--- license: mit task_categories: - robotics tags: - tactile --- # ๐Ÿ“ฆ FreeTacman ## Robot-free Visuo-Tactile Data Collection System for Contact-rich Manipulation ## ๐ŸŽฏ Overview This dataset supports the paper **[FreeTacman: Robot-free Visuo-Tactile Data Collection System for Contact-rich Manipulation](http://arxiv.org/abs/2506.01941)**. It contains a large-scale, high-precision visuo-tactile manipulation dataset with over 3000k visuo-tactile image pairs, more than 10k trajectories across 50 tasks. ![FreeTacMan System Overview](https://raw.githubusercontent.com/OpenDriveLab/opendrivelab.github.io/master/FreeTacMan/task/datasetweb.png) Please refer to our ๐Ÿš€ [Website](http://opendrivelab.com/freetacman) | ๐Ÿ“„ [Paper](http://arxiv.org/abs/2506.01941) | ๐Ÿ’ป [Code](https://github.com/OpenDriveLab/FreeTacMan) | ๐Ÿ› ๏ธ [Hardware Guide](https://docs.google.com/document/d/1Hhi2stn_goXUHdYi7461w10AJbzQDC0fdYaSxMdMVXM/edit?addon_store&tab=t.0#heading=h.rl14j3i7oz0t) | ๐Ÿ“บ [Video](https://opendrivelab.github.io/FreeTacMan/landing/FreeTacMan_demo_video.mp4) | ๐ŸŒ [X](https://x.com/OpenDriveLab/status/1930234855729836112) for more details. ## ๐Ÿ”ฌ Potential Applications The FreeTacman dataset enables diverse research directions in visuo-tactile learning and manipulation: - **System Reproduction**: For researchers interested in hardware implementation, you can reproduce FreeTacMan from scratch using our ๐Ÿ› ๏ธ [Hardware Guide](https://docs.google.com/document/d/1Hhi2stn_goXUHdYi7461w10AJbzQDC0fdYaSxMdMVXM/edit?addon_store&tab=t.0#heading=h.rl14j3i7oz0t) and ๐Ÿ’ป [Code](https://github.com/OpenDriveLab/FreeTacMan). - **Multimodal Imitation Learning**: Transfer to other LED-based tactile sensors (such as GelSight) for developing robust multimodal imitation learning frameworks. - **Tactile-aware Grasping**: Utilize the dataset for pre-training tactile representation models and developing tactile-aware reasoning systems. - **Simulation-to-Real Transfer**: Leverage the dynamic tactile interaction sequences to enhance tactile simulation fidelity, significantly reducing the sim2real gap. ## ๐Ÿ“‚ Dataset Structure The dataset is organized into 50 task categories, each containing: - **Video files**: Synchronized video recordings from the wrist-mounted and visuo-tactile cameras for each demonstration - **Trajectory files**: Detailed tracking data for tool center point pose and gripper distance ## ๐Ÿงพ Data Format ### Video Files - **Format**: MP4 - **Views**: Wrist-mounted camera and visuo-tactile camera perspectives per demonstration ### Trajectory Files Each trajectory file contains the following data columns: #### Timestamp - `timestamp` - Unix Timestamp #### Tool Center Point (TCP) Data - `TCP_pos_x`, `TCP_pos_y`, `TCP_pos_z` - TCP position - `TCP_euler_x`, `TCP_euler_y`, `TCP_euler_z` - TCP orientation (euler angles) - `quat_w`, `quat_x`, `quat_y`, `quat_z` - TCP orientation (quaternion representation) #### Gripper Data - `gripper_distance` - Gripper opening distance ## ๐Ÿ“ Citation If you use this dataset in your research, please cite: ```bibtex @article{wu2025freetacman, title={Freetacman: Robot-free visuo-tactile data collection system for contact-rich manipulation}, author={Wu, Longyan and Yu, Checheng and Ren, Jieji and Chen, Li and Jiang, Yufei and Huang, Ran and Gu, Guoying and Li, Hongyang}, journal={arXiv preprint arXiv:2506.01941}, year={2025} } ``` ## ๐Ÿ’ผ License This dataset is released under the MIT License. See LICENSE file for details. ## ๐Ÿ“ง Contact For questions or issues regarding the dataset, please contact: Longyan Wu (im.longyanwu@gmail.com).