Datasets:
HPLT
/

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
corpus
stringclasses
4 values
category
stringclasses
9 values
dataset
stringclasses
23 values
task
stringclasses
69 values
prompt
stringclasses
52 values
model
stringclasses
48 values
ckpt_num
int64
1k
47.7k
score
float64
-0.08
100
HPLT 2.0
Language-specific & world knowledge
arc_ca_challenge
arc_ca_challenge_p0
Pregunta: {{question}} Resposta:
2B
1,000
22.44
HPLT 2.0
Language-specific & world knowledge
arc_ca_challenge
arc_ca_challenge_p1
def p1(doc): candidates, choices = doc["choices"]["text"], doc["choices"]["label"] formatted_choices = "\n".join( [f"{choices[i]}: {candidates[i]}" for i, _ in enumerate(candidates)] ) return f"{doc['question']}\n{formatted_choices}\nResposta:"
2B
1,000
23.123
HPLT 2.0
Language-specific & world knowledge
arc_ca_challenge
arc_ca_challenge_p2
def p2(doc): candidates, choices = doc["choices"]["text"], doc["choices"]["label"] formatted_choices = "\n".join( [f"Opción {choices[i]}: {candidates[i]}" for i, _ in enumerate(candidates)] ) return f"{doc['question']}\n{formatted_choices}\nÉs la resposta correcta {', '.join(choices[:-1])} o {choices[-1]}?"
2B
1,000
24.915
HPLT 2.0
Language-specific & world knowledge
arc_ca_easy
arc_ca_easy_p0
Pregunta: {{question}} Resposta:
2B
1,000
29.545
HPLT 2.0
Language-specific & world knowledge
arc_ca_easy
arc_ca_easy_p1
def p1(doc): candidates, choices = doc["choices"]["text"], doc["choices"]["label"] formatted_choices = "\n".join( [f"{choices[i]}: {candidates[i]}" for i, _ in enumerate(candidates)] ) return f"{doc['question']}\n{formatted_choices}\nResposta:"
2B
1,000
24.916
HPLT 2.0
Language-specific & world knowledge
arc_ca_easy
arc_ca_easy_p2
def p2(doc): candidates, choices = doc["choices"]["text"], doc["choices"]["label"] formatted_choices = "\n".join( [f"Opción {choices[i]}: {candidates[i]}" for i, _ in enumerate(candidates)] ) return f"{doc['question']}\n{formatted_choices}\nÉs la resposta correcta {', '.join(choices[:-1])} o {choices[-1]}?"
2B
1,000
24.705
HPLT 2.0
Language-specific & world knowledge
catalanqa
catalanqa_p0
Context: {{context}} Pregunta: {{question}} Resposta:
2B
1,000
3.71
HPLT 2.0
Language-specific & world knowledge
catalanqa
catalanqa_p1
{{context}} Pregunta: {{question}} Respecte al passatge anterior, la resposta correcta a la pregunta és
2B
1,000
2.012
HPLT 2.0
Language-specific & world knowledge
catalanqa
catalanqa_p2
Llegeix el següent passatge i contesta la pregunta. Passatge: {{context}} Pregunta: {{question}} Resposta:
2B
1,000
3.867
HPLT 2.0
Reading comprehension
catbelebele
catbelebele_p0
Passatge: {{flores_passage}} Pregunta: {{question.strip()}} A. {{mc_answer1}} B. {{mc_answer2}} C. {{mc_answer3}} D. {{mc_answer4}} Resposta:
2B
1,000
23
HPLT 2.0
Reading comprehension
catbelebele
catbelebele_p1
Llegeix el passatge i respon a la pregunta: {{flores_passage}} {{question.strip()}} Opció A: {{mc_answer1}} Opció B: {{mc_answer2}} Opció C: {{mc_answer3}} Opció D: {{mc_answer4}} És la resposta correcta A, B, C o D?
2B
1,000
24.222
HPLT 2.0
Reading comprehension
catbelebele
catbelebele_p2
{{flores_passage}} En base al passatge anterior, respon a la pregunta: {{question}} A: {{mc_answer1}} B: {{mc_answer2}} C: {{mc_answer3}} D: {{mc_answer4}} Quina és la resposta correcta?
2B
1,000
23
HPLT 2.0
Language knowledge
catcola
catcola_p0
{{Sentence}} Pregunta: Té sentit aquesta frase? Resposta:
2B
1,000
-0.05
HPLT 2.0
Language knowledge
catcola
catcola_p1
Frase: {{Sentence}} Pregunta: Té sentit aquesta frase? Resposta:
2B
1,000
0
HPLT 2.0
Language knowledge
catcola
catcola_p2
Determina si la següent frase té sentit: {{Sentence}} Resposta:
2B
1,000
0
HPLT 2.0
Commonsense reasoning
cocoteros_va
cocoteros_va_p0
Genera una frase curta amb estes paraules: {{keywords}}. El context és: {{context}} Resposta:
2B
1,000
0.096
HPLT 2.0
Commonsense reasoning
cocoteros_va
cocoteros_va_p1
Escriu una frase curta amb aquestes paraules clau: {{keywords}}. Tingues en compte el següent context: {{context}}. Resposta:
2B
1,000
0.214
HPLT 2.0
Commonsense reasoning
cocoteros_va
cocoteros_va_p2
Construeix una oració tenint en compte el següent context: {{context}}. Utilitza les paraules clau: {{keywords}}. Resposta:
2B
1,000
0.201
HPLT 2.0
Commonsense reasoning
copa_ca
copa_ca_p0
{{premise[:-1].strip() + " " + {"cause": "perquè", "effect": "i per tant"}[question]}}
2B
1,000
57.2
HPLT 2.0
Commonsense reasoning
copa_ca
copa_ca_p1
{{premise[:-1].strip() + " " + {"cause": "atès que", "effect": "així que"}[question]}}
2B
1,000
55
HPLT 2.0
Commonsense reasoning
copa_ca
copa_ca_p2
{{premise[:-1].strip() + {"cause": " a causa que", "effect": ", i com a resultat,"}[question]}}
2B
1,000
56.4
HPLT 2.0
Reading comprehension
coqcat
coqcat_p0
{{story+"\n\n"}}{% for i in range(questions|length-1) %}{{"Q: "+questions[i]+"\n\n"+"A: "+answers["input_text"][i]+"\n\n"}}{% endfor %}{{"Q: "+questions[-1]+"\n\n"+"A:"}}
2B
1,000
6.175
HPLT 2.0
Reading comprehension
coqcat
coqcat_p1
{{story+"\n\n"}}Respecte al passatge anterior, la resposta correcta a la pregunta és: {% for i in range(questions|length-1) %}{{"Pregunta: "+questions[i]+"\n\n"+"Resposta: "+answers["input_text"][i]+"\n\n"}}{% endfor %}{{"Pregunta: "+questions[-1]+"\n\n"+"Resposta:"}}
2B
1,000
8.557
HPLT 2.0
Reading comprehension
coqcat
coqcat_p2
Llegeix el següent passatge i contesta la pregunta\n\nPassatge: {{story+"\n\n"}}{% for i in range(questions|length-1) %}{{"Pregunta: "+questions[i]+"\n\n"+"Resposta: "+answers["input_text"][i]+"\n\n"}}{% endfor %}{{"Pregunta: "+questions[-1]+"\n\n"+"Resposta:"}}
2B
1,000
8.785
HPLT 2.0
Machine translation
flores_en-ca
flores_en-ca_p0
Translate the following sentence into Catalan: {{sentence_eng_Latn}} Catalan:
2B
1,000
0.039
HPLT 2.0
Machine translation
flores_en-ca
flores_en-ca_p1
Translate the sentence from English to Catalan. Source sentence (English): {{sentence_eng_Latn}} Target sentence (Catalan):
2B
1,000
0.015
HPLT 2.0
Machine translation
flores_en-ca
flores_en-ca_p2
The following sentence is written in English. Translate it into Catalan. English: {{sentence_eng_Latn}} Catalan:
2B
1,000
0.041
HPLT 2.0
Mathematical reasoning
mgsm_direct_ca
mgsm_direct_ca_p0
Pregunta: {{question}} Resposta:
2B
1,000
0
HPLT 2.0
Mathematical reasoning
mgsm_direct_ca
mgsm_direct_ca_p1
Respon amb claredat i precisió a la pregunta següent {{question}} Resposta:
2B
1,000
0
HPLT 2.0
Mathematical reasoning
mgsm_direct_ca
mgsm_direct_ca_p2
Respon a la següent pregunta: {{question}} Raona la teva resposta:
2B
1,000
0
HPLT 2.0
Language-specific & world knowledge
openbookqa_ca
openbookqa_ca_p0
question_stem
2B
1,000
26.6
HPLT 2.0
Language-specific & world knowledge
openbookqa_ca
openbookqa_ca_p1
{{question_stem}} A. {{choices['text'][0]}} B. {{choices['text'][1]}} C. {{choices['text'][2]}} D. {{choices['text'][3]}} Resposta:
2B
1,000
27
HPLT 2.0
Language-specific & world knowledge
openbookqa_ca
openbookqa_ca_p2
{{question_stem}} Opció A: {{choices['text'][0]}} Opció B: {{choices['text'][1]}} C: {{choices['text'][2]}} Opció D: {{choices['text'][3]}} És la resposta correcta A, B, C o D?
2B
1,000
25.2
HPLT 2.0
Paraphrase detection
parafraseja
parafraseja_p0
null
2B
1,000
50.7
HPLT 2.0
Paraphrase detection
parafraseja
parafraseja_p1
Determina si les dues oracions següents expressen la mateixa idea o no. Oració 1: {{sentence1}} Oració 2: {{sentence2}} Resposta:
2B
1,000
49.6
HPLT 2.0
Paraphrase detection
parafraseja
parafraseja_p2
Oració 1: {{sentence1}} Oració 2: {{sentence2}} Pregunta: Les oracions 1 i 2 expressen el mateix significat? Sí o no? Resposta:
2B
1,000
49.6
HPLT 2.0
Paraphrase detection
paws_ca
paws_ca_p0
null
2B
1,000
49.35
HPLT 2.0
Paraphrase detection
paws_ca
paws_ca_p1
Determina si les dues oracions següents expressen la mateixa idea o no. Oració 1: {{sentence1}} Oració 2: {{sentence2}} Resposta:
2B
1,000
54.65
HPLT 2.0
Paraphrase detection
paws_ca
paws_ca_p2
Oració 1: {{sentence1}} Oració 2: {{sentence2}} Pregunta: Les oracions 1 i 2 expressen el mateix significat? Sí o no? Resposta:
2B
1,000
54.7
HPLT 2.0
Commonsense reasoning
piqa_ca
piqa_ca_p0
Pregunta: {{goal}} Resposta:
2B
1,000
53.428
HPLT 2.0
Commonsense reasoning
piqa_ca
piqa_ca_p1
{{goal}} A. {{sol1}} B. {{sol2}} Resposta:
2B
1,000
49.51
HPLT 2.0
Commonsense reasoning
piqa_ca
piqa_ca_p2
{{goal}} A. {{sol1}} B. {{sol2}} Quina és la resposta correcta?
2B
1,000
49.51
HPLT 2.0
Commonsense reasoning
siqa_ca
siqa_ca_p0
Pregunta: {{context}} {{question}} Resposta:
2B
1,000
32.549
HPLT 2.0
Commonsense reasoning
siqa_ca
siqa_ca_p1
Passatge: {{context}} Pregunta: {{question}} A. {{answerA}} B. {{answerB}} C. {{answerC}} Resposta:
2B
1,000
32.958
HPLT 2.0
Commonsense reasoning
siqa_ca
siqa_ca_p2
Llegeix el passatge i respon a la pregunta: {{context}} {{question}} Opció A: {{answerA}} Opció B: {{answerB}} Opció C: {{answerC}} És la resposta correcta A, B o C?
2B
1,000
33.112
HPLT 2.0
Entailment
teca
teca_p0
null
2B
1,000
34.341
HPLT 2.0
Entailment
teca
teca_p1
Premissa: {{premise}} Hipòtesi: {{hypothesis}} Indica la relació entre la premissa i la hipòtesi:
2B
1,000
33.491
HPLT 2.0
Entailment
teca
teca_p2
Premissa: {{premise}} Hipòtesi: {{hypothesis}} Quina és la relació entre la premissa i la hipòtesi? A. En acord B. Neutres entre si C. En contradicció Resposta:
2B
1,000
33.302
HPLT 2.0
Truthfulness
veritasqa_ca_gen
veritasqa_ca_gen_p0
Respon a la següent pregunta: {{question}} Resposta:
2B
1,000
1.062
HPLT 2.0
Truthfulness
veritasqa_ca_gen
veritasqa_ca_gen_p1
Respon amb claredat i precisió a la pregunta següent: {{question}} Resposta:
2B
1,000
0.525
HPLT 2.0
Truthfulness
veritasqa_ca_gen
veritasqa_ca_gen_p2
Proporciona una resposta detallada per a la pregunta següent: {{question}} Resposta:
2B
1,000
0.836
HPLT 2.0
Truthfulness
veritasqa_ca_mc1
veritasqa_ca_mc1_p0
Pregunta: {{question}} Resposta:
2B
1,000
30.028
HPLT 2.0
Truthfulness
veritasqa_ca_mc1
veritasqa_ca_mc1_p1
def mc1_p1(doc): choices = doc["mc1_targets"]["choices"] formatted_choices = "\n".join( [f"Opción {LETTERS[i]}: {choice}" for i, choice in enumerate(choices)] ) letters = LETTERS[: len(choices)] return f"Pregunta: {doc['question']}\n{formatted_choices}\nÉs la resposta correcta {', '.join(letters[:-1])} o {letters[-1]}?\nResposta:"
2B
1,000
85.269
HPLT 2.0
Truthfulness
veritasqa_ca_mc1
veritasqa_ca_mc1_p2
def mc1_p2(doc): choices = doc["mc1_targets"]["choices"] formatted_choices = "".join(list(map(lambda choice: f"\n- {choice}", choices))) return f"Pregunta: {doc['question']}\nTria la resposta correcta de la llista:\n{formatted_choices}\nQuina és la resposta correcta?\nResposta:"
2B
1,000
27.762
HPLT 2.0
Truthfulness
veritasqa_ca_mc2
veritasqa_ca_mc2_p0
Pregunta: {{question}} Resposta:
2B
1,000
56.35
HPLT 2.0
Truthfulness
veritasqa_ca_mc2
veritasqa_ca_mc2_p1
def mc2_p1(doc): choices = doc["mc2_targets"]["choices"] formatted_choices = "\n".join( [f"Opción {LETTERS[i]}: {choice}" for i, choice in enumerate(choices)] ) letters = LETTERS[: len(choices)] return f"Pregunta: {doc['question']}\n{formatted_choices}\nÉs la resposta correcta {', '.join(letters[:-1])} o {letters[-1]}?\nResposta:"
2B
1,000
89.699
HPLT 2.0
Truthfulness
veritasqa_ca_mc2
veritasqa_ca_mc2_p2
def mc2_p2(doc): choices = doc["mc2_targets"]["choices"] formatted_choices = "".join(list(map(lambda choice: f"\n- {choice}", choices))) return f"Pregunta: {doc['question']}\nTria la resposta correcta de la llista:\n{formatted_choices}\nQuina és la resposta correcta?\nResposta:"
2B
1,000
54.28
HPLT 2.0
Entailment
wnli_ca
wnli_ca_p0
{{sentence1}} Pregunta: {{sentence2}} Cert o Fals? Resposta:
2B
1,000
43.662
HPLT 2.0
Entailment
wnli_ca
wnli_ca_p1
Llegeix el text i contesta si l'afirmació és veritable o falsa. Texto: {{sentence1}} Afirmación: {{sentence2}} Resposta:
2B
1,000
40.845
HPLT 2.0
Entailment
wnli_ca
wnli_ca_p2
{{sentence1}} Pregunta: {{sentence2}}. Resposta:
2B
1,000
40.845
HPLT 2.0
Entailment
xnli_ca
xnli_ca_p0
null
2B
1,000
36.426
HPLT 2.0
Entailment
xnli_ca
xnli_ca_p1
Premissa: {{premise}} Hipòtesi: {{hypothesis}} Indica la relació entre la premissa i la hipòtesi:
2B
1,000
33.454
HPLT 2.0
Entailment
xnli_ca
xnli_ca_p2
Premissa: {{premise}} Hipòtesi: {{hypothesis}} Quina és la relació entre la premissa i la hipòtesi? A. En acord B. Neutres entre si C. En contradicció Resposta:
2B
1,000
33.333
HPLT 2.0
Reading comprehension
xquad_ca
xquad_ca_p0
Context: {{context}} Pregunta: {{question}} Resposta:
2B
1,000
2.891
HPLT 2.0
Reading comprehension
xquad_ca
xquad_ca_p1
{{context}} Pregunta: {{question}} Respecte al passatge anterior, la resposta correcta a la pregunta és
2B
1,000
1.743
HPLT 2.0
Reading comprehension
xquad_ca
xquad_ca_p2
Llegeix el següent passatge i contesta la pregunta. Passatge: {{context}} Pregunta: {{question}} Resposta:
2B
1,000
2.796
HPLT 2.0
Commonsense reasoning
xstorycloze_ca
xstorycloze_ca_p0
{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}
2B
1,000
51.886
HPLT 2.0
Commonsense reasoning
xstorycloze_ca
xstorycloze_ca_p1
Llegeix la següent història: {{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}} Tria la continuació correcta: - {{sentence_quiz1}} - {{sentence_quiz2}}
2B
1,000
50.827
HPLT 2.0
Commonsense reasoning
xstorycloze_ca
xstorycloze_ca_p2
{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4] | join(' ') }} Què ocorre després? A. {{ sentence_quiz1}} B. {{sentence_quiz2}} Resposta:
2B
1,000
52.813
HPLT 2.0
Language-specific & world knowledge
arc_ca_challenge
arc_ca_challenge_p0
Pregunta: {{question}} Resposta:
4B
2,000
22.952
HPLT 2.0
Language-specific & world knowledge
arc_ca_challenge
arc_ca_challenge_p1
def p1(doc): candidates, choices = doc["choices"]["text"], doc["choices"]["label"] formatted_choices = "\n".join( [f"{choices[i]}: {candidates[i]}" for i, _ in enumerate(candidates)] ) return f"{doc['question']}\n{formatted_choices}\nResposta:"
4B
2,000
23.635
HPLT 2.0
Language-specific & world knowledge
arc_ca_challenge
arc_ca_challenge_p2
def p2(doc): candidates, choices = doc["choices"]["text"], doc["choices"]["label"] formatted_choices = "\n".join( [f"Opción {choices[i]}: {candidates[i]}" for i, _ in enumerate(candidates)] ) return f"{doc['question']}\n{formatted_choices}\nÉs la resposta correcta {', '.join(choices[:-1])} o {choices[-1]}?"
4B
2,000
27.73
HPLT 2.0
Language-specific & world knowledge
arc_ca_easy
arc_ca_easy_p0
Pregunta: {{question}} Resposta:
4B
2,000
32.365
HPLT 2.0
Language-specific & world knowledge
arc_ca_easy
arc_ca_easy_p1
def p1(doc): candidates, choices = doc["choices"]["text"], doc["choices"]["label"] formatted_choices = "\n".join( [f"{choices[i]}: {candidates[i]}" for i, _ in enumerate(candidates)] ) return f"{doc['question']}\n{formatted_choices}\nResposta:"
4B
2,000
24.916
HPLT 2.0
Language-specific & world knowledge
arc_ca_easy
arc_ca_easy_p2
def p2(doc): candidates, choices = doc["choices"]["text"], doc["choices"]["label"] formatted_choices = "\n".join( [f"Opción {choices[i]}: {candidates[i]}" for i, _ in enumerate(candidates)] ) return f"{doc['question']}\n{formatted_choices}\nÉs la resposta correcta {', '.join(choices[:-1])} o {choices[-1]}?"
4B
2,000
26.01
HPLT 2.0
Language-specific & world knowledge
catalanqa
catalanqa_p0
Context: {{context}} Pregunta: {{question}} Resposta:
4B
2,000
5.058
HPLT 2.0
Language-specific & world knowledge
catalanqa
catalanqa_p1
{{context}} Pregunta: {{question}} Respecte al passatge anterior, la resposta correcta a la pregunta és
4B
2,000
3.999
HPLT 2.0
Language-specific & world knowledge
catalanqa
catalanqa_p2
Llegeix el següent passatge i contesta la pregunta. Passatge: {{context}} Pregunta: {{question}} Resposta:
4B
2,000
4.907
HPLT 2.0
Reading comprehension
catbelebele
catbelebele_p0
Passatge: {{flores_passage}} Pregunta: {{question.strip()}} A. {{mc_answer1}} B. {{mc_answer2}} C. {{mc_answer3}} D. {{mc_answer4}} Resposta:
4B
2,000
22.667
HPLT 2.0
Reading comprehension
catbelebele
catbelebele_p1
Llegeix el passatge i respon a la pregunta: {{flores_passage}} {{question.strip()}} Opció A: {{mc_answer1}} Opció B: {{mc_answer2}} Opció C: {{mc_answer3}} Opció D: {{mc_answer4}} És la resposta correcta A, B, C o D?
4B
2,000
28.778
HPLT 2.0
Reading comprehension
catbelebele
catbelebele_p2
{{flores_passage}} En base al passatge anterior, respon a la pregunta: {{question}} A: {{mc_answer1}} B: {{mc_answer2}} C: {{mc_answer3}} D: {{mc_answer4}} Quina és la resposta correcta?
4B
2,000
21.889
HPLT 2.0
Language knowledge
catcola
catcola_p0
{{Sentence}} Pregunta: Té sentit aquesta frase? Resposta:
4B
2,000
0.048
HPLT 2.0
Language knowledge
catcola
catcola_p1
Frase: {{Sentence}} Pregunta: Té sentit aquesta frase? Resposta:
4B
2,000
0.016
HPLT 2.0
Language knowledge
catcola
catcola_p2
Determina si la següent frase té sentit: {{Sentence}} Resposta:
4B
2,000
0
HPLT 2.0
Commonsense reasoning
cocoteros_va
cocoteros_va_p0
Genera una frase curta amb estes paraules: {{keywords}}. El context és: {{context}} Resposta:
4B
2,000
1.035
HPLT 2.0
Commonsense reasoning
cocoteros_va
cocoteros_va_p1
Escriu una frase curta amb aquestes paraules clau: {{keywords}}. Tingues en compte el següent context: {{context}}. Resposta:
4B
2,000
1.268
HPLT 2.0
Commonsense reasoning
cocoteros_va
cocoteros_va_p2
Construeix una oració tenint en compte el següent context: {{context}}. Utilitza les paraules clau: {{keywords}}. Resposta:
4B
2,000
0.58
HPLT 2.0
Commonsense reasoning
copa_ca
copa_ca_p0
{{premise[:-1].strip() + " " + {"cause": "perquè", "effect": "i per tant"}[question]}}
4B
2,000
58
HPLT 2.0
Commonsense reasoning
copa_ca
copa_ca_p1
{{premise[:-1].strip() + " " + {"cause": "atès que", "effect": "així que"}[question]}}
4B
2,000
56.2
HPLT 2.0
Commonsense reasoning
copa_ca
copa_ca_p2
{{premise[:-1].strip() + {"cause": " a causa que", "effect": ", i com a resultat,"}[question]}}
4B
2,000
55.6
HPLT 2.0
Reading comprehension
coqcat
coqcat_p0
{{story+"\n\n"}}{% for i in range(questions|length-1) %}{{"Q: "+questions[i]+"\n\n"+"A: "+answers["input_text"][i]+"\n\n"}}{% endfor %}{{"Q: "+questions[-1]+"\n\n"+"A:"}}
4B
2,000
13.57
HPLT 2.0
Reading comprehension
coqcat
coqcat_p1
{{story+"\n\n"}}Respecte al passatge anterior, la resposta correcta a la pregunta és: {% for i in range(questions|length-1) %}{{"Pregunta: "+questions[i]+"\n\n"+"Resposta: "+answers["input_text"][i]+"\n\n"}}{% endfor %}{{"Pregunta: "+questions[-1]+"\n\n"+"Resposta:"}}
4B
2,000
13.195
HPLT 2.0
Reading comprehension
coqcat
coqcat_p2
Llegeix el següent passatge i contesta la pregunta\n\nPassatge: {{story+"\n\n"}}{% for i in range(questions|length-1) %}{{"Pregunta: "+questions[i]+"\n\n"+"Resposta: "+answers["input_text"][i]+"\n\n"}}{% endfor %}{{"Pregunta: "+questions[-1]+"\n\n"+"Resposta:"}}
4B
2,000
13.212
HPLT 2.0
Machine translation
flores_en-ca
flores_en-ca_p0
Translate the following sentence into Catalan: {{sentence_eng_Latn}} Catalan:
4B
2,000
0.018
HPLT 2.0
Machine translation
flores_en-ca
flores_en-ca_p1
Translate the sentence from English to Catalan. Source sentence (English): {{sentence_eng_Latn}} Target sentence (Catalan):
4B
2,000
0.14
HPLT 2.0
Machine translation
flores_en-ca
flores_en-ca_p2
The following sentence is written in English. Translate it into Catalan. English: {{sentence_eng_Latn}} Catalan:
4B
2,000
0.008
HPLT 2.0
Mathematical reasoning
mgsm_direct_ca
mgsm_direct_ca_p0
Pregunta: {{question}} Resposta:
4B
2,000
0
HPLT 2.0
Mathematical reasoning
mgsm_direct_ca
mgsm_direct_ca_p1
Respon amb claredat i precisió a la pregunta següent {{question}} Resposta:
4B
2,000
0
HPLT 2.0
Mathematical reasoning
mgsm_direct_ca
mgsm_direct_ca_p2
Respon a la següent pregunta: {{question}} Raona la teva resposta:
4B
2,000
0
HPLT 2.0
Language-specific & world knowledge
openbookqa_ca
openbookqa_ca_p0
question_stem
4B
2,000
26.4
End of preview. Expand in Data Studio

HPLT 3.0: Details on Corpus Comparison Results

Dataset Description

This dataset contains fine-grained results from our HPLT 3.0 release evaluations comparing the new HPLT 3.0 corpora with the previous HPLT 2.0 version, FineWeb2, and MADLAD-400. We pretrain 2.2B Llama-style decoder models on 100B tokens for each selected language and evaluate them using HPLT-E, a multilingual evaluation framework for comprehensive multi-prompt k-shot evaluation across 124 tasks and 500+ prompts in nine typologically diverse languages: Spanish (spa_Latn), French (fra_Latn), Czech (ces_Latn), Ukrainian (ukr_Cyrl), Finnish (fin_Latn), Catalan (cat_Latn), Galician (glg_Latn), Basque (eus_Latn), and Norwegian (Bokmål and Nynorsk; nor_Latn).

Please find more details in our paper and GitHub repository.

Uses

This dataset is intended for reproducibility and research purposes. Find an example on how to access the results:

from datasets import load_dataset

dataset = load_dataset("HPLT/2508-datasets-evals", "spa_Latn", split="results").to_pandas()

Dataset Structure

Dataset Instances

Each dataset instance looks as follows:

{
  'corpus': 'MADLAD-400 1.0',
  'category': 'Language-specific & world knowledge',
  'dataset': 'global_mmlu_spanish',
  'task': 'global_mmlu_spanish_p0',
  'prompt': '{{question.strip()}}\nA. {{option_a}}\nB. {{option_b}}\nC. {{option_c}}\nD. {{option_d}}\nRespuesta:',
  'model': '69B',
  'ckpt_num': 33000,
  'score': 22.974
}

Dataset Fields

  • corpus: corpus name (HPLT 2.0, MADLAD-400 1.0, FineWeb2.1.0, HPLT 3.0)
  • category: task category
  • dataset: evaluation dataset name
  • task: evaluation task (refers to a specific prompt)
  • prompt: prompt used for evaluation
  • model: number of pretraining tokens (B)
  • ckpt_num: number identifier for model
  • score: standard metric performance score

Cite Us

@article{oepen2025hplt,
  title={HPLT\~{} 3.0: Very Large-Scale Multilingual Resources for LLM and MT. Mono-and Bi-lingual Data, Multilingual Evaluation, and Pre-Trained Models},
  author={Oepen, Stephan and Arefev, Nikolay and Aulamo, Mikko and Ba{\~n}{\'o}n, Marta and Buljan, Maja and Burchell, Laurie and Charpentier, Lucas and Chen, Pinzhen and Fedorova, Mariya and de Gibert, Ona and others},
  journal={arXiv preprint arXiv:2511.01066},
  year={2025}
}

Contact Us

Downloads last month
25