---
license: cc-by-nc-sa-4.0
task_categories:
- text-classification
- question-answering
language:
- ar
tags:
- MMLU
- reading-comprehension
- commonsense-reasoning
- capabilities
- cultural-understanding
- world-knowledge
pretty_name: 'AraDiCE -- Arabic Dialect and Cultural Evaluation'
size_categories:
- 10K
## Dataset Usage
The AraDiCE dataset is intended to be used for benchmarking and evaluating large language models, specifically focusing on:
- Assessing the performance of LLMs on Arabic-specific dialect and cultural specifics.
- Dialectal variations in the Arabic language.
- Cultural context awareness in reasoning.
## Evaluation
We have used [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) eval framework to for the benchmarking. It is under a [pull](https://github.com/EleutherAI/lm-evaluation-harness/pull/2507) request on *lm-evaluation-harness* at this moment.
## License
The dataset is distributed under the **Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0)**. The full license text can be found in the accompanying `licenses_by-nc-sa_4.0_legalcode.txt` file.
## Citation
Please find the paper here, which is accepted at [COLING 2025](https://coling2025.org/). If you use all or any specific dataset in this collection, please make sure if also cite original dataset paper. You will find the citations in our paper.
```
@article{mousi2024aradicebenchmarksdialectalcultural,
title={{AraDiCE}: Benchmarks for Dialectal and Cultural Capabilities in LLMs},
author={Basel Mousi and Nadir Durrani and Fatema Ahmad and Md. Arid Hasan and Maram Hasanain and Tameem Kabbani and Fahim Dalvi and Shammur Absar Chowdhury and Firoj Alam},
year={2024},
publisher={arXiv:2409.11404},
url={https://arxiv.org/abs/2409.11404},
}
```