MaziyarPanahi commited on
Commit
345ace3
·
verified ·
1 Parent(s): 7790a4c

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +251 -14
README.md CHANGED
@@ -48,23 +48,260 @@ dataset_info:
48
  dtype: string
49
  splits:
50
  - name: train
51
- num_bytes: 1710286682
52
- num_examples: 981665
53
- - name: validation
54
- num_bytes: 212191116
55
- num_examples: 122709
56
- - name: test
57
- num_bytes: 215480727
58
- num_examples: 122709
59
- download_size: 437141055
60
- dataset_size: 2137958525
61
  configs:
62
  - config_name: default
63
  data_files:
64
  - split: train
65
  path: data/train-*
66
- - split: validation
67
- path: data/validation-*
68
- - split: test
69
- path: data/test-*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  dtype: string
49
  splits:
50
  - name: train
51
+ num_bytes: 2137958513
52
+ num_examples: 1227083
53
+ download_size: 339997839
54
+ dataset_size: 2137958513
 
 
 
 
 
 
55
  configs:
56
  - config_name: default
57
  data_files:
58
  - split: train
59
  path: data/train-*
60
+ pretty_name: 'AgAb DB: Antigen Specific Antibody Database'
61
+ tags:
62
+ - biology
63
+ - immunology
64
+ - antibodies
65
+ - protein-protein-interactions
66
+ - drug-discovery
67
+ - computational-biology
68
+ - therapeutics
69
+ - machine-learning
70
+ - protein-sequence-modeling
71
+ - binding-affinity-prediction
72
+ - antibody-design
73
+ task_categories:
74
+ - text-classification
75
+ license: other
76
+ license_details: "Non-commercial research use only. Commercial inquiries should be directed to NaturalAntibody."
77
+ language:
78
+ - en
79
  ---
80
+
81
+ # AgAb DB: Antigen Specific Antibody Database
82
+
83
+ A comprehensive collection of antibody-antigen interaction data for computational biology and therapeutic design.
84
+
85
+ ## Dataset Summary
86
+
87
+ AgAb DB aggregates antibody-antigen binding data from multiple sources, containing over 1.2 million antibody-antigen pairs with binding affinity measurements. This dataset is essential for training machine learning models in computational immunology and antibody engineering.
88
+
89
+ ## Key Statistics
90
+
91
+ - **1,227,083** antibody-antigen interaction records
92
+ - **309,884** unique antibodies (full antibodies, nanobodies, scFvs)
93
+ - **4,334** unique antigens
94
+ - **170,660** complete heavy/light chain pairs
95
+ - **70,388** nanobodies and **132,157** scFv antibodies
96
+ - **Focus on human health**: Infectious diseases, cancer, autoimmune conditions
97
+ - **Diverse antigen types**: Viral proteins, bacterial antigens, cancer markers, autoantigens
98
+
99
+ *Note: Statistics for unique antibodies/antigens are from original documentation and may be proportionally larger in the full 1.2M record dataset.*
100
+
101
+ ### Data Quality Distribution
102
+
103
+ - **51% very_high confidence** (robust sequences and methodology)
104
+ - **high confidence** (manually curated datasets)
105
+ - **medium confidence** (automated discovery, some uncertainty)
106
+
107
+ ### Affinity Measurement Types
108
+
109
+ - Quantitative metrics: Gibbs free energy changes, kinetic constants, IC₅₀
110
+ - Qualitative binding assessments
111
+ - Mixed data types across different sources
112
+
113
+ ## Data Structure
114
+
115
+ ### Core Fields
116
+
117
+ | Field | Type | Description |
118
+ |-------|------|-------------|
119
+ | `heavy_sequence` | string | Antibody heavy chain amino acid sequence |
120
+ | `light_sequence` | string | Antibody light chain amino acid sequence |
121
+ | `antigen_sequence` | string | Target antigen amino acid sequence |
122
+ | `affinity` | string | Binding affinity value |
123
+ | `confidence` | string | Data quality level (very_high, high, medium) |
124
+
125
+ ### Additional Metadata
126
+
127
+ | Field | Type | Description |
128
+ |-------|------|-------------|
129
+ | `dataset` | string | Original source dataset |
130
+ | `affinity_type` | string | Measurement type (KD, IC₅₀, etc.) |
131
+ | `nanobody` | bool | Whether it's a nanobody |
132
+ | `scfv` | bool | Single-chain variable fragment |
133
+ | `target_name` | string | Antigen name |
134
+ | `target_pdb` | string | PDB structure ID |
135
+ | `target_uniprot` | string | UniProt accession |
136
+ | `heavy_cdr1/cdr2/cdr3` | string | Complementarity-determining regions |
137
+ | `light_cdr1/cdr2/cdr3` | string | Light chain CDRs |
138
+
139
+ ## Dataset Split
140
+
141
+ - **Train**: All 1,227,083 records in a single training set
142
+
143
+ The full dataset is provided as a single training split to maximize available data for machine learning applications. Users can create their own validation/test splits as needed for their specific use cases.
144
+
145
+ ### Confidence Categories
146
+
147
+ - **very_high**: Both sequences and methodology used for calculating affinity were robust (e.g., AbDesign, BioMap, SKEMPI 2.0)
148
+ - **high**: Manually curated datasets or those containing antigen names/mutations rather than full sequences (e.g., FLAB datasets)
149
+ - **medium**: Automated data discovery with some uncertainty (e.g., patent databases)
150
+
151
+ ### Antibody Types Included
152
+
153
+ - **Full antibodies**: Complete heavy and light chain pairs (traditional monoclonal antibodies)
154
+ - **Nanobodies**: Single-domain antibodies (VHH format) - 70K+ entries across datasets
155
+ - **scFv**: Single-chain variable fragments - 132K+ entries, primarily from AlphaSeq
156
+ - **Mixed formats**: Various antibody fragment types and engineered variants
157
+
158
+ ### Nanobody Distribution by Source
159
+
160
+ | Source | Nanobody Count | Notes |
161
+ |--------|----------------|-------|
162
+ | AlphaSeq | 67,058 | Mutations for improved binding |
163
+ | Patents | 40,517 | Patent literature extraction |
164
+ | Literature | 1,936 | Research paper curation |
165
+ | Structures | 1,258 | PDB structure-derived |
166
+ | AATP, OSH, RMNA | ~133 | Specialized datasets |
167
+
168
+ ### scFv Distribution by Source
169
+
170
+ | Source | scFv Count | Notes |
171
+ |--------|------------|-------|
172
+ | AlphaSeq | 131,645 | Primary scFv source |
173
+ | Literature | 512 | Research paper curation |
174
+
175
+ ### Sequence Characteristics
176
+
177
+ - **Predominantly short sequences**: <150 amino acids typical
178
+ - **Majority include both chains**: Heavy and light chain pairs
179
+ - **Diverse antigen targets**: Infectious diseases, cancer, autoimmune conditions
180
+ - **Multiple affinity measurement types**: KD, IC₅₀, ΔG, binary binding
181
+
182
+ ## Usage
183
+
184
+ ### Load the Dataset
185
+
186
+ ```python
187
+ from datasets import load_dataset
188
+
189
+ # Load from OpenMed
190
+ dataset = load_dataset("OpenMed/agab-db")
191
+
192
+ # Access the training data (full dataset)
193
+ train_data = dataset["train"]
194
+
195
+ # Optional: Create your own validation/test splits
196
+ from sklearn.model_selection import train_test_split
197
+ import pandas as pd
198
+
199
+ # Convert to pandas for splitting
200
+ df = pd.DataFrame(train_data)
201
+ train_df, test_df = train_test_split(df, test_size=0.1, random_state=42)
202
+ train_df, val_df = train_test_split(train_df, test_size=0.1, random_state=42)
203
+ ```
204
+
205
+ ### Filter for Research
206
+
207
+ ```python
208
+ # High-quality data only
209
+ high_quality = dataset.filter(lambda x: x["confidence"] == "very_high")
210
+
211
+ # Nanobodies for specialized studies
212
+ nanobodies = dataset.filter(lambda x: x["nanobody"] == True)
213
+
214
+ # Specific antigens
215
+ covid_data = dataset.filter(lambda x: "covid" in x["target_name"].lower())
216
+ ```
217
+
218
+ ### Prepare for ML Training
219
+
220
+ ```python
221
+ # Extract sequences for language models
222
+ sequences = []
223
+ for item in dataset["train"]:
224
+ if item["heavy_sequence"]:
225
+ sequences.append(item["heavy_sequence"])
226
+ if item["light_sequence"]:
227
+ sequences.append(item["light_sequence"])
228
+ ```
229
+
230
+ ## Applications
231
+
232
+ ### Machine Learning Use Cases
233
+
234
+ - **Antibody language models**: Train sequence models on antibody repertoires for generative design
235
+ - **Binding affinity prediction**: Develop regression models for antibody-antigen interaction strength
236
+ - **Therapeutic design**: Guide rational antibody engineering and optimization
237
+ - **Computational immunology**: Study immune responses and antibody development patterns
238
+ - **Virtual screening**: Prioritize antibody candidates for experimental validation
239
+ - **Structure-affinity relationships**: Learn connections between 3D structures and binding properties
240
+
241
+ ### Research Applications
242
+
243
+ - **Antibody repertoire analysis**: Study natural antibody diversity and evolution
244
+ - **Cross-reactivity prediction**: Identify potential off-target effects
245
+ - **Immunogenicity assessment**: Predict antibody developability and safety
246
+ - **Drug discovery pipelines**: Accelerate hit identification and lead optimization
247
+ - **Comparative immunology**: Study antibody responses across different species
248
+
249
+ ### Integration with Other Tools
250
+
251
+ - **Protein structure prediction**: Use with ESMFold for 3D structure generation
252
+ - **Molecular dynamics**: Combine with simulation tools for binding mechanism studies
253
+ - **High-throughput screening**: Guide experimental antibody library screening
254
+ - **CRISPR engineering**: Design antibodies for gene therapy applications
255
+
256
+ ## Data Sources
257
+
258
+ Aggregated from 25+ datasets including GenBank, SKEMPI 2.0, peer-reviewed publications, and patent databases.
259
+
260
+ ### Major Dataset Components
261
+
262
+ | Dataset | Records | Unique Antibodies | Key Characteristics |
263
+ |---------|---------|-------------------|-------------------|
264
+ | **BUZZ** | 524,346 | 524,346 | Trastuzumab mutations binding to HER2 |
265
+ | **AlphaSeq** | 198,703 | 193,867 | Antibody mutations across 4 targets (TIGIT, SARS-CoV2-RBD, PD-1, HER2) |
266
+ | **ABBD** | 155,853 | 88,946 | Eight antibody-antigen cases with heavy chain mutations |
267
+ | **Patents** | 217,463 | 31,173 | NLP-extracted sequences from patent literature |
268
+ | **COVID-19** | 27,301 | 6,759 | SARS-CoV-2 neutralization data (Cov-AbDab) |
269
+ | **HIV** | 48,008 | 192 | HIV-targeting antibodies (LANL database) |
270
+ | **BioMap** | 2,725 | 728 | Binding ΔG values across 8 species |
271
+ | **Literature** | 5,580 | 4,841 | Curated from research articles (1,940 nanobodies) |
272
+ | **FLAB** | 6,849 | 6,798 | Five publications on viral/cancer targets |
273
+ | **ABDesign** | 672 | 672 | Systematic CDR-H3 point mutations |
274
+
275
+ ### Inclusion Criteria
276
+
277
+ - Transparency and completeness of data
278
+ - Relevance to human health
279
+ - Quantitative binding affinity measurements
280
+ - Complete amino acid sequences for all biomolecules
281
+
282
+ ### Data Processing Pipeline
283
+
284
+ 1. **Aggregation**: Collection from 14 distinct sources → 25 integrated datasets
285
+ 2. **Curation**: Multi-stage pipeline with automated extraction, normalization, and manual verification
286
+ 3. **Standardization**: Common structure implemented across all studies
287
+ 4. **Validation**: Automated feasibility checks and manual verification of critical datasets
288
+
289
+ ## Citation
290
+
291
+ ```bibtex
292
+ @dataset{agab_db,
293
+ title={AgAb DB: Antigen Specific Antibody Database},
294
+ author={NaturalAntibody},
295
+ year={2024},
296
+ url={https://naturalantibody.com/agab/}
297
+ }
298
+ ```
299
+
300
+ ## License
301
+
302
+ Available for non-commercial research use only. Contact NaturalAntibody for commercial licensing.
303
+
304
+ ---
305
+
306
+ *Dataset provided by [NaturalAntibody](https://naturalantibody.com/agab/)*
307
+