--- license: apache-2.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: val path: data/val-* - split: test path: data/test-* dataset_info: features: - name: id dtype: int32 - name: x sequence: image - name: floor_hue dtype: class_label: names: '0': '0.0' '1': '0.1' '2': '0.2' '3': '0.3' '4': '0.4' '5': '0.5' '6': '0.6' '7': '0.7' '8': '0.8' '9': '0.9' - name: wall_hue dtype: class_label: names: '0': '0.0' '1': '0.1' '2': '0.2' '3': '0.3' '4': '0.4' '5': '0.5' '6': '0.6' '7': '0.7' '8': '0.8' '9': '0.9' - name: object_hue dtype: class_label: names: '0': '0.0' '1': '0.1' '2': '0.2' '3': '0.3' '4': '0.4' '5': '0.5' '6': '0.6' '7': '0.7' '8': '0.8' '9': '0.9' - name: shape dtype: class_label: names: '0': cube '1': cylinder '2': sphere '3': capsule - name: scale_dynamic dtype: class_label: names: '0': increasing_1x '1': decreasing_1x '2': increasing_2x '3': decreasing_2x '4': alternating_big_small '5': alternating_small_big - name: orientation_dynamic dtype: class_label: names: '0': counterclockwise '1': static '2': clockwise splits: - name: train num_bytes: 1719272462.0 num_examples: 50400 - name: val num_bytes: 386294024.0 num_examples: 10800 - name: test num_bytes: 385308154.0 num_examples: 10800 download_size: 1992990038 dataset_size: 2490874640.0 --- ## MSD Shapes3D Dataset Attribution The Multi-factor Sequential Disentanglement benchmark includes a **modified variant of the 3D Shapes dataset**, adapted to support sequential multi-factor disentanglement. In this setup, the **floor hue**, **wall hue**, **object hue**, and **shape** are static, while the **scale** and **orientation** change over time. - Original repository: https://github.com/deepmind/3d-shapes ``` @misc{3dshapes18, title={3D Shapes Dataset}, author={Burgess, Chris and Kim, Hyunjik}, howpublished={https://github.com/deepmind/3dshapes-dataset/}, year={2018} } ``` ⚠ **Note:** The 3D Shapes dataset is released under the Apache License 2.0. We redistribute it here solely for non-commercial research purposes, following the original publication. Please cite the above paper when using this dataset in your work.