Upload 3 files
Browse files
ap.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import csv
|
| 2 |
+
import time
|
| 3 |
+
from tqdm import tqdm
|
| 4 |
+
|
| 5 |
+
dataset = []
|
| 6 |
+
|
| 7 |
+
min_value = -10000
|
| 8 |
+
max_value = 10000
|
| 9 |
+
|
| 10 |
+
# Calculate the total number of combinations
|
| 11 |
+
total_combinations = (max_value - min_value + 1) ** 2
|
| 12 |
+
|
| 13 |
+
# Save the dataset to a CSV file
|
| 14 |
+
output_file = "output_dataset.csv"
|
| 15 |
+
with open(output_file, mode="w", newline="", encoding="utf-8") as file:
|
| 16 |
+
writer = csv.writer(file)
|
| 17 |
+
writer.writerow(["instruction", "output"]) # Write header
|
| 18 |
+
|
| 19 |
+
with tqdm(total=total_combinations, desc="Generating Dataset") as pbar:
|
| 20 |
+
start_time = time.time()
|
| 21 |
+
for a in range(min_value, max_value + 1):
|
| 22 |
+
for b in range(min_value, max_value + 1):
|
| 23 |
+
# Generate the instruction
|
| 24 |
+
if b < 0:
|
| 25 |
+
instruction = f"{a}-({abs(b)})"
|
| 26 |
+
else:
|
| 27 |
+
instruction = f"{a}+{b}"
|
| 28 |
+
|
| 29 |
+
# Calculate the output
|
| 30 |
+
output = a + b
|
| 31 |
+
|
| 32 |
+
# Write the row to the CSV file in real-time
|
| 33 |
+
writer.writerow([instruction, str(output)])
|
| 34 |
+
|
| 35 |
+
pbar.update(1)
|
| 36 |
+
|
| 37 |
+
end_time = time.time()
|
| 38 |
+
elapsed_time = end_time - start_time
|
| 39 |
+
print(f"Total time taken: {elapsed_time:.2f} seconds")
|
| 40 |
+
|
| 41 |
+
print(f"Dataset saved to {output_file}.")
|
paShow.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import pyarrow.parquet as pq
|
| 3 |
+
|
| 4 |
+
parquet_file_path = './output_chunk_0.parquet' # 読み込むParquetファイルのパスを指定
|
| 5 |
+
|
| 6 |
+
# Parquetファイルを読み込む
|
| 7 |
+
table = pq.read_table(parquet_file_path)
|
| 8 |
+
|
| 9 |
+
# PyArrowのTableをPandasのDataFrameに変換
|
| 10 |
+
df = table.to_pandas()
|
| 11 |
+
|
| 12 |
+
# 読み込んだデータを表示(例: 最初の10行を表示)
|
| 13 |
+
print(df.head(10))
|
parq.py
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pandas as pd
|
| 2 |
+
import pyarrow as pa
|
| 3 |
+
import pyarrow.parquet as pq
|
| 4 |
+
from tqdm import tqdm # tqdmをインポート
|
| 5 |
+
|
| 6 |
+
def process_chunk(chunk, idx):
|
| 7 |
+
# ここで各チャンクの処理を行う
|
| 8 |
+
# 例えば、欲しい項目を選択してParquetに変換する
|
| 9 |
+
|
| 10 |
+
selected_columns = ['instruction', 'output']
|
| 11 |
+
new_df = chunk[selected_columns].copy()
|
| 12 |
+
|
| 13 |
+
# Parquetファイルに変換
|
| 14 |
+
parquet_file_path = './output_chunk_{}.parquet'.format(idx)
|
| 15 |
+
table = pa.Table.from_pandas(new_df)
|
| 16 |
+
pq.write_table(table, parquet_file_path)
|
| 17 |
+
|
| 18 |
+
csv_file_path = './input.csv'
|
| 19 |
+
chunksize = 100000000 # 例: 100万行ごとに分割
|
| 20 |
+
df_chunks = pd.read_csv(csv_file_path, chunksize=chunksize)
|
| 21 |
+
|
| 22 |
+
for idx, chunk in tqdm(enumerate(df_chunks)):
|
| 23 |
+
process_chunk(chunk, idx)
|