File size: 1,741 Bytes
719dd3f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
BRENDA Tissue Ontology (BTO)
========================================================================================================================
Overview
--------
A structured controlled vocabulary for the source of an enzyme comprising tissues,
cell lines, cell types and cell cultures.
:Domain: Medicine
:Category: Enzyme
:Current Version: 2021-10-26
:Last Updated: 2021-10-26
:Creator: None
:License: Creative Commons 4.0
:Format: OWL
:Download: `BRENDA Tissue Ontology (BTO) Homepage <https://terminology.tib.eu/ts/ontologies/BTO>`_
Graph Metrics
-------------
- **Total Nodes**: 37130
- **Total Edges**: 86188
- **Root Nodes**: 5619
- **Leaf Nodes**: 21886
Knowledge coverage
------------------
- Classes: 6569
- Individuals: 0
- Properties: 10
Hierarchical metrics
--------------------
- **Maximum Depth**: 7
- **Minimum Depth**: 0
- **Average Depth**: 1.37
- **Depth Variance**: 0.68
Breadth metrics
------------------
- **Maximum Breadth**: 16002
- **Minimum Breadth**: 9
- **Average Breadth**: 4411.62
- **Breadth Variance**: 36150459.73
Dataset Statistics
------------------
Generated Benchmarks:
- **Term Types**: 0
- **Taxonomic Relations**: 5888
- **Non-taxonomic Relations**: 0
- **Average Terms per Type**: 0.00
Usage Example
-------------
.. code-block:: python
from ontolearner.ontology import BTO
# Initialize and load ontology
ontology = BTO()
ontology.load("path/to/ontology.OWL")
# Extract datasets
data = ontology.extract()
# Access specific relations
term_types = data.term_typings
taxonomic_relations = data.type_taxonomies
non_taxonomic_relations = data.type_non_taxonomic_relations
|