Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    ArrowInvalid
Message:      Float value 0.400000 was truncated converting to int64
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1831, in _prepare_split_single
                  writer.write_table(table)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 714, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2224, in cast_table_to_schema
                  cast_array_to_feature(
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 1795, in wrapper
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2086, in cast_array_to_feature
                  return array_cast(
                         ^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 1797, in wrapper
                  return func(array, *args, **kwargs)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 1949, in array_cast
                  return array.cast(pa_type)
                         ^^^^^^^^^^^^^^^^^^^
                File "pyarrow/array.pxi", line 1135, in pyarrow.lib.Array.cast
                File "/usr/local/lib/python3.12/site-packages/pyarrow/compute.py", line 412, in cast
                  return call_function("cast", [arr], options, memory_pool)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/_compute.pyx", line 604, in pyarrow._compute.call_function
                File "pyarrow/_compute.pyx", line 399, in pyarrow._compute.Function.call
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: Float value 0.400000 was truncated converting to int64
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1455, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1054, in convert_to_parquet
                  builder.download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 894, in download_and_prepare
                  self._download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 970, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1702, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1858, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

SMILES
string
label
int64
InChI_Key
string
CNC(=O)C(NC(=O)C(CC(C)C)C(O)C(O)=NO)C(C)(C)C
0
OCSMOTCMPXTDND-UHFFFAOYSA-N
Cn1c(=O)c2c(ncn2CCCNCC(O)c2cc(O)cc(O)c2)n(C)c1=O
1
WVLAAKXASPCBGT-UHFFFAOYSA-N
CC(=O)OCC1=C(C(=O)O)N2C(=O)[C@@H](NC(=O)CCC[C@@H](N)C(=O)O)[C@H]2SC1
0
HOKIDJSKDBPKTQ-GLXFQSAKSA-N
CCCNC(=O)c1ccc2c(c1)N([C@@H](C)CN1CCCC1)c1ccccc1S2
1
KXMAIWXPZGQNCR-KRWDZBQOSA-N
CC(N)C(O)c1cccc(O)c1
0
WXFIGDLSSYIKKV-UHFFFAOYSA-N
CN[C@H](C)Cc1ccccc1
1
MYWUZJCMWCOHBA-SECBINFHSA-N
CC(=O)C1(O)C=C2C(=O)c3c(c(O)c4c(O)cccc4c3O)C(=O)C2C(OC2CC(N)C(O)C(C)O2)C1
0
PAGRCTNTQIWISG-UHFFFAOYSA-N
OC(CN1CCCCC1)c1cc(-c2ccccc2)on1
1
XKFIQZCHJUUSBA-UHFFFAOYSA-N
C=C[C@@H]1CNCC[C@H]1CCCc1ccnc2ccc(OC)cc12
1
XFXANHWIBFMEOY-HZPDHXFCSA-N
COCCCC(=O)OC(C)OC(=O)C1=C(COC(N)=O)CS[C@@H]2[C@H](NC(=O)/C(=N\OC)c3ccco3)C(=O)N12
0
NOLZZVIBJDYGRW-INGDDEQFSA-N
COCOC(=O)[C@@H]1N2C(=O)[C@@H](N3C(=O)C(c4ccc(O)cc4)NC3(C)C)[C@H]2SC1(C)C
0
XMNFWSAYWSUJMH-KRWWSPQJSA-N
O=C1CC[C@@H](N2C(=O)[C@@H]3[C@H]4CC[C@@H](C4)[C@@H]3C2=O)C(=O)N1
1
URPJPYAYMWPUPR-DKBIXQPYSA-N
COc1cc(/C=C/C(=O)NCCn2c(C)cc3ccccc32)cc(OC)c1OC
1
YBHUXHFZLMFETJ-MDZDMXLPSA-N
COc1ccccc1OCCNCC(O)c1ccc(C)cc1S(N)(=O)=O
1
WBZDNIKGVXXXMV-UHFFFAOYSA-N
CCN1CCCC1CNC(=O)c1cc(S(N)(=O)=O)ccc1OC
0
BGRJTUBHPOOWDU-UHFFFAOYSA-N
N#C[C@H](O[C@@H]1O[C@@H](CO[C@@H]2O[C@@H](CO)[C@@H](O)[C@H](O)[C@@H]2O)[C@@H](O)[C@H](O)[C@@H]1O)c1ccccc1
0
XUCIJNAGGSZNQT-OXFFVNBCSA-N
N=C1SCCN1c1ccc(Cl)cc1N
1
YYPCUGJKDYEIHT-UHFFFAOYSA-N
CC1(C)S[C@@H]2[C@H](NC(=O)[C@H](N)c3ccccc3)C(=O)N2[C@H]1C(=O)O.CC1(C)[C@H](C(=O)O)N2C(=O)C[C@H]2S1(=O)=O
0
XBKAJGGBQLRIFJ-OUPOZMNRSA-N
O=C(O)[C@@H]1C(=CCO)O[C@H]2CC(=O)N12
1
HZZVJAQRINQKSD-BQBZGAKWSA-N
Cn1c(=O)c2c(ncn2CC(O)CO)n(C)c1=O
0
KSCFJBIXMNOVSH-UHFFFAOYSA-N
C=C1C[C@@H](C)[C@@H]2[C@H]3Cc4ccc(O)cc4[C@@]2(CCN3CC2CCC2)C1
1
AZJPPZHRNFQRRE-HKDUHGGJSA-N
CC1(C)S[C@@H]2[C@H](NC(=O)[C@@H](C(=O)O)c3ccccc3)C(=O)N2[C@H]1C(=O)O
0
FPPNZSSZRUTDAP-BBGACYKPSA-N
CSCC[C@H](NC(C)=O)C(=O)Oc1ccc(NC(C)=O)cc1
1
GDRGOYFISYGSHQ-AWEZNQCLSA-N
CO/N=C(/C(=O)NC1C(=O)N2C(C(=O)O)=C(/C=C/c3scnc3C)CS[C@@H]12)c1csc(N)n1
0
KMIPKYQIOVAHOP-DIPCRPFSSA-N
CO[C@H]1/C=C/O[C@@]2(C)Oc3c(C)c(O)c4c(O)c(cc(O)c4c3C2=O)NC(=O)/C(C)=C\C=C/[C@H](C)[C@H](O)[C@@H](C)[C@H](O)[C@H](C)[C@H](OC(C)=O)[C@@H]1C
0
HJYYPODYNSCCOU-UOFYUELNSA-N
COC[C@@]1(N)[C@H](c2ccccc2)[C@@H]1S(=O)(=O)c1ccc(C)cc1
0
YMEGOAVOQZMSHP-FGTMMUONSA-N
CC1(C)S[C@@H]2[C@@H](NC(=O)CCC[C@@H](N)C(=O)O)C(=O)N2[C@@H]1C(=O)O
0
MIFYHUACUWQUKT-DYUFWOLASA-N
CC(=O)[C@H]1CC[C@H]2[C@@H]3C[C@H](C)C4=CC(=O)CC[C@]4(C)[C@H]3[C@@H](O)C[C@]12C
1
GZENKSODFLBBHQ-ILSZZQPISA-N
CC(=O)OC1(C(C)=O)CCC2C3=CC=C4CC(=O)CCC4(C)C3CCC21C
0
KBFVVRPWBOFOKF-UHFFFAOYSA-N
CC(C)(C)NCC(O)COc1cccc2c1CC(O)C(O)C2
0
VWPOSFSPZNDTMJ-UHFFFAOYSA-N
C=C[C@H]1CN2CC[C@H]1C[C@@H]2[C@@H](O)c1ccnc2ccc(OC)cc12
1
LOUPRKONTZGTKE-LHHVKLHASA-N
CC(C)(C)[C@H](O)C=Cc1ccc2c(c1)OCO2
1
IBLNKMRFIPWSOY-CYBMUJFWSA-N
C=C1CC(C)C2C3Cc4ccc(O)cc4C2(CCN3CC2CCC2)C1
1
AZJPPZHRNFQRRE-UHFFFAOYSA-N
CS(=O)(=O)OCCCCOS(C)(=O)=O
1
COVZYZSDYWQREU-UHFFFAOYSA-N
CC(C)C(O)C1CCCCC1
1
DZNUOUOIPRQTTB-UHFFFAOYSA-N
Clc1ccc2nsnc2c1NC1=NCCN1
1
XFYDIVBRZNQMJC-UHFFFAOYSA-N
CCOC(=O)NNc1ccc(N(CC(C)O)C(C)C)nn1
0
HIBVSSCXCTVVSR-UHFFFAOYSA-N
Cc1ccc(N=C2NCCN2)c(C)c1
0
QBXJXHODGDNKDJ-UHFFFAOYSA-N
CCC(=O)OCC(=O)C1(OC(=O)CC)[C@@H](C)C[C@H]2[C@@H]3CCC4=CC(=O)C=CC4(C)C3(F)[C@@H](O)CC21C
1
CIWBQSYVNNPZIQ-QZTNDZQCSA-N
CCOC(=O)C1=CC(OC(CC)CC)C(NC(C)=O)C(N)C1
0
VSZGPKBBMSAYNT-UHFFFAOYSA-N
CC1OC(O[C@@H]2C=C3CC[C@@H]4[C@H](CC[C@]5(C)[C@@H](c6ccc(=O)oc6)CC[C@]45O)[C@@]3(C)CC2)C(O)C(O)C1O
0
MYEJFUXQJGHEQK-OWBILYANSA-N
COc1ccc2c3c1O[C@@H]1C(OC(C)=O)=CC[C@H]4[C@H](C2)N(C)CC[C@@]314
1
RRJQTGHQFYTZOW-AFHBHXEDSA-N
CC1(C)S[C@@H]2[C@@H](NC(=O)COc3ccccc3)C(=O)N2[C@H]1C(=O)O
0
BPLBGHOLXOTWMN-SGMGOOAPSA-N
CC(C)[C@H](N)C(=O)OC[C@@H](CO)OCn1cnc2c(=O)[nH]c(N)nc21
1
WPVFJKSGQUFQAP-BDAKNGLRSA-N
COC[C@H]1CN(c2ccc(OCc3cccc(C#N)c3)cc2)C(=O)O1
1
MVVJINIUPYKZHR-GOSISDBHSA-N
O=C(NCc1nc(-c2ccc(Cl)cc2)no1)c1ccc(CN2CCOCC2)cc1
1
OXMHBKWAKPXVEI-UHFFFAOYSA-N
CN1CCN(CC(=O)[C@@]2(O)CC[C@H]3[C@@H]4CCC5=CC(=O)C=C[C@]5(C)[C@@H]4[C@H](O)C[C@@]32C)CC1
1
CZBOZZDZNVIXFC-ZNKHQEGQSA-N
CN(C)C1C(=O)C(C(N)=O)=C(O)C2(O)C(=O)C3=C(O)c4c(ccc(N)c4O)CC3CC12
0
ZZLPMVKBERHMQN-UHFFFAOYSA-N
CSc1nn2c(N3CCNCC3)c3c(nc2c1S(=O)(=O)c1ccccc1)CCC3
0
PPPVADQGCXVIIG-UHFFFAOYSA-N
CO/N=C(/C(=O)N[C@@H]1C(=O)N2C(C(=O)O)=C(CN3C=CCC4=C3CCC4)CS[C@H]12)c1csc(N)n1
0
ADLJDTPEJOLPKY-PUIFZAHNSA-N
CCCC[N+]1(C)[C@@H]2C[C@@H](OC(=O)[C@@H](CO)c3ccccc3)C[C@@H]1[C@H]1O[C@H]12
0
YBCNXCRZPWQOBR-DLDWODCASA-N
COc1ccc(C[C@H](N)C(=O)N[C@H]2[C@H](O)[C@@H](n3cnc4c(N(C)C)ncnc43)O[C@@H]2CO)cc1
0
RXWNCPJZOCPEPQ-FJDHOVCVSA-N
CO[C@@]1(NC(=O)C2SC(=C(C(N)=O)C(=O)O)S2)C(=O)N2C(C(=O)O)=C(CSc3nnnn3C)CS[C@@H]21
0
SRZNHPXWXCNNDU-RHBCBLIFSA-N
O=C(CCCN1CCC(n2c(=O)[nH]c3ccccc32)CC1)c1ccc(F)cc1
1
FEBOTPHFXYHVPL-UHFFFAOYSA-N
COc1ccc([C@H]2[C@H](S(=O)(=O)c3ccc(Cl)cc3)[C@@]2(N)C(=O)O)cc1
0
HIKHPTMUUGBXQG-YQQAZPJKSA-N
O=C(O)c1cn(C2CC2)c2cc(N3CCNCC3)c(F)cc2c1=O
0
MYSWGUAQZAJSOK-UHFFFAOYSA-N
OC1OC(COCCOC(O)C(Cl)(Cl)Cl)C(OC2OC(COCCOCCOC(O)C(Cl)(Cl)Cl)CC(OC(O)C(Cl)(Cl)Cl)C2O)C(OCCOCCOC(O)C(Cl)(Cl)Cl)C1O
1
WJMRYHIVTCVMEG-UHFFFAOYSA-N
CC1(C)S[C@H]2C(NC(=O)[C@@H](/N=C\c3ccco3)c3ccc(O)cc3)C(=O)N2[C@H]1C(=O)O
0
BWENFVHXWNVVGN-BTKTUCLSSA-N
CCN1CCCC1CNC(=O)c1cc(S(=O)(=O)CC)ccc1OC
1
UNRHXEPDKXPRTM-UHFFFAOYSA-N
CCC(C)C(=O)OC1CCC=C2C=CC(C)C(CCC3CC(O)CC(=O)O3)C21
1
AJLFOPYRIVGYMJ-UHFFFAOYSA-N
CCCOC(C)c1ccc(C)c(N)c1
0
LTCRGYBQPKPGJH-UHFFFAOYSA-N
Cc1ccc(SC(C)C(=O)NCCCc2ccc(OC(C)C)cc2)cc1
1
ABTUNUDRMBWCBE-UHFFFAOYSA-N
CC(C)N[C@@H]1C2CCC(CC2)[C@@]1(O)c1ccc(Cl)c(Cl)c1
1
MQILJMOEUMZBHK-FIMMUYGNSA-N
CCN(CC)C(=O)C1CN2CCc3cc(OC)c(OC)cc3C2CC1OC(C)=O
1
JSZILQVIPPROJI-UHFFFAOYSA-N
CC=CC(=O)N(CCC)[C@@H](CC)C(=O)N(C)C
1
CYZWCBZIBJLKCV-NSHDSACASA-N
CN(C)C[C@@H]1CO[C@@]2(O1)c1ccccc1COc1ccccc12
1
CMEBTCWURHMCEE-DNVCBOLYSA-N
CO[C@H]1/C=C/O[C@@]2(C)Oc3c(C)c(O)c4c(O)c(c(/C=N/N5CCN(C)CC5)c(O)c4c3C2=O)NC(=O)/C(C)=C\C=C\[C@H](C)[C@H](O)[C@@H](C)[C@@H](O)[C@@H](C)[C@H](OC(C)=O)[C@@H]1C
0
JQXXHWHPUNPDRT-WLSIYKJHSA-N
Oc1ccc2c(c1)C13CCCCC1C(C2)NCC3
1
IYNWSQDZXMGGGI-UHFFFAOYSA-N
CC1=C(C(=O)O)N2C(=O)[C@H](NC(=O)[C@@H](N)C3=CCC=CC3)[C@@H]2SC1
1
RDLPVSKMFDYCOR-PGUXBMHVSA-N
FC(F)(F)c1ccc2c(c1)N(CCCN1CCN(CCC3OCCCO3)CC1)c1ccccc1S2.O=C(O)CCC(=O)O
1
VQMYKUXFZPBMLO-UHFFFAOYSA-N
Cc1nc(NC(=O)N2CCC[C@H]2C(N)=O)sc1-c1ccnc(C(C)(C)C(F)(F)F)c1
0
STUWGJZDJHPWGZ-LBPRGKRZSA-N
CCC[C@H]1O[C@@]1(CC)C(N)=O
1
WBLPIVIXQOFTPQ-HTRCEHHLSA-N
CC1(C)O[C@H]2C[C@H]3[C@@H]4CCC5=CC(=O)C=C[C@H]5[C@]4(F)[C@H](O)C[C@]3(C)[C@@]2(C(=O)CO)O1
1
SOXSRQNWVDYZFI-YAKXXTFBSA-N
COc1ccc(C2CNC(=O)C2)cc1OC1CCCC1
1
HJORMJIFDVBMOB-UHFFFAOYSA-N
CCC(=O)O[C@@](Cc1ccccc1)(c1ccccc1)[C@H](C)CN(C)C
1
XLMALTXPSGQGBX-XMSQKQJNSA-N
CC(=O)N[C-]1C(I)C(NC(C)=O)C(I)C(C(=O)O)C1I
0
CFAHZQBEUQAWFC-UHFFFAOYSA-N
CO/N=C(\C(=O)N[C@@H]1C(=O)N2C(C(=O)O)=C(C)CS[C@@H]12)c1csc(N)n1
0
MQLRYUCJDNBWMV-HYPSZOGVSA-N
CC1C(=NC(=O)C(NOC(C)(C)C(=O)O)c2csc(N)n2)C(=O)N1S(=O)(=O)O
0
FLMIOANAVARRAD-UHFFFAOYSA-N
NC(=O)c1ccccc1O
1
SKZKKFZAGNVIMN-UHFFFAOYSA-N
COC(C(=O)NC1C(=O)N2C1SC(C)(C)C2C(=O)O)c1ccc(Cl)c(Cl)c1
0
JKXQBIZCQJLVOS-UHFFFAOYSA-N
CC(=O)c1ccc2c(c1O)C(c1ccc(F)c(Cl)c1)CC(=O)O2
0
QHSLUIZWBDFYAO-UHFFFAOYSA-N
Cc1onc(-c2ccccc2)c1C(=O)NC1C(=O)N2C1SC(C)(C)C2C(=O)O
0
UWYHMGVUTGAWSP-UHFFFAOYSA-N
COC(=O)[C@H]1[C@H]2C[C@H]3c4[nH]c5cc(OC)ccc5c4CCN3C[C@H]2C[C@H](OC(=O)/C=C/c2cc(OC)c(OC)c(OC)c2)[C@H]1OC
1
SZLZWPPUNLXJEA-GJAIQWIBSA-N
O=C1NC(=O)C2(c3ccc(Cl)cc3)C[C@H]12
1
YYGANUVABKDFDW-RZZZFEHKSA-N
CO/N=C(\C(=O)N[C@@H]1C(=O)N2C(C(=O)OC(C)OC(=O)C(C)(C)OC)=C(COC(N)=O)CS[C@H]12)c1ccco1
0
MGYPWVCKENORQX-KMMUMHRISA-N
CC1(C)[C@H](C(=O)O)N2C(=O)C[C@@H]2S1(=O)=O
0
FKENQMMABCRJMK-WDSKDSINSA-N
CC1=CC2C(C(O)CC3(C)C2CC(C)C3(O)C(=O)COC(=O)c2cccc(S(=O)(=O)O)c2)C2(C)Cc3cnn(-c4ccccc4)c3C=C12
1
ZKIDWWQMNXGYHV-UHFFFAOYSA-N
NC(=S)[C@@H]1[C@@H](c2ccccc2)[C@@H]1S(=O)(=O)c1ccc(Cl)cc1
0
CMLXZLDNMHUCHZ-KFWWJZLASA-N
COc1ccc(CC(=O)N2CCN(C(C)=O)C[C@@H]2CN2CC[C@@H](O)C2)cc1
0
KPROYTOCROSGBH-ZWKOTPCHSA-N
COc1cccc2c1C(=O)c1c(O)c3c(c(O)c1C2=O)C[C@](O)(C(=O)CO)C[C@@H]3O[C@@H]1C[C@H](N)[C@@H](O[C@@H]2CCCCO2)[C@@H](C)O1
0
KMSKQZKKOZQFFG-ZTJKLIMGSA-N
CCN(CCO)CC[C@H](C)Nc1ccnc2cc(Cl)ccc12
1
AUICMICNMSEVKA-ZDUSSCGKSA-N
CC(C)(O)C(C)(O)c1cccc(Cl)c1
1
OLXAYPPTCHXQRE-UHFFFAOYSA-N
C=C(C(=O)COC(=O)c1ccncc1)[C@]1(C)C[C@@H](O)[C@H]2[C@@H](CCC3=CC(=O)CC[C@@]32C)[C@]12CO[C@H](/C=C/C)O2
1
SFRLMIVVALFNBJ-MTFFTRNESA-N
COc1ccc2c3c1OC1C(O)C=CC4C(C2)NCCC341
1
HKOIXWVRNLGFOR-UHFFFAOYSA-N
CCC[C@H]1C[C@@H](C(=O)N[C@@H]([C@H]2O[C@H](SC)[C@H](O)[C@@H](O)[C@@H]2O)[C@H](C)Cl)N(C)C1
0
KDLRVYVGXIQJDK-OHVIEOTASA-N
CN(C)[C@H]1C(O)=C(C(N)=O)C(=O)[C@@]2(O)C(O)=C3C(=O)c4c(O)cccc4[C@H](O)[C@@H]3C[C@H]12
0
JCSGAUKCDAVARS-ASXSCCHISA-N
Cc1cc(C)n(CCNC(=O)[C@H]2Cc3cc(Cl)ccc3N2)c(=O)n1
0
RWMMFJZQPOKXRX-OAHLLOKOSA-N
CC[C@H]1OC(=O)[C@H](C)[C@@H](OC2CC(C)(OC)C(O)C(C)O2)C(C)[C@@H](OC2OC(C)CC(N(C)C)C2O)[C@](C)(O)C[C@@H](C)/C(=N/OC)[C@H](C)[C@@H](O)[C@]1(C)O
0
HPZGUSZNXKOMCQ-GDQUJGIOSA-N
CC1CCN(CCCN2c3ccccc3Sc3ccc(C(F)(F)F)cc32)CC1
1
PZVNDRDMKCGUFD-UHFFFAOYSA-N
CC1(C)NC(=O)[C@H](C=Cc2ccccc2)O1
1
VEZXEOWXHFHYHC-NSHDSACASA-N
End of preview.

BBBP Dataset

The paper is under review.

[Github Repo] | [Classification Model] | [Regression Model] | [Cite]

Abstract

The blood-brain barrier is a critical interface of the central nervous system, preventing most compounds from entering the brain. Predicting BBB permeability is essential for drug discovery targeting neurological diseases. Experimental in vitro and in vivo assays are costly and limited, motivating the use of computational approaches. While machine learning has shown promising results, combining handcrafted chemical descriptors with deep learning embeddings remains underexplored. In this work, we propose a model that integrates atom-level embeddings derived from SMILES representations with descriptors from cheminformatics libraries. We also introduce a curated dataset aggregated from multiple literature sources, which, to the best of our knowledge, is the largest available for this task. Results demonstrate that our approach outperforms state-of-the-art methods in classification and achieves competitive performance in regression, highlighting the benefits of combining deep representations with domain-specific features.

Dataset Details

This dataset is an aggregation of different literature sources (please see the paper to check the references).

Classification Task

The number of samples for BBB- and BBB+ is presented below (corresponding to TABLE I in the paper).

Set Name BBB+ BBB-
Training 4,506 2,902
Validation 557 370
Test 573 354
Total 5,636 3,626

Regression Task

For the regression task, based on the classification dataset, only compounds with logBB values were utilized. This resulted in a subset with 850 samples for training, 103 samples for validation, and 103 samples for testing.

Dataset Usage

Classification

Use the code below to load the dataset for classification task.

from datasets import load_dataset 

data_files = {
    "train": "train_classification.csv",
    "validation": "val_classification.csv",
    "test": "test_classification.csv"
}

dataset_dict = load_dataset("SaeedLab/BBBP", data_files=data_files)

Regression

Use the code below to load the dataset for regression task.

from datasets import load_dataset 

data_files = {
    "train": "train_regression.csv",
    "validation": "val_regression.csv",
    "test": "test_regression.csv"
}

dataset_dict = load_dataset("SaeedLab/BBBP", data_files=data_files)

Citation

The paper is under review. As soon as it is accepted, we will update this section.

License

This model and associated code are released under the CC-BY-NC-ND 4.0 license and may only be used for non-commercial, academic research purposes with proper attribution. Any commercial use, sale, or other monetization of this model and its derivatives, which include models trained on outputs from the model or datasets created from the model, is prohibited and requires prior approval. Downloading the model requires prior registration on Hugging Face and agreeing to the terms of use. By downloading this model, you agree not to distribute, publish or reproduce a copy of the model. If another user within your organization wishes to use the model, they must register as an individual user and agree to comply with the terms of use. Users may not attempt to re-identify the deidentified data used to develop the underlying model. If you are a commercial entity, please contact the corresponding author.

Contact

For any additional questions or comments, contact Fahad Saeed ([email protected]).

Downloads last month
23

Models trained or fine-tuned on SaeedLab/BBBP