Identification(LID), Part of Speech (POS), Named Entity Recognition (NER), Sentiment Analysis (SA), and Machine Translation (MT). In contrast, GLUECoS covers two language pairs, lacks the MT task, but adds Question Answering (QA) and Natural Language Inference (NLI). Our review of recent codemixing studies indicates that research extends beyond the language pairs used in LinCE and GLUECoS. Therefore, we expanded to 16 language pairs and introduced tasks better suited for evaluating LLMs, such as Multi-Choice, Math, and Truthfulness, resulting in a total of eight tasks. ![language pairs and tasks](./pics/language_pairs.png) ### Statistics of Synthetic Datasets For knowledge reasoning, we developed the code-mixed MMLU (CM-MMLU) based on the MMLU test set, featuring multiple-choice questions from 57 subjects to assess the model's comprehensive knowledge reasoning abilities. For mathematical reasoning, we created the code-mixed GSM8K (CM-GSM8K), derived from the GSM8K test set, which evaluates mathematical reasoning capabilities with each question including step-by-step solutions. For truthfulness assessment, we constructed the code-mixed TruthfulQA (CM-TruthfulQA) using 817 multiple-choice questions from the TruthfulQA test set. ![Main evaluation results on CodeMixBench](./pics/statistics_synthesized_dataset.png) ### Statistics of Collected Datasets We selected and reconstructed 30 datasets from existing open-source projects. To comprehensively evaluate the performance of large models on code-mixing, we aimed to encompass a diverse range of language families and tasks, prioritizing manually annotated datasets. Ultimately, we cover traditional NLP tasks such as Language Identification (LID), Named Entity Recognition (NER), Part-of-Speech tagging (POS), Sentiment Analysis(SA), and Machine Translation (MT), and cover 16 languages from seven language families: Germanic(en, de, nl, fy), Sino-Tibetan (zh, hok), Romance(es), Afro-Asiatic (msa, ea), Indo-Aryan (hi, bn, ne,mr), Dravidian (ta, ml), and Tupian (gn). ![Main evaluation results on CodeMixBench](./pics/statistics_collected_dataset.png) ### Experience Results We evaluate three families of LLMs on CodeMixBench, revealing consistent underperformance across all models on code-mixing datasets involving language pairs from different language families. However, enhancements in training data size, model scale, post-training, and few-shot learning can improve LLM performance on code-mixing datasets. ![Main evaluation results on CodeMixBench](./pics/main_result_lineplot.png) ![Main evaluation results on CodeMixBench](./pics/other_result.png) ## 🚀Load CodeMixBench Taking the GSM8K task with mixed Chinese and English, gsm8k_chieng, as an example. ```python from datasets import load_dataset dataset_dict = load_dataset('CodeMixBench/CodeMixBench', data_files={'test': './gsm8k/gsm8k_chieng.csv'}) ``` ### 📍Dataset Sources - **Repository:** https://github.com/Jeromeyluck/CodeMixBench/ - **Paper:** [CodeMixBench: Evaluating Code-Mixing Capabilities of LLMs Across 18 Languages](https://huggingface.co/papers/2507.18791) ## Setup 1. Follow these steps to set up your development environment: ```bash git clone git@github.com:Jeromeyluck/CodeMixBench.git cd CodeMixBench conda create -n CodeMixBench python=3.9 conda activate CodeMixBench pip install -r requirements.txt ``` 2. To launch an llm for testing: ```bash python ./test_model.py \ --dataset lid_guaspa \ --expid lid_guaspa_all_0shot \ --model gpt-3.5-turbo \ --shot 5 \ --api sk-********************* \ --url https://**************** ``` - `dataset`: select the dataset (e.g., `lid_gereng`, `lid_spaeng`, `ner_hineng`). - `expid`: define the ID of the test, the results file will be named after this ID. - `model`: the model you test. The default model is `gpt-3.5-turbo`. - `shot`: use for few-shot test (by default it will be `1`). - `api`: API Key (default key will be `OPENAI_API_KEY` defined in system path). - `url`: API function provider's URL. ## 🔗Citation **BibTeX:** ``` @misc{yang2025codemixbenchevaluatingcodemixingcapabilities, title={CodeMixBench: Evaluating Code-Mixing Capabilities of LLMs Across 18 Languages}, author={Yilun Yang and Yekun Chai}, year={2025}, eprint={2507.18791}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2507.18791}, } ```