GrimSqueaker commited on
Commit
debce5a
·
verified ·
1 Parent(s): eef5c82

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -3
README.md CHANGED
@@ -1,3 +1,67 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pretty_name: Human–Virus Protein Mistake Predictions
3
+ license: cc-by-4.0
4
+ tags:
5
+ - biology
6
+ - proteins
7
+ - classification
8
+ - viruses
9
+ - tabular
10
+ task_categories:
11
+ - tabular-classification
12
+ size_categories:
13
+ - 10K<n<100K
14
+ ---
15
+
16
+ # Human–Virus Protein Mistake Predictions (Parquet)
17
+
18
+ This dataset provides **per-sequence labels, predictions, and lightweight descriptors** used in the paper:
19
+
20
+ - **Protein Language Models Expose Viral Immune Mimicry** — *Viruses* 2025, 17(9):1199.
21
+ DOI: **10.3390/v17091199** · Article: https://www.mdpi.com/1999-4915/17/9/1199
22
+
23
+ **What’s included:** a single file `HumanVirus_Protein_mistakes.parquet` with **25,117** rows and **20** columns.
24
+ **Not included:** PLM model **embeddings** (paper used Swiss-Prot T5 static embeddings or trained ESM2).
25
+ **Code:** https://github.com/ddofer/ProteinHumVir
26
+ **Workshop poster:** ICML 2024 (ML4LMS): https://openreview.net/forum?id=gGnJBLssbb
27
+
28
+ ## Summary
29
+
30
+ We trained and analyzed protein language model classifiers, and interpretable tabular models in distinguishing **viral** from **human** proteins.
31
+ The dataset focuses on **DL model errors** (`mistake=True`), which are enriched for proteins implicated in **immune mimicry / immune evasion**. Use this table to reproduce error-profiling, build new classifiers, or explore biological correlates of misclassification. e.g. Explaining the mistakes of the DL/PLM models, using tabular models and explainable features, as we do in the paper.
32
+
33
+ ## Schema
34
+
35
+ | column | type | brief description |
36
+ |---|---|---|
37
+ | `Sequence` | string | amino-acid sequence |
38
+ | `Length` | int | Protein sequence length |
39
+ | `virus` | int | ground truth (1=viral, 0=human) |
40
+ | `model_pred_proba_vir` | float | P(viral) |
41
+ | `model_pred_vir` | int | model prediction (1/0) |
42
+ | `mistake` | bool | prediction ≠ label |
43
+ | `Baltimore` | string? | viral group (null for human) |
44
+ | `Family` | string? | viral family |
45
+ | `Genome Composition` | string | e.g., dsDNA |
46
+ | `Genus` | string? | viral genus |
47
+ | `Keywords` | string | UniProt keywords |
48
+ | `Mass` | int | molecular mass (Da) |
49
+ | `Organism` | string | source organism |
50
+ | `Protein names` | string | protein name(s) |
51
+ | `Taxonomic lineage` | string | taxonomy path |
52
+ | `UR50_Cluster ID` | string | UniRef/UR50 ID |
53
+ | `Virus hosts` | string | known hosts |
54
+ | `av_mw` | float? | avg AA mass feature |
55
+ | `genus_human_host` | bool| Virus's genus has human host indicator |
56
+ | `human_host` | bool | Virus with human host indicator |
57
+
58
+
59
+ ## Loading
60
+
61
+ **Direct (single Parquet):**
62
+ ```python
63
+ from datasets import load_dataset
64
+ ds = load_dataset(
65
+ "parquet",
66
+ data_files={"train": "https://huggingface.co/datasets/<user>/<repo>/resolve/main/HumanVirus_Protein_mistakes.parquet"},
67
+ )["train"]