Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
100K - 1M
Tags:
biology
immunology
antibodies
protein-protein-interactions
drug-discovery
computational-biology
License:
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -48,23 +48,260 @@ dataset_info:
|
|
| 48 |
dtype: string
|
| 49 |
splits:
|
| 50 |
- name: train
|
| 51 |
-
num_bytes:
|
| 52 |
-
num_examples:
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
num_examples: 122709
|
| 56 |
-
- name: test
|
| 57 |
-
num_bytes: 215480727
|
| 58 |
-
num_examples: 122709
|
| 59 |
-
download_size: 437141055
|
| 60 |
-
dataset_size: 2137958525
|
| 61 |
configs:
|
| 62 |
- config_name: default
|
| 63 |
data_files:
|
| 64 |
- split: train
|
| 65 |
path: data/train-*
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
dtype: string
|
| 49 |
splits:
|
| 50 |
- name: train
|
| 51 |
+
num_bytes: 2137958513
|
| 52 |
+
num_examples: 1227083
|
| 53 |
+
download_size: 339997839
|
| 54 |
+
dataset_size: 2137958513
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
configs:
|
| 56 |
- config_name: default
|
| 57 |
data_files:
|
| 58 |
- split: train
|
| 59 |
path: data/train-*
|
| 60 |
+
pretty_name: 'AgAb DB: Antigen Specific Antibody Database'
|
| 61 |
+
tags:
|
| 62 |
+
- biology
|
| 63 |
+
- immunology
|
| 64 |
+
- antibodies
|
| 65 |
+
- protein-protein-interactions
|
| 66 |
+
- drug-discovery
|
| 67 |
+
- computational-biology
|
| 68 |
+
- therapeutics
|
| 69 |
+
- machine-learning
|
| 70 |
+
- protein-sequence-modeling
|
| 71 |
+
- binding-affinity-prediction
|
| 72 |
+
- antibody-design
|
| 73 |
+
task_categories:
|
| 74 |
+
- text-classification
|
| 75 |
+
license: other
|
| 76 |
+
license_details: "Non-commercial research use only. Commercial inquiries should be directed to NaturalAntibody."
|
| 77 |
+
language:
|
| 78 |
+
- en
|
| 79 |
---
|
| 80 |
+
|
| 81 |
+
# AgAb DB: Antigen Specific Antibody Database
|
| 82 |
+
|
| 83 |
+
A comprehensive collection of antibody-antigen interaction data for computational biology and therapeutic design.
|
| 84 |
+
|
| 85 |
+
## Dataset Summary
|
| 86 |
+
|
| 87 |
+
AgAb DB aggregates antibody-antigen binding data from multiple sources, containing over 1.2 million antibody-antigen pairs with binding affinity measurements. This dataset is essential for training machine learning models in computational immunology and antibody engineering.
|
| 88 |
+
|
| 89 |
+
## Key Statistics
|
| 90 |
+
|
| 91 |
+
- **1,227,083** antibody-antigen interaction records
|
| 92 |
+
- **309,884** unique antibodies (full antibodies, nanobodies, scFvs)
|
| 93 |
+
- **4,334** unique antigens
|
| 94 |
+
- **170,660** complete heavy/light chain pairs
|
| 95 |
+
- **70,388** nanobodies and **132,157** scFv antibodies
|
| 96 |
+
- **Focus on human health**: Infectious diseases, cancer, autoimmune conditions
|
| 97 |
+
- **Diverse antigen types**: Viral proteins, bacterial antigens, cancer markers, autoantigens
|
| 98 |
+
|
| 99 |
+
*Note: Statistics for unique antibodies/antigens are from original documentation and may be proportionally larger in the full 1.2M record dataset.*
|
| 100 |
+
|
| 101 |
+
### Data Quality Distribution
|
| 102 |
+
|
| 103 |
+
- **51% very_high confidence** (robust sequences and methodology)
|
| 104 |
+
- **high confidence** (manually curated datasets)
|
| 105 |
+
- **medium confidence** (automated discovery, some uncertainty)
|
| 106 |
+
|
| 107 |
+
### Affinity Measurement Types
|
| 108 |
+
|
| 109 |
+
- Quantitative metrics: Gibbs free energy changes, kinetic constants, IC₅₀
|
| 110 |
+
- Qualitative binding assessments
|
| 111 |
+
- Mixed data types across different sources
|
| 112 |
+
|
| 113 |
+
## Data Structure
|
| 114 |
+
|
| 115 |
+
### Core Fields
|
| 116 |
+
|
| 117 |
+
| Field | Type | Description |
|
| 118 |
+
|-------|------|-------------|
|
| 119 |
+
| `heavy_sequence` | string | Antibody heavy chain amino acid sequence |
|
| 120 |
+
| `light_sequence` | string | Antibody light chain amino acid sequence |
|
| 121 |
+
| `antigen_sequence` | string | Target antigen amino acid sequence |
|
| 122 |
+
| `affinity` | string | Binding affinity value |
|
| 123 |
+
| `confidence` | string | Data quality level (very_high, high, medium) |
|
| 124 |
+
|
| 125 |
+
### Additional Metadata
|
| 126 |
+
|
| 127 |
+
| Field | Type | Description |
|
| 128 |
+
|-------|------|-------------|
|
| 129 |
+
| `dataset` | string | Original source dataset |
|
| 130 |
+
| `affinity_type` | string | Measurement type (KD, IC₅₀, etc.) |
|
| 131 |
+
| `nanobody` | bool | Whether it's a nanobody |
|
| 132 |
+
| `scfv` | bool | Single-chain variable fragment |
|
| 133 |
+
| `target_name` | string | Antigen name |
|
| 134 |
+
| `target_pdb` | string | PDB structure ID |
|
| 135 |
+
| `target_uniprot` | string | UniProt accession |
|
| 136 |
+
| `heavy_cdr1/cdr2/cdr3` | string | Complementarity-determining regions |
|
| 137 |
+
| `light_cdr1/cdr2/cdr3` | string | Light chain CDRs |
|
| 138 |
+
|
| 139 |
+
## Dataset Split
|
| 140 |
+
|
| 141 |
+
- **Train**: All 1,227,083 records in a single training set
|
| 142 |
+
|
| 143 |
+
The full dataset is provided as a single training split to maximize available data for machine learning applications. Users can create their own validation/test splits as needed for their specific use cases.
|
| 144 |
+
|
| 145 |
+
### Confidence Categories
|
| 146 |
+
|
| 147 |
+
- **very_high**: Both sequences and methodology used for calculating affinity were robust (e.g., AbDesign, BioMap, SKEMPI 2.0)
|
| 148 |
+
- **high**: Manually curated datasets or those containing antigen names/mutations rather than full sequences (e.g., FLAB datasets)
|
| 149 |
+
- **medium**: Automated data discovery with some uncertainty (e.g., patent databases)
|
| 150 |
+
|
| 151 |
+
### Antibody Types Included
|
| 152 |
+
|
| 153 |
+
- **Full antibodies**: Complete heavy and light chain pairs (traditional monoclonal antibodies)
|
| 154 |
+
- **Nanobodies**: Single-domain antibodies (VHH format) - 70K+ entries across datasets
|
| 155 |
+
- **scFv**: Single-chain variable fragments - 132K+ entries, primarily from AlphaSeq
|
| 156 |
+
- **Mixed formats**: Various antibody fragment types and engineered variants
|
| 157 |
+
|
| 158 |
+
### Nanobody Distribution by Source
|
| 159 |
+
|
| 160 |
+
| Source | Nanobody Count | Notes |
|
| 161 |
+
|--------|----------------|-------|
|
| 162 |
+
| AlphaSeq | 67,058 | Mutations for improved binding |
|
| 163 |
+
| Patents | 40,517 | Patent literature extraction |
|
| 164 |
+
| Literature | 1,936 | Research paper curation |
|
| 165 |
+
| Structures | 1,258 | PDB structure-derived |
|
| 166 |
+
| AATP, OSH, RMNA | ~133 | Specialized datasets |
|
| 167 |
+
|
| 168 |
+
### scFv Distribution by Source
|
| 169 |
+
|
| 170 |
+
| Source | scFv Count | Notes |
|
| 171 |
+
|--------|------------|-------|
|
| 172 |
+
| AlphaSeq | 131,645 | Primary scFv source |
|
| 173 |
+
| Literature | 512 | Research paper curation |
|
| 174 |
+
|
| 175 |
+
### Sequence Characteristics
|
| 176 |
+
|
| 177 |
+
- **Predominantly short sequences**: <150 amino acids typical
|
| 178 |
+
- **Majority include both chains**: Heavy and light chain pairs
|
| 179 |
+
- **Diverse antigen targets**: Infectious diseases, cancer, autoimmune conditions
|
| 180 |
+
- **Multiple affinity measurement types**: KD, IC₅₀, ΔG, binary binding
|
| 181 |
+
|
| 182 |
+
## Usage
|
| 183 |
+
|
| 184 |
+
### Load the Dataset
|
| 185 |
+
|
| 186 |
+
```python
|
| 187 |
+
from datasets import load_dataset
|
| 188 |
+
|
| 189 |
+
# Load from OpenMed
|
| 190 |
+
dataset = load_dataset("OpenMed/agab-db")
|
| 191 |
+
|
| 192 |
+
# Access the training data (full dataset)
|
| 193 |
+
train_data = dataset["train"]
|
| 194 |
+
|
| 195 |
+
# Optional: Create your own validation/test splits
|
| 196 |
+
from sklearn.model_selection import train_test_split
|
| 197 |
+
import pandas as pd
|
| 198 |
+
|
| 199 |
+
# Convert to pandas for splitting
|
| 200 |
+
df = pd.DataFrame(train_data)
|
| 201 |
+
train_df, test_df = train_test_split(df, test_size=0.1, random_state=42)
|
| 202 |
+
train_df, val_df = train_test_split(train_df, test_size=0.1, random_state=42)
|
| 203 |
+
```
|
| 204 |
+
|
| 205 |
+
### Filter for Research
|
| 206 |
+
|
| 207 |
+
```python
|
| 208 |
+
# High-quality data only
|
| 209 |
+
high_quality = dataset.filter(lambda x: x["confidence"] == "very_high")
|
| 210 |
+
|
| 211 |
+
# Nanobodies for specialized studies
|
| 212 |
+
nanobodies = dataset.filter(lambda x: x["nanobody"] == True)
|
| 213 |
+
|
| 214 |
+
# Specific antigens
|
| 215 |
+
covid_data = dataset.filter(lambda x: "covid" in x["target_name"].lower())
|
| 216 |
+
```
|
| 217 |
+
|
| 218 |
+
### Prepare for ML Training
|
| 219 |
+
|
| 220 |
+
```python
|
| 221 |
+
# Extract sequences for language models
|
| 222 |
+
sequences = []
|
| 223 |
+
for item in dataset["train"]:
|
| 224 |
+
if item["heavy_sequence"]:
|
| 225 |
+
sequences.append(item["heavy_sequence"])
|
| 226 |
+
if item["light_sequence"]:
|
| 227 |
+
sequences.append(item["light_sequence"])
|
| 228 |
+
```
|
| 229 |
+
|
| 230 |
+
## Applications
|
| 231 |
+
|
| 232 |
+
### Machine Learning Use Cases
|
| 233 |
+
|
| 234 |
+
- **Antibody language models**: Train sequence models on antibody repertoires for generative design
|
| 235 |
+
- **Binding affinity prediction**: Develop regression models for antibody-antigen interaction strength
|
| 236 |
+
- **Therapeutic design**: Guide rational antibody engineering and optimization
|
| 237 |
+
- **Computational immunology**: Study immune responses and antibody development patterns
|
| 238 |
+
- **Virtual screening**: Prioritize antibody candidates for experimental validation
|
| 239 |
+
- **Structure-affinity relationships**: Learn connections between 3D structures and binding properties
|
| 240 |
+
|
| 241 |
+
### Research Applications
|
| 242 |
+
|
| 243 |
+
- **Antibody repertoire analysis**: Study natural antibody diversity and evolution
|
| 244 |
+
- **Cross-reactivity prediction**: Identify potential off-target effects
|
| 245 |
+
- **Immunogenicity assessment**: Predict antibody developability and safety
|
| 246 |
+
- **Drug discovery pipelines**: Accelerate hit identification and lead optimization
|
| 247 |
+
- **Comparative immunology**: Study antibody responses across different species
|
| 248 |
+
|
| 249 |
+
### Integration with Other Tools
|
| 250 |
+
|
| 251 |
+
- **Protein structure prediction**: Use with ESMFold for 3D structure generation
|
| 252 |
+
- **Molecular dynamics**: Combine with simulation tools for binding mechanism studies
|
| 253 |
+
- **High-throughput screening**: Guide experimental antibody library screening
|
| 254 |
+
- **CRISPR engineering**: Design antibodies for gene therapy applications
|
| 255 |
+
|
| 256 |
+
## Data Sources
|
| 257 |
+
|
| 258 |
+
Aggregated from 25+ datasets including GenBank, SKEMPI 2.0, peer-reviewed publications, and patent databases.
|
| 259 |
+
|
| 260 |
+
### Major Dataset Components
|
| 261 |
+
|
| 262 |
+
| Dataset | Records | Unique Antibodies | Key Characteristics |
|
| 263 |
+
|---------|---------|-------------------|-------------------|
|
| 264 |
+
| **BUZZ** | 524,346 | 524,346 | Trastuzumab mutations binding to HER2 |
|
| 265 |
+
| **AlphaSeq** | 198,703 | 193,867 | Antibody mutations across 4 targets (TIGIT, SARS-CoV2-RBD, PD-1, HER2) |
|
| 266 |
+
| **ABBD** | 155,853 | 88,946 | Eight antibody-antigen cases with heavy chain mutations |
|
| 267 |
+
| **Patents** | 217,463 | 31,173 | NLP-extracted sequences from patent literature |
|
| 268 |
+
| **COVID-19** | 27,301 | 6,759 | SARS-CoV-2 neutralization data (Cov-AbDab) |
|
| 269 |
+
| **HIV** | 48,008 | 192 | HIV-targeting antibodies (LANL database) |
|
| 270 |
+
| **BioMap** | 2,725 | 728 | Binding ΔG values across 8 species |
|
| 271 |
+
| **Literature** | 5,580 | 4,841 | Curated from research articles (1,940 nanobodies) |
|
| 272 |
+
| **FLAB** | 6,849 | 6,798 | Five publications on viral/cancer targets |
|
| 273 |
+
| **ABDesign** | 672 | 672 | Systematic CDR-H3 point mutations |
|
| 274 |
+
|
| 275 |
+
### Inclusion Criteria
|
| 276 |
+
|
| 277 |
+
- Transparency and completeness of data
|
| 278 |
+
- Relevance to human health
|
| 279 |
+
- Quantitative binding affinity measurements
|
| 280 |
+
- Complete amino acid sequences for all biomolecules
|
| 281 |
+
|
| 282 |
+
### Data Processing Pipeline
|
| 283 |
+
|
| 284 |
+
1. **Aggregation**: Collection from 14 distinct sources → 25 integrated datasets
|
| 285 |
+
2. **Curation**: Multi-stage pipeline with automated extraction, normalization, and manual verification
|
| 286 |
+
3. **Standardization**: Common structure implemented across all studies
|
| 287 |
+
4. **Validation**: Automated feasibility checks and manual verification of critical datasets
|
| 288 |
+
|
| 289 |
+
## Citation
|
| 290 |
+
|
| 291 |
+
```bibtex
|
| 292 |
+
@dataset{agab_db,
|
| 293 |
+
title={AgAb DB: Antigen Specific Antibody Database},
|
| 294 |
+
author={NaturalAntibody},
|
| 295 |
+
year={2024},
|
| 296 |
+
url={https://naturalantibody.com/agab/}
|
| 297 |
+
}
|
| 298 |
+
```
|
| 299 |
+
|
| 300 |
+
## License
|
| 301 |
+
|
| 302 |
+
Available for non-commercial research use only. Contact NaturalAntibody for commercial licensing.
|
| 303 |
+
|
| 304 |
+
---
|
| 305 |
+
|
| 306 |
+
*Dataset provided by [NaturalAntibody](https://naturalantibody.com/agab/)*
|
| 307 |
+
|