Upload burapha_th.py with huggingface_hub
Browse files- burapha_th.py +167 -0
burapha_th.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
from typing import Dict, List, Tuple
|
| 4 |
+
|
| 5 |
+
import datasets
|
| 6 |
+
|
| 7 |
+
from seacrowd.utils import schemas
|
| 8 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
| 9 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
| 10 |
+
|
| 11 |
+
_CITATION = """\
|
| 12 |
+
@Article{app12084083,
|
| 13 |
+
AUTHOR = {Onuean, Athita and Buatoom, Uraiwan and Charoenporn, Thatsanee and Kim, Taehong and Jung, Hanmin},
|
| 14 |
+
TITLE = {Burapha-TH: A Multi-Purpose Character, Digit, and Syllable Handwriting Dataset},
|
| 15 |
+
JOURNAL = {Applied Sciences},
|
| 16 |
+
VOLUME = {12},
|
| 17 |
+
YEAR = {2022},
|
| 18 |
+
NUMBER = {8},
|
| 19 |
+
ARTICLE-NUMBER = {4083},
|
| 20 |
+
URL = {https://www.mdpi.com/2076-3417/12/8/4083},
|
| 21 |
+
ISSN = {2076-3417},
|
| 22 |
+
DOI = {10.3390/app12084083}
|
| 23 |
+
}
|
| 24 |
+
"""
|
| 25 |
+
_DATASETNAME = "burapha_th"
|
| 26 |
+
|
| 27 |
+
_DESCRIPTION = """\
|
| 28 |
+
The dataset has 68 character classes, 10 digit classes, and 320 syllable classes.
|
| 29 |
+
For constructing the dataset, 1072 Thai native speakers wrote on collection datasheets
|
| 30 |
+
that were then digitized using a 300 dpi scanner.
|
| 31 |
+
De-skewing, detection box and segmentation algorithms were applied to the raw scans
|
| 32 |
+
for image extraction. The dataset, unlike all other known Thai handwriting datasets, retains
|
| 33 |
+
existing noise, the white background, and all artifacts generated by scanning.
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
_HOMEPAGE = "https://services.informatics.buu.ac.th/datasets/Burapha-TH/"
|
| 37 |
+
|
| 38 |
+
_LICENSE = Licenses.UNKNOWN.value
|
| 39 |
+
|
| 40 |
+
_LOCAL = False
|
| 41 |
+
_LANGUAGES = ["tha"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
|
| 42 |
+
|
| 43 |
+
_URLS = {
|
| 44 |
+
"character": {"test": "https://services.informatics.buu.ac.th/datasets/Burapha-TH/character/20210306-test.zip", "train": "https://services.informatics.buu.ac.th/datasets/Burapha-TH/character/20210306-train.zip"},
|
| 45 |
+
"digit": {"test": "https://services.informatics.buu.ac.th/datasets/Burapha-TH/digit/20210307-test.zip", "train": "https://services.informatics.buu.ac.th/datasets/Burapha-TH/digit/20210307-train.zip"},
|
| 46 |
+
"syllable": {"test": "https://services.informatics.buu.ac.th/datasets/Burapha-TH/syllable/20210309-test-ori.zip", "train": "https://services.informatics.buu.ac.th/datasets/Burapha-TH/syllable/20210309-train-ori.zip"},
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
_SUPPORTED_TASKS = [Tasks.IMAGE_CAPTIONING]
|
| 50 |
+
_SOURCE_VERSION = "1.0.0"
|
| 51 |
+
|
| 52 |
+
_SEACROWD_VERSION = "2024.06.20"
|
| 53 |
+
|
| 54 |
+
_SUBSETS = ["character", "digit", "syllable"]
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def config_constructor(subset: str, schema: str, version: str) -> SEACrowdConfig:
|
| 58 |
+
return SEACrowdConfig(
|
| 59 |
+
name=f"{_DATASETNAME}_{subset}_{schema}",
|
| 60 |
+
version=version,
|
| 61 |
+
description=f"{_DATASETNAME} {subset} {schema} schema",
|
| 62 |
+
schema=f"{schema}",
|
| 63 |
+
subset_id=f"{_DATASETNAME}_{subset}",
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class BuraphaThDataset(datasets.GeneratorBasedBuilder):
|
| 68 |
+
"""
|
| 69 |
+
The dataset has 68 character classes, 10 digit classes, and 320 syllable classes.
|
| 70 |
+
For constructing the dataset, 1072 Thai native speakers wrote on collection datasheets
|
| 71 |
+
that were then digitized using a 300 dpi scanner.
|
| 72 |
+
De-skewing, detection box and segmentation algorithms were applied to the raw scans for
|
| 73 |
+
image extraction. The dataset, unlike all other known Thai handwriting datasets, retains
|
| 74 |
+
existing noise, the white background, and all artifacts generated by scanning.
|
| 75 |
+
"""
|
| 76 |
+
|
| 77 |
+
BUILDER_CONFIGS = [config_constructor(subset, "source", _SOURCE_VERSION) for subset in _SUBSETS]
|
| 78 |
+
BUILDER_CONFIGS.extend([config_constructor(subset, "seacrowd_imtext", _SEACROWD_VERSION) for subset in _SUBSETS])
|
| 79 |
+
|
| 80 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_digit_source"
|
| 81 |
+
|
| 82 |
+
label_chr_dig = [str(i).zfill(2) for i in range(78)]
|
| 83 |
+
label_syl = [str(i).zfill(3) for i in range(320)]
|
| 84 |
+
|
| 85 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 86 |
+
task = self.config.subset_id.split("_")[2]
|
| 87 |
+
if self.config.schema == "source":
|
| 88 |
+
features = datasets.Features(
|
| 89 |
+
{"id": datasets.Value("string"), "image_paths": datasets.Value("string"), "label": datasets.Sequence(datasets.ClassLabel(names=self.label_chr_dig if task == "character" or task == "digit" else self.label_syl))}
|
| 90 |
+
)
|
| 91 |
+
elif self.config.schema == "seacrowd_imtext":
|
| 92 |
+
features = schemas.image_text_features(label_names=self.label_chr_dig if task == "character" or task == "digit" else self.label_syl)
|
| 93 |
+
else:
|
| 94 |
+
raise NotImplementedError()
|
| 95 |
+
|
| 96 |
+
return datasets.DatasetInfo(
|
| 97 |
+
description=_DESCRIPTION,
|
| 98 |
+
features=features,
|
| 99 |
+
homepage=_HOMEPAGE,
|
| 100 |
+
license=_LICENSE,
|
| 101 |
+
citation=_CITATION,
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
| 105 |
+
"""Returns SplitGenerators."""
|
| 106 |
+
|
| 107 |
+
task = self.config.subset_id.split("_")[2]
|
| 108 |
+
|
| 109 |
+
_local_path = dl_manager.download_and_extract(_URLS[task])
|
| 110 |
+
train_path, test_path = _local_path["train"], _local_path["test"]
|
| 111 |
+
if task in ["character", "digit"]:
|
| 112 |
+
train_path = os.path.join(train_path, "train")
|
| 113 |
+
test_path = os.path.join(test_path, "test")
|
| 114 |
+
# for "syllable" type task
|
| 115 |
+
else:
|
| 116 |
+
train_path = os.path.join(train_path, "train-ori")
|
| 117 |
+
test_path = os.path.join(test_path, "test-ori")
|
| 118 |
+
|
| 119 |
+
data_pair = {}
|
| 120 |
+
|
| 121 |
+
for dir_name in os.listdir(train_path):
|
| 122 |
+
dir_name_split = dir_name.split("-")
|
| 123 |
+
file_names = []
|
| 124 |
+
|
| 125 |
+
for file_name in os.listdir(os.path.join(train_path, dir_name)):
|
| 126 |
+
file_names.append(os.path.join(train_path, dir_name, file_name))
|
| 127 |
+
|
| 128 |
+
label = dir_name_split[0]
|
| 129 |
+
data_pair[label] = file_names
|
| 130 |
+
|
| 131 |
+
return [
|
| 132 |
+
datasets.SplitGenerator(
|
| 133 |
+
name=datasets.Split.TRAIN,
|
| 134 |
+
gen_kwargs={
|
| 135 |
+
"filepath": data_pair,
|
| 136 |
+
"split": "train",
|
| 137 |
+
},
|
| 138 |
+
),
|
| 139 |
+
datasets.SplitGenerator(
|
| 140 |
+
name=datasets.Split.TEST,
|
| 141 |
+
gen_kwargs={
|
| 142 |
+
"filepath": data_pair,
|
| 143 |
+
"split": "test",
|
| 144 |
+
},
|
| 145 |
+
),
|
| 146 |
+
]
|
| 147 |
+
|
| 148 |
+
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
|
| 149 |
+
"""Yields examples as (key, example) tuples."""
|
| 150 |
+
task = self.config.subset_id.split("_")[2]
|
| 151 |
+
counter = 0
|
| 152 |
+
|
| 153 |
+
for key, imgs in filepath.items():
|
| 154 |
+
for img in imgs:
|
| 155 |
+
if self.config.schema == "source":
|
| 156 |
+
yield counter, {"id": str(counter), "image_paths": img, "label": [self.label_chr_dig.index(key) if task == "character" or task == "digit" else self.label_syl.index(key)]}
|
| 157 |
+
elif self.config.schema == "seacrowd_imtext":
|
| 158 |
+
yield counter, {
|
| 159 |
+
"id": str(counter),
|
| 160 |
+
"image_paths": [img],
|
| 161 |
+
"texts": None,
|
| 162 |
+
"metadata": {
|
| 163 |
+
"context": None,
|
| 164 |
+
"labels": [self.label_chr_dig.index(key) if task in ["character", "digit"] else self.label_syl.index(key)],
|
| 165 |
+
},
|
| 166 |
+
}
|
| 167 |
+
counter += 1
|