Datasets:
metadata
license: mit
task_categories:
- image-classification
language:
- en
tags:
- imagenet
- corruption
- robustness
- computer-vision
- image-classification
size_categories:
- 1M<n<10M
Corruption Dataset: Shot_Noise
Dataset Description
This dataset contains corrupted versions of ImageNet-1K images using shot_noise corruption. It is part of the ImageNet-C benchmark for evaluating model robustness to common image corruptions.
Dataset Structure
- Train: 1,281,167 corrupted images
- Validation: 50,000 corrupted images
- Classes: 1000 ImageNet-1K classes
- Format: Arrow (Hugging Face Datasets)
Corruption Type: Shot_Noise
Adds shot noise (Poisson noise), common in low-light photography.
Usage
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("MarMaster/corruption-shot_noise")
# Access train and validation splits
train_dataset = dataset["train"]
val_dataset = dataset["validation"]
# Example usage
for example in train_dataset:
image = example["image"]
class_id = example["class_id"]
filename = example["filename"]
Dataset Statistics
- Total Images: 1,331,167
- Train Images: 1,281,167
- Validation Images: 50,000
- Classes: 1000
- Image Format: RGB
- Average Image Size: Variable (ImageNet-1K standard)
Citation
If you use this dataset, please cite the original ImageNet-C paper:
@article{hendrycks2019benchmarking,
title={Benchmarking Neural Network Robustness to Common Corruptions and Perturbations},
author={Hendrycks, Dan and Dietterich, Tom},
journal={Proceedings of the International Conference on Learning Representations},
year={2019}
}
License
This dataset is released under the MIT License. The original ImageNet dataset follows its own licensing terms.
Contact
For questions or issues, please contact: marcin.osial@[your-institution].edu