--- license: mit dataset_info: features: - name: audio dtype: string - name: file_name dtype: string - name: folder dtype: string - name: transcription dtype: string - name: confidence dtype: string - name: trim_start_seconds dtype: float64 - name: trim_end_seconds dtype: float64 - name: reason_start dtype: string - name: reason_end dtype: string - name: has_incomplete_words dtype: bool - name: notes dtype: string - name: original_path dtype: string - name: batch_index dtype: int64 - name: global_index dtype: int64 splits: - name: train num_bytes: 12442238 num_examples: 24369 download_size: 3217525 dataset_size: 12442238 configs: - config_name: default data_files: - split: train path: data/train-* --- # Sam04/BlueLionEcho_tran This dataset contains transcribed audio files organized in folders for scalability. ## Dataset Structure The dataset is organized with: - **Audio files**: Stored in `audio_XXXXX/` folders (5000 files per folder) - **Metadata**: Stored in `data_XXXXX/` folders as parquet files This organization follows Hugging Face best practices for datasets with millions of files. ## Statistics - Total files: 6,456 - Total batches: 2525 - Audio folders: 3 - Files per folder: max 5000 ## Loading the Dataset ```python from datasets import load_dataset # Load the complete dataset dataset = load_dataset("Sam04/BlueLionEcho_tran") # The 'audio' column contains paths like "audio_00000/0000000001_filename.wav" # Files are automatically resolved when accessing the dataset ``` ## Folder Organization Audio files are distributed across folders to respect HuggingFace storage limits: - `audio_00000/`: Files 0-4,999 - `audio_00001/`: Files 5,000-9,999 - etc. Metadata (parquet files) are grouped by batch ranges: - `data_00000/batches_0000000001_to_0000000020.parquet` - etc.