The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
				Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 1 new columns ({'lighting_condition'}) and 1 missing columns ({'glare'}).
This happened while the csv dataset builder was generating data using
hf://datasets/NUS-UAL/global-streetscapes/manual_labels/train/lighting_condition.csv (at revision 7bd2e7697a3cb5f74ff05bd718babdb927f8b60d)
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              uuid: string
              source: string
              orig_id: int64
              lighting_condition: string
              url: string
              label_method: string
              city: string
              city_id: int64
              country: string
              continent: string
              lat: double
              lon: double
              datetime_local: string
              sequence_index: int64
              sequence_id: string
              split: string
              img_path: string
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 2225
              to
              {'uuid': Value(dtype='string', id=None), 'source': Value(dtype='string', id=None), 'orig_id': Value(dtype='int64', id=None), 'glare': Value(dtype='string', id=None), 'url': Value(dtype='string', id=None), 'label_method': Value(dtype='string', id=None), 'city': Value(dtype='string', id=None), 'city_id': Value(dtype='int64', id=None), 'country': Value(dtype='string', id=None), 'continent': Value(dtype='string', id=None), 'lat': Value(dtype='float64', id=None), 'lon': Value(dtype='float64', id=None), 'datetime_local': Value(dtype='string', id=None), 'sequence_index': Value(dtype='int64', id=None), 'sequence_id': Value(dtype='string', id=None), 'split': Value(dtype='string', id=None), 'img_path': Value(dtype='string', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1415, in compute_config_parquet_and_info_response
                  parquet_operations, partial, estimated_dataset_info = stream_convert_to_parquet(
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 991, in stream_convert_to_parquet
                  builder._prepare_split(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 1 new columns ({'lighting_condition'}) and 1 missing columns ({'glare'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/NUS-UAL/global-streetscapes/manual_labels/train/lighting_condition.csv (at revision 7bd2e7697a3cb5f74ff05bd718babdb927f8b60d)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
uuid
				 
			string  | source
				 
			string  | orig_id
				 
			int64  | glare
				 
			string  | url
				 
			string  | label_method
				 
			string  | city
				 
			string  | city_id
				 
			int64  | country
				 
			string  | continent
				 
			string  | lat
				 
			float64  | lon
				 
			float64  | datetime_local
				 
			string  | sequence_index
				 
			int64  | sequence_id
				 
			string  | split
				 
			string  | img_path
				 
			string  | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
	1978a821-d39f-4d98-8d8b-a9975d497385 
 | 
	Mapillary 
 | 976,482,762,890,327 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=976482762890327&focus=photo 
 | 
	random sample and manual label 
 | 
	Tarazona de Aragón 
 | 1,724,796,233 
							 | 
	Spain 
 | 
	Europe 
 | 41.790652 
							 | -1.766745 
							 | 
	2018-08-05 11:33:53.319000+02:00 
 | 12 
							 | 
	J63JR0B5QM6pfhxWwj9IWA 
 | 
	train 
 | 
	img/3/1978a821-d39f-4d98-8d8b-a9975d497385.jpeg 
 | 
					
	12731198-74b8-448e-bec8-faa96b024a2c 
 | 
	Mapillary 
 | 246,917,197,222,492 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=246917197222492&focus=photo 
 | 
	random sample and manual label 
 | 
	Tarazona de Aragón 
 | 1,724,796,233 
							 | 
	Spain 
 | 
	Europe 
 | 41.785087 
							 | -1.766823 
							 | 
	2017-07-02 14:03:01.745000+02:00 
 | 33 
							 | 
	eo1Pec9DyI5lxwa4KhvwXw 
 | 
	train 
 | 
	img/6/12731198-74b8-448e-bec8-faa96b024a2c.jpeg 
 | 
					
	ad798a8c-649a-4ff8-b9a2-f2932dc228ff 
 | 
	Mapillary 
 | 2,970,430,033,242,379 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=2970430033242379&focus=photo 
 | 
	random sample and manual label 
 | 
	Tarazona de Aragón 
 | 1,724,796,233 
							 | 
	Spain 
 | 
	Europe 
 | 41.790926 
							 | -1.766326 
							 | 
	2016-11-01 16:57:17.295000+01:00 
 | 35 
							 | 
	K-ILLX1_HQqfj3Z1pNCB9Q 
 | 
	train 
 | 
	img/3/ad798a8c-649a-4ff8-b9a2-f2932dc228ff.jpeg 
 | 
					
	2d1f6cba-f083-4308-ae6d-35402709ac4e 
 | 
	Mapillary 
 | 568,930,494,081,380 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=568930494081380&focus=photo 
 | 
	random sample and manual label 
 | 
	Tarazona de Aragón 
 | 1,724,796,233 
							 | 
	Spain 
 | 
	Europe 
 | 41.784608 
							 | -1.762885 
							 | 
	2017-07-02 14:03:25.934000+02:00 
 | 57 
							 | 
	eo1Pec9DyI5lxwa4KhvwXw 
 | 
	train 
 | 
	img/5/2d1f6cba-f083-4308-ae6d-35402709ac4e.jpeg 
 | 
					
	ba75d911-58e3-4319-ba02-75b8f5af8837 
 | 
	Mapillary 
 | 457,198,638,702,420 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=457198638702420&focus=photo 
 | 
	random sample and manual label 
 | 
	Tarazona de Aragón 
 | 1,724,796,233 
							 | 
	Spain 
 | 
	Europe 
 | 41.784535 
							 | -1.760188 
							 | 
	2017-07-02 14:03:46.049000+02:00 
 | 77 
							 | 
	eo1Pec9DyI5lxwa4KhvwXw 
 | 
	train 
 | 
	img/3/ba75d911-58e3-4319-ba02-75b8f5af8837.jpeg 
 | 
					
	83bfeed5-c3fd-4972-bd5c-dc8d99f5eff9 
 | 
	Mapillary 
 | 3,431,244,766,975,759 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=3431244766975759&focus=photo 
 | 
	random sample and manual label 
 | 
	Tarazona de Aragón 
 | 1,724,796,233 
							 | 
	Spain 
 | 
	Europe 
 | 41.78455 
							 | -1.760757 
							 | 
	2017-07-02 14:03:42.029000+02:00 
 | 73 
							 | 
	eo1Pec9DyI5lxwa4KhvwXw 
 | 
	train 
 | 
	img/2/83bfeed5-c3fd-4972-bd5c-dc8d99f5eff9.jpeg 
 | 
					
	32de4a41-4471-4e82-a7d2-52303eba3dab 
 | 
	Mapillary 
 | 292,827,205,713,670 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=292827205713670&focus=photo 
 | 
	random sample and manual label 
 | 
	Tarazona de Aragón 
 | 1,724,796,233 
							 | 
	Spain 
 | 
	Europe 
 | 41.790525 
							 | -1.75981 
							 | 
	2016-11-01 12:00:15.479000+01:00 
 | 396 
							 | 
	19cpum69akigj5podygolw 
 | 
	train 
 | 
	img/4/32de4a41-4471-4e82-a7d2-52303eba3dab.jpeg 
 | 
					
	52a51d9d-1d73-4656-a32c-c0bd08af8e22 
 | 
	Mapillary 
 | 893,070,377,931,574 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=893070377931574&focus=photo 
 | 
	random sample and manual label 
 | 
	Tarazona de Aragón 
 | 1,724,796,233 
							 | 
	Spain 
 | 
	Europe 
 | 41.789633 
							 | -1.767905 
							 | 
	2016-11-01 12:01:27.281000+01:00 
 | 431 
							 | 
	19cpum69akigj5podygolw 
 | 
	train 
 | 
	img/3/52a51d9d-1d73-4656-a32c-c0bd08af8e22.jpeg 
 | 
					
	e5933b92-9815-4b62-b66a-e0399cddf780 
 | 
	Mapillary 
 | 569,454,580,702,017 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=569454580702017&focus=photo 
 | 
	random sample and manual label 
 | 
	Tarazona de Aragón 
 | 1,724,796,233 
							 | 
	Spain 
 | 
	Europe 
 | 41.790759 
							 | -1.766591 
							 | 
	2018-08-05 11:33:52.184000+02:00 
 | 11 
							 | 
	J63JR0B5QM6pfhxWwj9IWA 
 | 
	train 
 | 
	img/6/e5933b92-9815-4b62-b66a-e0399cddf780.jpeg 
 | 
					
	df44af56-3592-4b6f-af2b-2c88a37cec74 
 | 
	Mapillary 
 | 289,703,232,821,034 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=289703232821034&focus=photo 
 | 
	random sample and manual label 
 | 
	Tarazona de Aragón 
 | 1,724,796,233 
							 | 
	Spain 
 | 
	Europe 
 | 41.785076 
							 | -1.766477 
							 | 
	2017-07-02 14:03:03.764000+02:00 
 | 35 
							 | 
	eo1Pec9DyI5lxwa4KhvwXw 
 | 
	train 
 | 
	img/6/df44af56-3592-4b6f-af2b-2c88a37cec74.jpeg 
 | 
					
	fdd50149-4736-4946-8fcd-e066c56f6ac9 
 | 
	Mapillary 
 | 971,359,846,736,761 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=971359846736761&focus=photo 
 | 
	random sample and manual label 
 | 
	Tarazona de Aragón 
 | 1,724,796,233 
							 | 
	Spain 
 | 
	Europe 
 | 41.790066 
							 | -1.767521 
							 | 
	2016-11-01 16:57:08.387000+01:00 
 | 26 
							 | 
	K-ILLX1_HQqfj3Z1pNCB9Q 
 | 
	train 
 | 
	img/3/fdd50149-4736-4946-8fcd-e066c56f6ac9.jpeg 
 | 
					
	141fd713-5bbc-48ce-a95d-8ec503919be5 
 | 
	Mapillary 
 | 825,568,588,354,414 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=825568588354414&focus=photo 
 | 
	random sample and manual label 
 | 
	Tarazona de Aragón 
 | 1,724,796,233 
							 | 
	Spain 
 | 
	Europe 
 | 41.784521 
							 | -1.760031 
							 | 
	2017-07-02 14:03:47.115000+02:00 
 | 78 
							 | 
	eo1Pec9DyI5lxwa4KhvwXw 
 | 
	train 
 | 
	img/3/141fd713-5bbc-48ce-a95d-8ec503919be5.jpeg 
 | 
					
	5eb9a153-81c2-437c-a7c2-494ab474dad2 
 | 
	Mapillary 
 | 270,036,261,481,904 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=270036261481904&focus=photo 
 | 
	random sample and manual label 
 | 
	Tarazona de Aragón 
 | 1,724,796,233 
							 | 
	Spain 
 | 
	Europe 
 | 41.784555 
							 | -1.76113 
							 | 
	2017-07-02 14:03:39.031000+02:00 
 | 70 
							 | 
	eo1Pec9DyI5lxwa4KhvwXw 
 | 
	train 
 | 
	img/1/5eb9a153-81c2-437c-a7c2-494ab474dad2.jpeg 
 | 
					
	6707bb77-44cd-41bb-bebc-83fea443d9db 
 | 
	Mapillary 
 | 825,708,831,675,475 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=825708831675475&focus=photo 
 | 
	random sample and manual label 
 | 
	Tarazona de Aragón 
 | 1,724,796,233 
							 | 
	Spain 
 | 
	Europe 
 | 41.791134 
							 | -1.766039 
							 | 
	2016-11-01 16:57:19.262000+01:00 
 | 37 
							 | 
	K-ILLX1_HQqfj3Z1pNCB9Q 
 | 
	train 
 | 
	img/6/6707bb77-44cd-41bb-bebc-83fea443d9db.jpeg 
 | 
					
	0ef75504-f5c2-4c86-811d-39aca429291f 
 | 
	Mapillary 
 | 373,767,707,225,320 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=373767707225320&focus=photo 
 | 
	random sample and manual label 
 | 
	Tarazona de Aragón 
 | 1,724,796,233 
							 | 
	Spain 
 | 
	Europe 
 | 41.790222 
							 | -1.767087 
							 | 
	2016-11-01 12:01:18.774000+01:00 
 | 427 
							 | 
	19cpum69akigj5podygolw 
 | 
	train 
 | 
	img/4/0ef75504-f5c2-4c86-811d-39aca429291f.jpeg 
 | 
					
	42e8c905-c180-4cf7-99ba-f8195aeb3be5 
 | 
	Mapillary 
 | 146,806,674,059,957 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=146806674059957&focus=photo 
 | 
	random sample and manual label 
 | 
	Tarazona de Aragón 
 | 1,724,796,233 
							 | 
	Spain 
 | 
	Europe 
 | 41.790896 
							 | -1.761716 
							 | 
	2016-11-01 12:00:25.840000+01:00 
 | 401 
							 | 
	19cpum69akigj5podygolw 
 | 
	train 
 | 
	img/5/42e8c905-c180-4cf7-99ba-f8195aeb3be5.jpeg 
 | 
					
	84807902-c117-49cf-857d-d63541ed137b 
 | 
	Mapillary 
 | 798,385,614,447,860 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=798385614447860&focus=photo 
 | 
	random sample and manual label 
 | 
	Tarazona de Aragón 
 | 1,724,796,233 
							 | 
	Spain 
 | 
	Europe 
 | 41.790222 
							 | -1.767342 
							 | 
	2018-08-05 11:33:58.213000+02:00 
 | 16 
							 | 
	J63JR0B5QM6pfhxWwj9IWA 
 | 
	train 
 | 
	img/5/84807902-c117-49cf-857d-d63541ed137b.jpeg 
 | 
					
	1dacc914-cd74-4970-9a89-20b440c2ea5c 
 | 
	Mapillary 
 | 304,339,664,403,173 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=304339664403173&focus=photo 
 | 
	random sample and manual label 
 | 
	Tarazona de Aragón 
 | 1,724,796,233 
							 | 
	Spain 
 | 
	Europe 
 | 41.784861 
							 | -1.764948 
							 | 
	2017-07-02 14:03:12.794000+02:00 
 | 44 
							 | 
	eo1Pec9DyI5lxwa4KhvwXw 
 | 
	train 
 | 
	img/4/1dacc914-cd74-4970-9a89-20b440c2ea5c.jpeg 
 | 
					
	b6516ab0-da81-4fe9-8d42-cb77c9937bf2 
 | 
	Mapillary 
 | 215,515,886,644,180 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=215515886644180&focus=photo 
 | 
	random sample and manual label 
 | 
	Tarazona de Aragón 
 | 1,724,796,233 
							 | 
	Spain 
 | 
	Europe 
 | 41.784752 
							 | -1.764151 
							 | 
	2017-07-02 14:03:17.798000+02:00 
 | 49 
							 | 
	eo1Pec9DyI5lxwa4KhvwXw 
 | 
	train 
 | 
	img/6/b6516ab0-da81-4fe9-8d42-cb77c9937bf2.jpeg 
 | 
					
	e19781ee-c0b7-40a0-8357-8f8abbb4bece 
 | 
	Mapillary 
 | 207,663,590,941,956 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=207663590941956&focus=photo 
 | 
	random sample and manual label 
 | 
	Tarazona de Aragón 
 | 1,724,796,233 
							 | 
	Spain 
 | 
	Europe 
 | 41.790154 
							 | -1.767386 
							 | 
	2016-11-01 16:57:09.421000+01:00 
 | 27 
							 | 
	K-ILLX1_HQqfj3Z1pNCB9Q 
 | 
	train 
 | 
	img/3/e19781ee-c0b7-40a0-8357-8f8abbb4bece.jpeg 
 | 
					
	7680f8b9-6b9b-48c7-ab73-e18537ec7336 
 | 
	Mapillary 
 | 1,107,543,566,418,319 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=1107543566418319&focus=photo 
 | 
	random sample and manual label 
 | 
	Northallerton 
 | 1,826,697,671 
							 | 
	United Kingdom 
 | 
	Europe 
 | 54.326377 
							 | -1.400904 
							 | 
	2018-05-23 15:26:02.529000+01:00 
 | 630 
							 | 
	924f2559-43c3-478e-b52a-bad0a1e78967 
 | 
	train 
 | 
	img/6/7680f8b9-6b9b-48c7-ab73-e18537ec7336.jpeg 
 | 
					
	f4a6495c-9899-4b87-913c-58f044135562 
 | 
	Mapillary 
 | 157,589,106,369,935 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=157589106369935&focus=photo 
 | 
	random sample and manual label 
 | 
	Northallerton 
 | 1,826,697,671 
							 | 
	United Kingdom 
 | 
	Europe 
 | 54.326032 
							 | -1.399915 
							 | 
	2018-05-23 15:25:58.529000+01:00 
 | 626 
							 | 
	924f2559-43c3-478e-b52a-bad0a1e78967 
 | 
	train 
 | 
	img/6/f4a6495c-9899-4b87-913c-58f044135562.jpeg 
 | 
					
	65a28401-03df-4ed8-8fa3-825255be0fa2 
 | 
	Mapillary 
 | 487,109,565,864,184 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=487109565864184&focus=photo 
 | 
	random sample and manual label 
 | 
	Northallerton 
 | 1,826,697,671 
							 | 
	United Kingdom 
 | 
	Europe 
 | 54.326308 
							 | -1.400644 
							 | 
	2018-05-23 15:26:01.529000+01:00 
 | 629 
							 | 
	924f2559-43c3-478e-b52a-bad0a1e78967 
 | 
	train 
 | 
	img/4/65a28401-03df-4ed8-8fa3-825255be0fa2.jpeg 
 | 
					
	10bf6ad1-a3bc-4281-a2a0-56e51172c365 
 | 
	Mapillary 
 | 313,601,323,534,233 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=313601323534233&focus=photo 
 | 
	random sample and manual label 
 | 
	Northallerton 
 | 1,826,697,671 
							 | 
	United Kingdom 
 | 
	Europe 
 | 54.325386 
							 | -1.39644 
							 | 
	2018-05-23 15:25:44.530000+01:00 
 | 612 
							 | 
	924f2559-43c3-478e-b52a-bad0a1e78967 
 | 
	train 
 | 
	img/2/10bf6ad1-a3bc-4281-a2a0-56e51172c365.jpeg 
 | 
					
	3b60ab1b-1e73-48e0-9583-2a15a8d44321 
 | 
	Mapillary 
 | 246,478,903,924,447 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=246478903924447&focus=photo 
 | 
	random sample and manual label 
 | 
	Northallerton 
 | 1,826,697,671 
							 | 
	United Kingdom 
 | 
	Europe 
 | 54.325788 
							 | -1.39916 
							 | 
	2018-05-23 15:25:55.529000+01:00 
 | 623 
							 | 
	924f2559-43c3-478e-b52a-bad0a1e78967 
 | 
	train 
 | 
	img/4/3b60ab1b-1e73-48e0-9583-2a15a8d44321.jpeg 
 | 
					
	29200d65-7724-4b15-83b8-54a525f5596f 
 | 
	Mapillary 
 | 862,169,824,334,527 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=862169824334527&focus=photo 
 | 
	random sample and manual label 
 | 
	Northallerton 
 | 1,826,697,671 
							 | 
	United Kingdom 
 | 
	Europe 
 | 54.326443 
							 | -1.401146 
							 | 
	2018-05-23 15:26:03.529000+01:00 
 | 631 
							 | 
	924f2559-43c3-478e-b52a-bad0a1e78967 
 | 
	train 
 | 
	img/5/29200d65-7724-4b15-83b8-54a525f5596f.jpeg 
 | 
					
	ea70082a-9ec4-4ece-8504-5084f3883471 
 | 
	Mapillary 
 | 802,672,190,683,499 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=802672190683499&focus=photo 
 | 
	random sample and manual label 
 | 
	Northallerton 
 | 1,826,697,671 
							 | 
	United Kingdom 
 | 
	Europe 
 | 54.325657 
							 | -1.398363 
							 | 
	2018-05-23 15:25:52.529000+01:00 
 | 620 
							 | 
	924f2559-43c3-478e-b52a-bad0a1e78967 
 | 
	train 
 | 
	img/3/ea70082a-9ec4-4ece-8504-5084f3883471.jpeg 
 | 
					
	ed24d625-9831-472c-bf70-4ee5384d9a05 
 | 
	Mapillary 
 | 183,449,380,312,477 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=183449380312477&focus=photo 
 | 
	random sample and manual label 
 | 
	Northallerton 
 | 1,826,697,671 
							 | 
	United Kingdom 
 | 
	Europe 
 | 54.324945 
							 | -1.39567 
							 | 
	2018-05-23 15:25:40.529000+01:00 
 | 608 
							 | 
	924f2559-43c3-478e-b52a-bad0a1e78967 
 | 
	train 
 | 
	img/2/ed24d625-9831-472c-bf70-4ee5384d9a05.jpeg 
 | 
					
	0db6166d-2c15-43f3-b102-c2333d330c1d 
 | 
	Mapillary 
 | 1,410,685,509,292,358 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=1410685509292358&focus=photo 
 | 
	random sample and manual label 
 | 
	Northallerton 
 | 1,826,697,671 
							 | 
	United Kingdom 
 | 
	Europe 
 | 54.326226 
							 | -1.400373 
							 | 
	2018-05-23 15:26:00.529000+01:00 
 | 628 
							 | 
	924f2559-43c3-478e-b52a-bad0a1e78967 
 | 
	train 
 | 
	img/5/0db6166d-2c15-43f3-b102-c2333d330c1d.jpeg 
 | 
					
	adb29d75-518b-4624-be5c-6d7f0aefceb8 
 | 
	Mapillary 
 | 490,878,362,031,890 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=490878362031890&focus=photo 
 | 
	random sample and manual label 
 | 
	Northallerton 
 | 1,826,697,671 
							 | 
	United Kingdom 
 | 
	Europe 
 | 54.32548 
							 | -1.396653 
							 | 
	2018-05-23 15:25:45.530000+01:00 
 | 613 
							 | 
	924f2559-43c3-478e-b52a-bad0a1e78967 
 | 
	train 
 | 
	img/2/adb29d75-518b-4624-be5c-6d7f0aefceb8.jpeg 
 | 
					
	8cfedd0e-2bf6-49d0-97e7-939270bd4d65 
 | 
	Mapillary 
 | 148,004,727,295,582 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=148004727295582&focus=photo 
 | 
	random sample and manual label 
 | 
	Northallerton 
 | 1,826,697,671 
							 | 
	United Kingdom 
 | 
	Europe 
 | 54.32568 
							 | -1.398631 
							 | 
	2018-05-23 15:25:53.529000+01:00 
 | 621 
							 | 
	924f2559-43c3-478e-b52a-bad0a1e78967 
 | 
	train 
 | 
	img/6/8cfedd0e-2bf6-49d0-97e7-939270bd4d65.jpeg 
 | 
					
	91e8af0b-52f8-4c4e-9a96-58e0ba496091 
 | 
	Mapillary 
 | 152,595,283,499,193 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=152595283499193&focus=photo 
 | 
	random sample and manual label 
 | 
	Northallerton 
 | 1,826,697,671 
							 | 
	United Kingdom 
 | 
	Europe 
 | 54.32517 
							 | -1.396052 
							 | 
	2018-05-23 15:25:42.530000+01:00 
 | 610 
							 | 
	924f2559-43c3-478e-b52a-bad0a1e78967 
 | 
	train 
 | 
	img/4/91e8af0b-52f8-4c4e-9a96-58e0ba496091.jpeg 
 | 
					
	1341eb2b-86a3-4039-8a92-ac643cf4d663 
 | 
	Mapillary 
 | 589,254,562,463,489 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=589254562463489&focus=photo 
 | 
	random sample and manual label 
 | 
	Northallerton 
 | 1,826,697,671 
							 | 
	United Kingdom 
 | 
	Europe 
 | 54.325053 
							 | -1.395853 
							 | 
	2018-05-23 15:25:41.530000+01:00 
 | 609 
							 | 
	924f2559-43c3-478e-b52a-bad0a1e78967 
 | 
	train 
 | 
	img/1/1341eb2b-86a3-4039-8a92-ac643cf4d663.jpeg 
 | 
					
	51f94ad7-64ae-423b-b0c0-7f6c38707673 
 | 
	Mapillary 
 | 1,893,685,710,795,509 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=1893685710795509&focus=photo 
 | 
	random sample and manual label 
 | 
	Northallerton 
 | 1,826,697,671 
							 | 
	United Kingdom 
 | 
	Europe 
 | 54.325874 
							 | -1.399415 
							 | 
	2018-05-23 15:25:56.529000+01:00 
 | 624 
							 | 
	924f2559-43c3-478e-b52a-bad0a1e78967 
 | 
	train 
 | 
	img/3/51f94ad7-64ae-423b-b0c0-7f6c38707673.jpeg 
 | 
					
	34b5765b-d540-40a9-97a9-040fac67fe9b 
 | 
	Mapillary 
 | 144,570,840,982,973 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=144570840982973&focus=photo 
 | 
	random sample and manual label 
 | 
	Northallerton 
 | 1,826,697,671 
							 | 
	United Kingdom 
 | 
	Europe 
 | 54.325657 
							 | -1.398095 
							 | 
	2018-05-23 15:25:51.529000+01:00 
 | 619 
							 | 
	924f2559-43c3-478e-b52a-bad0a1e78967 
 | 
	train 
 | 
	img/1/34b5765b-d540-40a9-97a9-040fac67fe9b.jpeg 
 | 
					
	344cfc79-e839-4a25-b8bf-a1683c399431 
 | 
	Mapillary 
 | 589,979,889,071,874 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=589979889071874&focus=photo 
 | 
	random sample and manual label 
 | 
	Northallerton 
 | 1,826,697,671 
							 | 
	United Kingdom 
 | 
	Europe 
 | 54.326109 
							 | -1.400153 
							 | 
	2018-05-23 15:25:59.529000+01:00 
 | 627 
							 | 
	924f2559-43c3-478e-b52a-bad0a1e78967 
 | 
	train 
 | 
	img/2/344cfc79-e839-4a25-b8bf-a1683c399431.jpeg 
 | 
					
	23671806-354f-4e4a-b562-d45d8599d558 
 | 
	Mapillary 
 | 1,187,015,858,408,081 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=1187015858408081&focus=photo 
 | 
	random sample and manual label 
 | 
	Diego de Almagro 
 | 1,152,585,849 
							 | 
	Chile 
 | 
	South America 
 | -26.94132 
							 | -69.027472 
							 | 
	2020-03-08 11:34:15.824000-03:00 
 | 93 
							 | 
	b1a10y0215fx4lcq05cbs9 
 | 
	train 
 | 
	img/1/23671806-354f-4e4a-b562-d45d8599d558.jpeg 
 | 
					
	fc4d27cb-96fe-4216-95a6-2d3788988130 
 | 
	Mapillary 
 | 776,308,026,609,745 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=776308026609745&focus=photo 
 | 
	random sample and manual label 
 | 
	Diego de Almagro 
 | 1,152,585,849 
							 | 
	Chile 
 | 
	South America 
 | -26.940172 
							 | -69.026643 
							 | 
	2020-03-08 11:34:24.848000-03:00 
 | 101 
							 | 
	b1a10y0215fx4lcq05cbs9 
 | 
	train 
 | 
	img/2/fc4d27cb-96fe-4216-95a6-2d3788988130.jpeg 
 | 
					
	078b3e17-1958-4311-b0cd-9a56e7f2ff38 
 | 
	Mapillary 
 | 2,834,691,673,447,367 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=2834691673447367&focus=photo 
 | 
	random sample and manual label 
 | 
	Diego de Almagro 
 | 1,152,585,849 
							 | 
	Chile 
 | 
	South America 
 | -26.940408 
							 | -69.026814 
							 | 
	2020-03-08 11:34:22.661000-03:00 
 | 99 
							 | 
	b1a10y0215fx4lcq05cbs9 
 | 
	train 
 | 
	img/4/078b3e17-1958-4311-b0cd-9a56e7f2ff38.jpeg 
 | 
					
	3e6c47c0-0037-4975-9543-e1a0976bf9de 
 | 
	Mapillary 
 | 137,476,115,036,772 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=137476115036772&focus=photo 
 | 
	random sample and manual label 
 | 
	Diego de Almagro 
 | 1,152,585,849 
							 | 
	Chile 
 | 
	South America 
 | -26.941014 
							 | -69.027254 
							 | 
	2020-03-08 11:34:18.031000-03:00 
 | 95 
							 | 
	b1a10y0215fx4lcq05cbs9 
 | 
	train 
 | 
	img/4/3e6c47c0-0037-4975-9543-e1a0976bf9de.jpeg 
 | 
					
	d860cf05-a360-4944-84f7-74119e951c6a 
 | 
	Mapillary 
 | 372,993,500,804,918 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=372993500804918&focus=photo 
 | 
	random sample and manual label 
 | 
	Diego de Almagro 
 | 1,152,585,849 
							 | 
	Chile 
 | 
	South America 
 | -26.939852 
							 | -69.026421 
							 | 
	2020-03-08 11:34:28.193000-03:00 
 | 104 
							 | 
	b1a10y0215fx4lcq05cbs9 
 | 
	train 
 | 
	img/2/d860cf05-a360-4944-84f7-74119e951c6a.jpeg 
 | 
					
	525eab8e-a252-4c1d-83ae-718122ca07ba 
 | 
	Mapillary 
 | 314,245,133,403,370 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=314245133403370&focus=photo 
 | 
	random sample and manual label 
 | 
	Diego de Almagro 
 | 1,152,585,849 
							 | 
	Chile 
 | 
	South America 
 | -26.941928 
							 | -69.027908 
							 | 
	2020-03-08 11:34:11.384000-03:00 
 | 89 
							 | 
	b1a10y0215fx4lcq05cbs9 
 | 
	train 
 | 
	img/5/525eab8e-a252-4c1d-83ae-718122ca07ba.jpeg 
 | 
					
	ec6b0fee-1c3b-4a5e-ab39-f541bace672b 
 | 
	Mapillary 
 | 162,337,479,174,809 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=162337479174809&focus=photo 
 | 
	random sample and manual label 
 | 
	Diego de Almagro 
 | 1,152,585,849 
							 | 
	Chile 
 | 
	South America 
 | -26.940679 
							 | -69.027012 
							 | 
	2020-03-08 11:34:20.488000-03:00 
 | 97 
							 | 
	b1a10y0215fx4lcq05cbs9 
 | 
	train 
 | 
	img/1/ec6b0fee-1c3b-4a5e-ab39-f541bace672b.jpeg 
 | 
					
	e42c10e5-5c50-4fa4-bbeb-87e18c5b3ca9 
 | 
	Mapillary 
 | 222,493,512,641,912 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=222493512641912&focus=photo 
 | 
	random sample and manual label 
 | 
	Diego de Almagro 
 | 1,152,585,849 
							 | 
	Chile 
 | 
	South America 
 | -26.940539 
							 | -69.02691 
							 | 
	2020-03-08 11:34:21.558000-03:00 
 | 98 
							 | 
	b1a10y0215fx4lcq05cbs9 
 | 
	train 
 | 
	img/3/e42c10e5-5c50-4fa4-bbeb-87e18c5b3ca9.jpeg 
 | 
					
	63cefc7c-6a45-4323-a0bb-4ef592a90959 
 | 
	Mapillary 
 | 673,607,083,434,957 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=673607083434957&focus=photo 
 | 
	random sample and manual label 
 | 
	Diego de Almagro 
 | 1,152,585,849 
							 | 
	Chile 
 | 
	South America 
 | -26.941472 
							 | -69.027581 
							 | 
	2020-03-08 11:34:14.721000-03:00 
 | 92 
							 | 
	b1a10y0215fx4lcq05cbs9 
 | 
	train 
 | 
	img/1/63cefc7c-6a45-4323-a0bb-4ef592a90959.jpeg 
 | 
					
	8c71ae95-4477-4c21-a10b-2b3b823499e7 
 | 
	Mapillary 
 | 226,839,982,132,294 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=226839982132294&focus=photo 
 | 
	random sample and manual label 
 | 
	Diego de Almagro 
 | 1,152,585,849 
							 | 
	Chile 
 | 
	South America 
 | -26.942077 
							 | -69.028012 
							 | 
	2020-03-08 11:34:10.293000-03:00 
 | 88 
							 | 
	b1a10y0215fx4lcq05cbs9 
 | 
	train 
 | 
	img/2/8c71ae95-4477-4c21-a10b-2b3b823499e7.jpeg 
 | 
					
	f7ff7c33-0b00-4f3f-9a5d-1623dbc2588c 
 | 
	Mapillary 
 | 328,364,788,704,472 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=328364788704472&focus=photo 
 | 
	random sample and manual label 
 | 
	Diego de Almagro 
 | 1,152,585,849 
							 | 
	Chile 
 | 
	South America 
 | -26.939951 
							 | -69.02649 
							 | 
	2020-03-08 11:34:27.079000-03:00 
 | 103 
							 | 
	b1a10y0215fx4lcq05cbs9 
 | 
	train 
 | 
	img/3/f7ff7c33-0b00-4f3f-9a5d-1623dbc2588c.jpeg 
 | 
					
	a33226c8-6791-4226-b884-c2d9db0c306f 
 | 
	Mapillary 
 | 1,062,304,020,965,452 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=1062304020965452&focus=photo 
 | 
	random sample and manual label 
 | 
	Diego de Almagro 
 | 1,152,585,849 
							 | 
	Chile 
 | 
	South America 
 | -26.940862 
							 | -69.027145 
							 | 
	2020-03-08 11:34:19.118000-03:00 
 | 96 
							 | 
	b1a10y0215fx4lcq05cbs9 
 | 
	train 
 | 
	img/6/a33226c8-6791-4226-b884-c2d9db0c306f.jpeg 
 | 
					
	b90c5bff-9294-4b02-aeba-24ae97cbbf45 
 | 
	Mapillary 
 | 386,487,156,034,164 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=386487156034164&focus=photo 
 | 
	random sample and manual label 
 | 
	Diego de Almagro 
 | 1,152,585,849 
							 | 
	Chile 
 | 
	South America 
 | -26.939673 
							 | -69.026289 
							 | 
	2020-03-08 11:34:30.383000-03:00 
 | 106 
							 | 
	b1a10y0215fx4lcq05cbs9 
 | 
	train 
 | 
	img/4/b90c5bff-9294-4b02-aeba-24ae97cbbf45.jpeg 
 | 
					
	ad74f76a-1733-44d9-ae3c-346f7b0f7530 
 | 
	Mapillary 
 | 566,971,930,934,876 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=566971930934876&focus=photo 
 | 
	random sample and manual label 
 | 
	Diego de Almagro 
 | 1,152,585,849 
							 | 
	Chile 
 | 
	South America 
 | -26.940057 
							 | -69.026562 
							 | 
	2020-03-08 11:34:25.986000-03:00 
 | 102 
							 | 
	b1a10y0215fx4lcq05cbs9 
 | 
	train 
 | 
	img/2/ad74f76a-1733-44d9-ae3c-346f7b0f7530.jpeg 
 | 
					
	08f90444-f6e7-4e22-a3e2-b7334e59ac0e 
 | 
	Mapillary 
 | 1,179,928,785,792,813 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=1179928785792813&focus=photo 
 | 
	random sample and manual label 
 | 
	Diego de Almagro 
 | 1,152,585,849 
							 | 
	Chile 
 | 
	South America 
 | -26.941623 
							 | -69.027689 
							 | 
	2020-03-08 11:34:13.619000-03:00 
 | 91 
							 | 
	b1a10y0215fx4lcq05cbs9 
 | 
	train 
 | 
	img/5/08f90444-f6e7-4e22-a3e2-b7334e59ac0e.jpeg 
 | 
					
	e796e615-8e7a-48e4-b24f-57871b0bca80 
 | 
	Mapillary 
 | 2,230,769,243,726,162 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=2230769243726162&focus=photo 
 | 
	random sample and manual label 
 | 
	Diego de Almagro 
 | 1,152,585,849 
							 | 
	Chile 
 | 
	South America 
 | -26.941771 
							 | -69.027796 
							 | 
	2020-03-08 11:34:12.533000-03:00 
 | 90 
							 | 
	b1a10y0215fx4lcq05cbs9 
 | 
	train 
 | 
	img/1/e796e615-8e7a-48e4-b24f-57871b0bca80.jpeg 
 | 
					
	ca2d565f-d567-4b96-a5bb-7b481e0faae3 
 | 
	Mapillary 
 | 299,381,561,741,730 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=299381561741730&focus=photo 
 | 
	random sample and manual label 
 | 
	Diego de Almagro 
 | 1,152,585,849 
							 | 
	Chile 
 | 
	South America 
 | -26.939763 
							 | -69.026355 
							 | 
	2020-03-08 11:34:29.280000-03:00 
 | 105 
							 | 
	b1a10y0215fx4lcq05cbs9 
 | 
	train 
 | 
	img/4/ca2d565f-d567-4b96-a5bb-7b481e0faae3.jpeg 
 | 
					
	10a3d5c8-7b4d-471b-8252-26620849b96a 
 | 
	Mapillary 
 | 472,341,480,694,575 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=472341480694575&focus=photo 
 | 
	random sample and manual label 
 | 
	Diego de Almagro 
 | 1,152,585,849 
							 | 
	Chile 
 | 
	South America 
 | -26.941168 
							 | -69.027364 
							 | 
	2020-03-08 11:34:16.927000-03:00 
 | 94 
							 | 
	b1a10y0215fx4lcq05cbs9 
 | 
	train 
 | 
	img/1/10a3d5c8-7b4d-471b-8252-26620849b96a.jpeg 
 | 
					
	9c3c8431-e002-4156-aa01-97578a51a6c8 
 | 
	Mapillary 
 | 2,989,949,317,912,042 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=2989949317912042&focus=photo 
 | 
	random sample and manual label 
 | 
	Diego de Almagro 
 | 1,152,585,849 
							 | 
	Chile 
 | 
	South America 
 | -26.940284 
							 | -69.026724 
							 | 
	2020-03-08 11:34:23.798000-03:00 
 | 100 
							 | 
	b1a10y0215fx4lcq05cbs9 
 | 
	train 
 | 
	img/4/9c3c8431-e002-4156-aa01-97578a51a6c8.jpeg 
 | 
					
	d91aa51d-698c-4640-b7a9-2d2d9a81dceb 
 | 
	Mapillary 
 | 445,746,653,393,222 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=445746653393222&focus=photo 
 | 
	random sample and manual label 
 | 
	Zevenaar 
 | 1,528,993,139 
							 | 
	Netherlands 
 | 
	Europe 
 | 51.939453 
							 | 6.056633 
							 | 
	2017-01-25 14:32:28+01:00 
 | 362 
							 | 
	r6Yg1awvf9r55_7BzKhbHw 
 | 
	train 
 | 
	img/2/d91aa51d-698c-4640-b7a9-2d2d9a81dceb.jpeg 
 | 
					
	66ca0c7e-06e5-4d0d-8f84-d207bddb1de7 
 | 
	Mapillary 
 | 1,991,049,161,070,737 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=1991049161070737&focus=photo 
 | 
	random sample and manual label 
 | 
	La Banda 
 | 1,032,317,566 
							 | 
	Argentina 
 | 
	South America 
 | -27.755321 
							 | -64.267196 
							 | 
	2019-12-07 19:20:56.809000-03:00 
 | 57 
							 | 
	rrmvd772t0ugqagqe8nkli 
 | 
	train 
 | 
	img/3/66ca0c7e-06e5-4d0d-8f84-d207bddb1de7.jpeg 
 | 
					
	6513e96e-964a-47fa-8936-04f6bb78a056 
 | 
	Mapillary 
 | 140,759,084,706,540 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=140759084706540&focus=photo 
 | 
	random sample and manual label 
 | 
	Santiago del Estero 
 | 1,032,492,280 
							 | 
	Argentina 
 | 
	South America 
 | -27.755931 
							 | -64.267466 
							 | 
	2019-12-07 19:20:50.882000-03:00 
 | 54 
							 | 
	rrmvd772t0ugqagqe8nkli 
 | 
	train 
 | 
	img/5/6513e96e-964a-47fa-8936-04f6bb78a056.jpeg 
 | 
					
	eb72852c-7403-4bf4-b997-4eb495457504 
 | 
	Mapillary 
 | 328,315,691,972,787 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=328315691972787&focus=photo 
 | 
	random sample and manual label 
 | 
	Santiago del Estero 
 | 1,032,492,280 
							 | 
	Argentina 
 | 
	South America 
 | -27.756539 
							 | -64.267856 
							 | 
	2019-12-07 19:20:44.887000-03:00 
 | 51 
							 | 
	rrmvd772t0ugqagqe8nkli 
 | 
	train 
 | 
	img/5/eb72852c-7403-4bf4-b997-4eb495457504.jpeg 
 | 
					
	d4128464-7f65-49ad-8baa-40fbe4416dc5 
 | 
	Mapillary 
 | 194,211,242,443,515 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=194211242443515&focus=photo 
 | 
	random sample and manual label 
 | 
	La Banda 
 | 1,032,317,566 
							 | 
	Argentina 
 | 
	South America 
 | -27.755134 
							 | -64.267141 
							 | 
	2019-12-07 19:20:58.858000-03:00 
 | 58 
							 | 
	rrmvd772t0ugqagqe8nkli 
 | 
	train 
 | 
	img/3/d4128464-7f65-49ad-8baa-40fbe4416dc5.jpeg 
 | 
					
	0c907f6a-eacc-4a7e-8a1f-7e1c8f60dd33 
 | 
	Mapillary 
 | 794,360,608,140,867 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=794360608140867&focus=photo 
 | 
	random sample and manual label 
 | 
	Santiago del Estero 
 | 1,032,492,280 
							 | 
	Argentina 
 | 
	South America 
 | -27.756364 
							 | -64.267737 
							 | 
	2019-12-07 19:20:46.735000-03:00 
 | 52 
							 | 
	rrmvd772t0ugqagqe8nkli 
 | 
	train 
 | 
	img/1/0c907f6a-eacc-4a7e-8a1f-7e1c8f60dd33.jpeg 
 | 
					
	0dcb1428-bfdd-49be-87e3-8e27366d6a6a 
 | 
	Mapillary 
 | 396,201,244,889,620 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=396201244889620&focus=photo 
 | 
	random sample and manual label 
 | 
	La Banda 
 | 1,032,317,566 
							 | 
	Argentina 
 | 
	South America 
 | -27.755734 
							 | -64.267361 
							 | 
	2019-12-07 19:20:52.712000-03:00 
 | 55 
							 | 
	rrmvd772t0ugqagqe8nkli 
 | 
	train 
 | 
	img/4/0dcb1428-bfdd-49be-87e3-8e27366d6a6a.jpeg 
 | 
					
	fc096580-70d5-45ad-954f-f1510253e1db 
 | 
	Mapillary 
 | 466,867,207,712,589 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=466867207712589&focus=photo 
 | 
	random sample and manual label 
 | 
	Santiago del Estero 
 | 1,032,492,280 
							 | 
	Argentina 
 | 
	South America 
 | -27.756153 
							 | -64.267602 
							 | 
	2019-12-07 19:20:48.809000-03:00 
 | 53 
							 | 
	rrmvd772t0ugqagqe8nkli 
 | 
	train 
 | 
	img/4/fc096580-70d5-45ad-954f-f1510253e1db.jpeg 
 | 
					
	a8a1f331-7991-4999-b7a2-bdae2a67b356 
 | 
	Mapillary 
 | 4,290,765,970,980,868 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=4290765970980868&focus=photo 
 | 
	random sample and manual label 
 | 
	La Banda 
 | 1,032,317,566 
							 | 
	Argentina 
 | 
	South America 
 | -27.755524 
							 | -64.267264 
							 | 
	2019-12-07 19:20:54.743000-03:00 
 | 56 
							 | 
	rrmvd772t0ugqagqe8nkli 
 | 
	train 
 | 
	img/5/a8a1f331-7991-4999-b7a2-bdae2a67b356.jpeg 
 | 
					
	6553f862-a7e1-4ee2-902d-78b3cf4950a6 
 | 
	Mapillary 
 | 177,212,604,287,368 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=177212604287368&focus=photo 
 | 
	random sample and manual label 
 | 
	Lavāsān 
 | 1,364,266,184 
							 | 
	Iran 
 | 
	Asia 
 | 36.175699 
							 | 51.314296 
							 | 
	2019-07-03 22:26:58.272000+04:30 
 | 312 
							 | 
	p8dkgr1jyss78nbi3z9jy6 
 | 
	train 
 | 
	img/5/6553f862-a7e1-4ee2-902d-78b3cf4950a6.jpeg 
 | 
					
	efae1f6b-cc95-4298-88c9-f0bb989b9359 
 | 
	Mapillary 
 | 490,550,372,186,873 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=490550372186873&focus=photo 
 | 
	random sample and manual label 
 | 
	Lavāsān 
 | 1,364,266,184 
							 | 
	Iran 
 | 
	Asia 
 | 36.175471 
							 | 51.314505 
							 | 
	2019-07-03 22:26:55.948000+04:30 
 | 296 
							 | 
	p8dkgr1jyss78nbi3z9jy6 
 | 
	train 
 | 
	img/3/efae1f6b-cc95-4298-88c9-f0bb989b9359.jpeg 
 | 
					
	0cbf16e4-7c28-4630-a210-f074ac4fc57f 
 | 
	Mapillary 
 | 492,847,705,290,269 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=492847705290269&focus=photo 
 | 
	random sample and manual label 
 | 
	Lavāsān 
 | 1,364,266,184 
							 | 
	Iran 
 | 
	Asia 
 | 36.176811 
							 | 51.314602 
							 | 
	2019-07-03 22:27:06.048000+04:30 
 | 378 
							 | 
	p8dkgr1jyss78nbi3z9jy6 
 | 
	train 
 | 
	img/2/0cbf16e4-7c28-4630-a210-f074ac4fc57f.jpeg 
 | 
					
	929cd75e-d14b-4d09-a60f-fac1c2d00c69 
 | 
	Mapillary 
 | 802,422,840,388,852 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=802422840388852&focus=photo 
 | 
	random sample and manual label 
 | 
	Lavāsān 
 | 1,364,266,184 
							 | 
	Iran 
 | 
	Asia 
 | 36.176136 
							 | 51.314257 
							 | 
	2019-07-03 22:27:01.546000+04:30 
 | 337 
							 | 
	p8dkgr1jyss78nbi3z9jy6 
 | 
	train 
 | 
	img/6/929cd75e-d14b-4d09-a60f-fac1c2d00c69.jpeg 
 | 
					
	7b122b5e-092e-4c97-a612-59873c760dce 
 | 
	Mapillary 
 | 465,823,671,377,372 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=465823671377372&focus=photo 
 | 
	random sample and manual label 
 | 
	Lavāsān 
 | 1,364,266,184 
							 | 
	Iran 
 | 
	Asia 
 | 36.174634 
							 | 51.315115 
							 | 
	2019-07-03 22:26:48.605000+04:30 
 | 241 
							 | 
	p8dkgr1jyss78nbi3z9jy6 
 | 
	train 
 | 
	img/1/7b122b5e-092e-4c97-a612-59873c760dce.jpeg 
 | 
					
	4adffbff-55a5-4d8f-aae2-415b6166fc39 
 | 
	Mapillary 
 | 287,701,232,792,827 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=287701232792827&focus=photo 
 | 
	random sample and manual label 
 | 
	Lavāsān 
 | 1,364,266,184 
							 | 
	Iran 
 | 
	Asia 
 | 36.176991 
							 | 51.314614 
							 | 
	2019-07-03 22:27:06.648000+04:30 
 | 388 
							 | 
	p8dkgr1jyss78nbi3z9jy6 
 | 
	train 
 | 
	img/3/4adffbff-55a5-4d8f-aae2-415b6166fc39.jpeg 
 | 
					
	ac62c362-018d-4f43-bc18-81b3f486b756 
 | 
	Mapillary 
 | 797,326,607,870,365 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=797326607870365&focus=photo 
 | 
	random sample and manual label 
 | 
	Lavāsān 
 | 1,364,266,184 
							 | 
	Iran 
 | 
	Asia 
 | 36.1761 
							 | 51.314243 
							 | 
	2018-12-05 09:17:25.422000+03:30 
 | 39 
							 | 
	ki0cdixivdofra56yj6dvw 
 | 
	train 
 | 
	img/6/ac62c362-018d-4f43-bc18-81b3f486b756.jpeg 
 | 
					
	bfaa9b3e-83ca-43a9-9f4d-ded2b3f433f7 
 | 
	Mapillary 
 | 832,471,700,683,937 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=832471700683937&focus=photo 
 | 
	random sample and manual label 
 | 
	Lavāsān 
 | 1,364,266,184 
							 | 
	Iran 
 | 
	Asia 
 | 36.174745 
							 | 51.315052 
							 | 
	2019-07-03 22:26:49.415000+04:30 
 | 248 
							 | 
	p8dkgr1jyss78nbi3z9jy6 
 | 
	train 
 | 
	img/5/bfaa9b3e-83ca-43a9-9f4d-ded2b3f433f7.jpeg 
 | 
					
	fdf17967-046e-4fb8-9bfc-bf696ab37278 
 | 
	Mapillary 
 | 1,837,012,539,793,453 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=1837012539793453&focus=photo 
 | 
	random sample and manual label 
 | 
	Lavāsān 
 | 1,364,266,184 
							 | 
	Iran 
 | 
	Asia 
 | 36.177316 
							 | 51.314895 
							 | 
	2019-07-03 22:27:09.160000+04:30 
 | 414 
							 | 
	p8dkgr1jyss78nbi3z9jy6 
 | 
	train 
 | 
	img/1/fdf17967-046e-4fb8-9bfc-bf696ab37278.jpeg 
 | 
					
	4da54df9-2c83-4598-aa43-288401221c0e 
 | 
	Mapillary 
 | 225,768,142,245,135 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=225768142245135&focus=photo 
 | 
	random sample and manual label 
 | 
	Lavāsān 
 | 1,364,266,184 
							 | 
	Iran 
 | 
	Asia 
 | 36.175652 
							 | 51.31433 
							 | 
	2019-07-03 22:26:57.829000+04:30 
 | 309 
							 | 
	p8dkgr1jyss78nbi3z9jy6 
 | 
	train 
 | 
	img/5/4da54df9-2c83-4598-aa43-288401221c0e.jpeg 
 | 
					
	53657d0e-9568-40f3-890f-0dce48dce0e4 
 | 
	Mapillary 
 | 938,627,560,272,189 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=938627560272189&focus=photo 
 | 
	random sample and manual label 
 | 
	Lavāsān 
 | 1,364,266,184 
							 | 
	Iran 
 | 
	Asia 
 | 36.176398 
							 | 51.314338 
							 | 
	2019-07-03 22:27:03.282000+04:30 
 | 352 
							 | 
	p8dkgr1jyss78nbi3z9jy6 
 | 
	train 
 | 
	img/4/53657d0e-9568-40f3-890f-0dce48dce0e4.jpeg 
 | 
					
	9e788c80-353f-41c6-8d69-649e34f87b69 
 | 
	Mapillary 
 | 157,854,502,950,885 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=157854502950885&focus=photo 
 | 
	random sample and manual label 
 | 
	Lavāsān 
 | 1,364,266,184 
							 | 
	Iran 
 | 
	Asia 
 | 36.175699 
							 | 51.314318 
							 | 
	2018-12-07 11:55:10.007000+03:30 
 | 234 
							 | 
	8DL_SUCXSFS6V28z86I05g 
 | 
	train 
 | 
	img/4/9e788c80-353f-41c6-8d69-649e34f87b69.jpeg 
 | 
					
	a8e609ac-c05d-46e5-b054-a6118753c110 
 | 
	Mapillary 
 | 371,005,134,311,065 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=371005134311065&focus=photo 
 | 
	random sample and manual label 
 | 
	Lavāsān 
 | 1,364,266,184 
							 | 
	Iran 
 | 
	Asia 
 | 36.174738 
							 | 51.315098 
							 | 
	2018-12-07 11:55:01.707000+03:30 
 | 230 
							 | 
	8DL_SUCXSFS6V28z86I05g 
 | 
	train 
 | 
	img/6/a8e609ac-c05d-46e5-b054-a6118753c110.jpeg 
 | 
					
	ec75d0cd-5cb7-4456-8673-db6d9c9a5059 
 | 
	Mapillary 
 | 506,001,950,758,557 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=506001950758557&focus=photo 
 | 
	random sample and manual label 
 | 
	Lavāsān 
 | 1,364,266,184 
							 | 
	Iran 
 | 
	Asia 
 | 36.175288 
							 | 51.314623 
							 | 
	2019-07-03 22:26:54.372000+04:30 
 | 284 
							 | 
	p8dkgr1jyss78nbi3z9jy6 
 | 
	train 
 | 
	img/5/ec75d0cd-5cb7-4456-8673-db6d9c9a5059.jpeg 
 | 
					
	f6d28c50-583f-48ec-b5cc-b433feeb6255 
 | 
	Mapillary 
 | 1,241,267,469,624,826 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=1241267469624826&focus=photo 
 | 
	random sample and manual label 
 | 
	Lavāsān 
 | 1,364,266,184 
							 | 
	Iran 
 | 
	Asia 
 | 36.177414 
							 | 51.315082 
							 | 
	2019-07-03 22:27:10.539000+04:30 
 | 425 
							 | 
	p8dkgr1jyss78nbi3z9jy6 
 | 
	train 
 | 
	img/1/f6d28c50-583f-48ec-b5cc-b433feeb6255.jpeg 
 | 
					
	a7182672-b3aa-4095-b284-fd028601dbee 
 | 
	Mapillary 
 | 334,357,738,032,528 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=334357738032528&focus=photo 
 | 
	random sample and manual label 
 | 
	Debrecen 
 | 1,348,460,698 
							 | 
	Hungary 
 | 
	Europe 
 | 47.529854 
							 | 21.639075 
							 | 
	2017-12-02 13:36:08.161000+01:00 
 | 592 
							 | 
	6zpr8o7931caqflwdwvqyh 
 | 
	train 
 | 
	img/6/a7182672-b3aa-4095-b284-fd028601dbee.jpeg 
 | 
					
	639f1218-842f-40fb-8e92-7c6e951ec665 
 | 
	Mapillary 
 | 956,566,868,345,917 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=956566868345917&focus=photo 
 | 
	random sample and manual label 
 | 
	West Haven 
 | 1,840,004,852 
							 | 
	United States 
 | 
	North America 
 | 41.275093 
							 | -72.969314 
							 | 
	2021-07-11 06:03:56.697000-04:00 
 | 379 
							 | 
	T9fD17IVwsiJFXevk2zOQC 
 | 
	train 
 | 
	img/5/639f1218-842f-40fb-8e92-7c6e951ec665.jpeg 
 | 
					
	35d17b46-ac0a-4dea-a680-3ac2429b79fd 
 | 
	Mapillary 
 | 2,971,229,786,468,848 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=2971229786468848&focus=photo 
 | 
	random sample and manual label 
 | 
	Marmagao 
 | 1,356,764,529 
							 | 
	India 
 | 
	Asia 
 | 15.409954 
							 | 73.794828 
							 | 
	2019-03-20 10:31:29.489000+05:30 
 | 334 
							 | 
	hRHJfe-vSpW09EHd-mZdfw 
 | 
	train 
 | 
	img/5/35d17b46-ac0a-4dea-a680-3ac2429b79fd.jpeg 
 | 
					
	d9928106-88a5-4aef-b941-2ae883b94c11 
 | 
	Mapillary 
 | 1,904,562,149,694,398 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=1904562149694398&focus=photo 
 | 
	random sample and manual label 
 | 
	Brandon 
 | 1,840,014,151 
							 | 
	United States 
 | 
	North America 
 | 27.937607 
							 | -82.307736 
							 | 
	2014-08-22 10:57:19.266000-04:00 
 | 35 
							 | 
	W2d4fILDRvmCNFGYAdZRMA 
 | 
	train 
 | 
	img/1/d9928106-88a5-4aef-b941-2ae883b94c11.jpeg 
 | 
					
	39b5fc03-d89d-46e2-9570-267c8adf6722 
 | 
	Mapillary 
 | 295,566,248,851,356 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=295566248851356&focus=photo 
 | 
	random sample and manual label 
 | 
	Hanau 
 | 1,276,550,409 
							 | 
	Germany 
 | 
	Europe 
 | 50.129585 
							 | 8.913147 
							 | 
	2014-05-10 12:10:08+02:00 
 | 7 
							 | 
	T4fa3llpBHUx4tssFSKY8g 
 | 
	train 
 | 
	img/4/39b5fc03-d89d-46e2-9570-267c8adf6722.jpeg 
 | 
					
	7f439743-bb56-4432-bb69-41526862a9f0 
 | 
	Mapillary 
 | 1,060,462,924,871,678 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=1060462924871678&focus=photo 
 | 
	random sample and manual label 
 | 
	Gravatá 
 | 1,076,214,495 
							 | 
	Brazil 
 | 
	South America 
 | -8.196656 
							 | -35.556843 
							 | 
	2022-05-09 12:55:41.750000-03:00 
 | 196 
							 | 
	NAFJRE5ibGt3SxhkcPu7zp 
 | 
	train 
 | 
	img/6/7f439743-bb56-4432-bb69-41526862a9f0.jpeg 
 | 
					
	0fc9c547-6889-4d9f-a824-63fac7c5c487 
 | 
	Mapillary 
 | 532,858,918,093,055 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=532858918093055&focus=photo 
 | 
	random sample and manual label 
 | 
	Kansas City 
 | 1,840,008,535 
							 | 
	United States 
 | 
	North America 
 | 39.120784 
							 | -94.564594 
							 | 
	2018-10-06 15:59:41.631000-05:00 
 | 354 
							 | 
	pwvgr0x6j7t98r5mgz10iu 
 | 
	train 
 | 
	img/2/0fc9c547-6889-4d9f-a824-63fac7c5c487.jpeg 
 | 
					
	ed93f81e-49f7-4c45-a0a7-37e9c2b1c55d 
 | 
	Mapillary 
 | 278,652,547,253,159 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=278652547253159&focus=photo 
 | 
	random sample and manual label 
 | 
	Hanau 
 | 1,276,550,409 
							 | 
	Germany 
 | 
	Europe 
 | 50.127292 
							 | 8.909284 
							 | 
	2014-06-03 13:02:29+02:00 
 | 105 
							 | 
	0IX5Le4znvAsThyCpr-lEA 
 | 
	train 
 | 
	img/4/ed93f81e-49f7-4c45-a0a7-37e9c2b1c55d.jpeg 
 | 
					
	8f9ea558-cfad-468b-a3bf-5ec694a20c8f 
 | 
	Mapillary 
 | 494,139,672,000,209 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=494139672000209&focus=photo 
 | 
	random sample and manual label 
 | 
	Dearborn 
 | 1,840,003,969 
							 | 
	United States 
 | 
	North America 
 | 42.310621 
							 | -83.226446 
							 | 
	2017-11-07 14:10:02.085000-05:00 
 | 137 
							 | 
	ji1xns2yADqHzy0QSbo5qA 
 | 
	train 
 | 
	img/6/8f9ea558-cfad-468b-a3bf-5ec694a20c8f.jpeg 
 | 
					
	8449bd63-b4d9-4bc1-ab45-96100e1aca13 
 | 
	Mapillary 
 | 303,878,937,877,062 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=303878937877062&focus=photo 
 | 
	random sample and manual label 
 | 
	Cancún 
 | 1,484,010,310 
							 | 
	Mexico 
 | 
	North America 
 | 21.154357 
							 | -86.84377 
							 | 
	2020-09-22 08:04:17-05:00 
 | 168 
							 | 
	brm2czcd21tfc961qqzijc 
 | 
	train 
 | 
	img/5/8449bd63-b4d9-4bc1-ab45-96100e1aca13.jpeg 
 | 
					
	c022c452-038a-4996-8528-7124b5850487 
 | 
	Mapillary 
 | 985,639,815,306,934 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=985639815306934&focus=photo 
 | 
	random sample and manual label 
 | 
	Helsinki 
 | 1,246,177,997 
							 | 
	Finland 
 | 
	Europe 
 | 60.184795 
							 | 24.933316 
							 | 
	2018-07-16 17:38:29+03:00 
 | 781 
							 | 
	bGfHXwPiEbBpwhBGdy5AJQ 
 | 
	train 
 | 
	img/6/c022c452-038a-4996-8528-7124b5850487.jpeg 
 | 
					
	161f0b09-9d27-40e8-bafb-a81c649b8395 
 | 
	Mapillary 
 | 525,030,598,525,906 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=525030598525906&focus=photo 
 | 
	random sample and manual label 
 | 
	Monterrey 
 | 1,484,559,591 
							 | 
	Mexico 
 | 
	North America 
 | 25.66423 
							 | -100.302681 
							 | 
	2020-03-02 11:38:57.590000-06:00 
 | 1 
							 | 
	4h7wwyp75397fq9fhb3wd5 
 | 
	train 
 | 
	img/1/161f0b09-9d27-40e8-bafb-a81c649b8395.jpeg 
 | 
					
	5765de71-a626-4fb7-a958-1b2f8f520db9 
 | 
	Mapillary 
 | 222,088,019,335,040 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=222088019335040&focus=photo 
 | 
	random sample and manual label 
 | 
	Monterrey 
 | 1,484,559,591 
							 | 
	Mexico 
 | 
	North America 
 | 25.670965 
							 | -100.30215 
							 | 
	2020-02-27 11:09:03.590000-06:00 
 | 50 
							 | 
	dsr0e3fpbmebuqdok7gkzn 
 | 
	train 
 | 
	img/5/5765de71-a626-4fb7-a958-1b2f8f520db9.jpeg 
 | 
					
	d92e7d05-743b-4aa5-902f-6b912298aa3f 
 | 
	Mapillary 
 | 255,923,762,987,787 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=255923762987787&focus=photo 
 | 
	random sample and manual label 
 | 
	Moscow 
 | 1,643,318,494 
							 | 
	Russia 
 | 
	Europe 
 | 55.762155 
							 | 37.624172 
							 | 
	2020-08-04 09:00:31.320000+03:00 
 | 64 
							 | 
	8nltapnyqijt9gy0c1godw 
 | 
	train 
 | 
	img/2/d92e7d05-743b-4aa5-902f-6b912298aa3f.jpeg 
 | 
					
	5069bc14-817d-4903-be63-1838451fc02a 
 | 
	Mapillary 
 | 3,831,013,896,997,692 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=3831013896997692&focus=photo 
 | 
	random sample and manual label 
 | 
	Orléans 
 | 1,250,441,405 
							 | 
	France 
 | 
	Europe 
 | 47.906371 
							 | 1.910022 
							 | 
	2020-09-18 17:45:32.734000+02:00 
 | 498 
							 | 
	emszjijqrfe4q6j92z272e 
 | 
	train 
 | 
	img/3/5069bc14-817d-4903-be63-1838451fc02a.jpeg 
 | 
					
	5358d5b0-e8fc-47db-b358-6653357aa028 
 | 
	Mapillary 
 | 513,854,883,289,741 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=513854883289741&focus=photo 
 | 
	random sample and manual label 
 | 
	Philadelphia 
 | 1,840,000,673 
							 | 
	United States 
 | 
	North America 
 | 40.000272 
							 | -75.142429 
							 | 
	2018-08-28 15:11:24.296000-04:00 
 | 238 
							 | 
	6pwhicb6bibv8pgtug1hwa 
 | 
	train 
 | 
	img/5/5358d5b0-e8fc-47db-b358-6653357aa028.jpeg 
 | 
					
	688e8214-a78f-4a64-9367-75b058d1ac10 
 | 
	Mapillary 
 | 781,757,492,512,428 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=781757492512428&focus=photo 
 | 
	random sample and manual label 
 | 
	Redmond 
 | 1,840,019,835 
							 | 
	United States 
 | 
	North America 
 | 47.670803 
							 | -122.106836 
							 | 
	2018-07-31 08:10:42.582000-07:00 
 | 117 
							 | 
	1px35d4t4rxujmfm37mcw5 
 | 
	train 
 | 
	img/2/688e8214-a78f-4a64-9367-75b058d1ac10.jpeg 
 | 
					
	c1a438cb-f031-44e6-a880-994a1b0a066e 
 | 
	Mapillary 
 | 794,251,901,520,558 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=794251901520558&focus=photo 
 | 
	random sample and manual label 
 | 
	Amsterdam 
 | 1,528,355,309 
							 | 
	Netherlands 
 | 
	Europe 
 | 52.373592 
							 | 4.881508 
							 | 
	2017-03-04 16:55:00.575000+01:00 
 | 458 
							 | 
	I92ZRcEgYjCcSPgPuVZyUA 
 | 
	train 
 | 
	img/6/c1a438cb-f031-44e6-a880-994a1b0a066e.jpeg 
 | 
					
	00de81fc-d5d7-463b-82f2-0ab1b9f2f6d3 
 | 
	Mapillary 
 | 155,626,406,521,648 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=155626406521648&focus=photo 
 | 
	random sample and manual label 
 | 
	Donostia 
 | 1,724,910,555 
							 | 
	Spain 
 | 
	Europe 
 | 43.31852 
							 | -1.979218 
							 | 
	2020-04-23 08:44:48.736000+02:00 
 | 56 
							 | 
	8stts5inztcuh3yilgzlei 
 | 
	train 
 | 
	img/3/00de81fc-d5d7-463b-82f2-0ab1b9f2f6d3.jpeg 
 | 
					
	6c8d3fca-d9da-4e41-8aad-608b13a5a810 
 | 
	Mapillary 
 | 520,744,618,938,239 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=520744618938239&focus=photo 
 | 
	random sample and manual label 
 | 
	Zemun 
 | 1,688,453,076 
							 | 
	Serbia 
 | 
	Europe 
 | 44.851804 
							 | 20.395619 
							 | 
	2019-01-29 14:34:04+01:00 
 | 16 
							 | 
	nMqJT1fl2h4sIFuUhOk8ig 
 | 
	train 
 | 
	img/5/6c8d3fca-d9da-4e41-8aad-608b13a5a810.jpeg 
 | 
					
	84ae4416-6642-4110-9e04-43e43684a610 
 | 
	Mapillary 
 | 181,639,447,171,385 
							 | 
	no 
 | 
	https://www.mapillary.com/app/?pKey=181639447171385&focus=photo 
 | 
	random sample and manual label 
 | 
	Moscow 
 | 1,643,318,494 
							 | 
	Russia 
 | 
	Europe 
 | 55.757615 
							 | 37.628496 
							 | 
	2020-09-02 14:06:54.965000+03:00 
 | 195 
							 | 
	fbhgwys31ahzkkmgj2e1yl 
 | 
	train 
 | 
	img/4/84ae4416-6642-4110-9e04-43e43684a610.jpeg 
 | 
					
End of preview. 
	
			Subsets and Splits
				
	
				
			
				
No community queries yet
The top public SQL queries from the community will appear here once available.