Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,67 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
pretty_name: Human–Virus Protein Mistake Predictions
|
| 3 |
+
license: cc-by-4.0
|
| 4 |
+
tags:
|
| 5 |
+
- biology
|
| 6 |
+
- proteins
|
| 7 |
+
- classification
|
| 8 |
+
- viruses
|
| 9 |
+
- tabular
|
| 10 |
+
task_categories:
|
| 11 |
+
- tabular-classification
|
| 12 |
+
size_categories:
|
| 13 |
+
- 10K<n<100K
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
# Human–Virus Protein Mistake Predictions (Parquet)
|
| 17 |
+
|
| 18 |
+
This dataset provides **per-sequence labels, predictions, and lightweight descriptors** used in the paper:
|
| 19 |
+
|
| 20 |
+
- **Protein Language Models Expose Viral Immune Mimicry** — *Viruses* 2025, 17(9):1199.
|
| 21 |
+
DOI: **10.3390/v17091199** · Article: https://www.mdpi.com/1999-4915/17/9/1199
|
| 22 |
+
|
| 23 |
+
**What’s included:** a single file `HumanVirus_Protein_mistakes.parquet` with **25,117** rows and **20** columns.
|
| 24 |
+
**Not included:** PLM model **embeddings** (paper used Swiss-Prot T5 static embeddings or trained ESM2).
|
| 25 |
+
**Code:** https://github.com/ddofer/ProteinHumVir
|
| 26 |
+
**Workshop poster:** ICML 2024 (ML4LMS): https://openreview.net/forum?id=gGnJBLssbb
|
| 27 |
+
|
| 28 |
+
## Summary
|
| 29 |
+
|
| 30 |
+
We trained and analyzed protein language model classifiers, and interpretable tabular models in distinguishing **viral** from **human** proteins.
|
| 31 |
+
The dataset focuses on **DL model errors** (`mistake=True`), which are enriched for proteins implicated in **immune mimicry / immune evasion**. Use this table to reproduce error-profiling, build new classifiers, or explore biological correlates of misclassification. e.g. Explaining the mistakes of the DL/PLM models, using tabular models and explainable features, as we do in the paper.
|
| 32 |
+
|
| 33 |
+
## Schema
|
| 34 |
+
|
| 35 |
+
| column | type | brief description |
|
| 36 |
+
|---|---|---|
|
| 37 |
+
| `Sequence` | string | amino-acid sequence |
|
| 38 |
+
| `Length` | int | Protein sequence length |
|
| 39 |
+
| `virus` | int | ground truth (1=viral, 0=human) |
|
| 40 |
+
| `model_pred_proba_vir` | float | P(viral) |
|
| 41 |
+
| `model_pred_vir` | int | model prediction (1/0) |
|
| 42 |
+
| `mistake` | bool | prediction ≠ label |
|
| 43 |
+
| `Baltimore` | string? | viral group (null for human) |
|
| 44 |
+
| `Family` | string? | viral family |
|
| 45 |
+
| `Genome Composition` | string | e.g., dsDNA |
|
| 46 |
+
| `Genus` | string? | viral genus |
|
| 47 |
+
| `Keywords` | string | UniProt keywords |
|
| 48 |
+
| `Mass` | int | molecular mass (Da) |
|
| 49 |
+
| `Organism` | string | source organism |
|
| 50 |
+
| `Protein names` | string | protein name(s) |
|
| 51 |
+
| `Taxonomic lineage` | string | taxonomy path |
|
| 52 |
+
| `UR50_Cluster ID` | string | UniRef/UR50 ID |
|
| 53 |
+
| `Virus hosts` | string | known hosts |
|
| 54 |
+
| `av_mw` | float? | avg AA mass feature |
|
| 55 |
+
| `genus_human_host` | bool| Virus's genus has human host indicator |
|
| 56 |
+
| `human_host` | bool | Virus with human host indicator |
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
## Loading
|
| 60 |
+
|
| 61 |
+
**Direct (single Parquet):**
|
| 62 |
+
```python
|
| 63 |
+
from datasets import load_dataset
|
| 64 |
+
ds = load_dataset(
|
| 65 |
+
"parquet",
|
| 66 |
+
data_files={"train": "https://huggingface.co/datasets/<user>/<repo>/resolve/main/HumanVirus_Protein_mistakes.parquet"},
|
| 67 |
+
)["train"]
|