File size: 3,170 Bytes
30320e3
 
 
1801579
30320e3
 
1801579
 
 
 
 
30320e3
1801579
 
 
30320e3
1801579
43d35a9
30320e3
 
 
1801579
b918dab
30320e3
 
 
 
 
 
1801579
30320e3
 
 
 
 
 
 
1801579
30320e3
1801579
 
30320e3
 
 
1801579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30320e3
 
 
1801579
 
 
30320e3
 
 
 
1801579
 
30320e3
 
 
4ef8949
30320e3
 
 
 
 
 
 
0a63fd8
30320e3
 
 
c3a7f3a
0a63fd8
 
 
 
 
 
 
 
 
 
30320e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f84017b
30320e3
 
 
47fd365
30320e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72d52cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
Global:
  debug: false
  use_gpu: true
  epoch_num: 50
  log_smooth_window: 20
  print_batch_step: 10
  save_model_dir: ./output/rec_ppocr_v4
  save_epoch_step: 10
  eval_batch_step:
  - 0
  - 2000
  cal_metric_during_train: true
  pretrained_model: null
  checkpoints: null
  save_inference_dir: null
  use_visualdl: false
  infer_img: doc/imgs_words/ch/word_1.jpg
  character_dict_path: /kaggle/working/Fine-Tuning-OCR-Model-with-PaddleOCR/PaddleOCR/ppocr/utils/en_dict.txt
  infer_mode: false
  use_space_char: true
  distributed: true
  save_res_path: ./output/rec/predicts_ppocrv3.txt
  max_text_length: 25
Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
    name: Cosine
    learning_rate: 0.0005
    warmup_epoch: 5
  regularizer:
    name: L2
    factor: 3.0e-05
Architecture:
  model_type: rec
  algorithm: SVTR_LCNet
  Transform: null
  Backbone:
    name: PPLCNetV3
    scale: 0.95
  Head:
    name: MultiHead
    head_list:
    - CTCHead:
        Neck:
          name: svtr
          dims: 120
          depth: 2
          hidden_dims: 120
          kernel_size:
          - 1
          - 3
          use_guide: true
        Head:
          fc_decay: 1.0e-05
    - NRTRHead:
        nrtr_dim: 384
        max_text_length: 25
Loss:
  name: MultiLoss
  loss_config_list:
  - CTCLoss: null
  - NRTRLoss: null
PostProcess:
  name: CTCLabelDecode
Metric:
  name: RecMetric
  main_indicator: acc
  ignore_space: false
  
Train:
  dataset:
    name: SimpleDataSet
    data_dir: "/kaggle/working/Fine-Tuning-OCR-Model-with-PaddleOCR/dataset"
    ext_op_transform_idx: 1
    label_file_list:
    - dataset/recognition_train.txt
    transforms:
    - DecodeImage:
        img_mode: BGR
        channel_first: false
    - RecConAug: # Concat Augmentation (jika digunakan)
        prob: 0.5
        ext_data_num: 2
        image_shape: [48, 320, 3]
        max_text_length: 25
    - RecAug: # <<< Andalkan operator ini untuk augmentasi blur, noise, light/color
              # Jangan tambahkan GaussianBlur, SaltAndPepperNoise, ColorJitter secara terpisah
    # --- HAPUS Augmentasi Tambahan yang Menyebabkan Error ---
    # - GaussianBlur:
    #     prob: 0.5
    # - SaltAndPepperNoise:
    #     prob: 0.5
    # - ColorJitter:
    #     prob: 0.5
    # --- Akhir Bagian yang Dihapus ---
    - MultiLabelEncode:
    - RecResizeImg:
        image_shape: [3, 48, 320]
    - KeepKeys:
        keep_keys:
        - image
        - label_ctc
        - label_sar
        - length
        - valid_ratio
  loader:
    shuffle: true
    batch_size_per_card: 128
    drop_last: true
    num_workers: 4

Eval:
  dataset:
    name: SimpleDataSet
    data_dir: "/kaggle/working/Fine-Tuning-OCR-Model-with-PaddleOCR/dataset"
    label_file_list:
    - dataset/recognition_test.txt
    transforms:
    - DecodeImage:
        img_mode: BGR
        channel_first: false
    - MultiLabelEncode:
    - RecResizeImg:
        image_shape: [3, 48, 320]
    - KeepKeys:
        keep_keys:
        - image
        - label_ctc
        - label_sar
        - length
        - valid_ratio
  loader:
    shuffle: false
    drop_last: false
    batch_size_per_card: 128
    num_workers: 4