DivisonOfficer commited on
Commit
9feec7c
·
verified ·
1 Parent(s): 5096dd6

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +150 -0
README.md ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Pixel-aligned RGB-NIR Stereo Imaging and Dataset for Robot Vision
2
+
3
+ > **CVPR 2025**
4
+ > **Jinnyeong Kim**, **Seung-Hwan Baek**
5
+ > POSTECH
6
+ > [[arXiv]](https://arxiv.org/abs/2411.18025) • [[Code]](https://github.com/your-repo-url) • [[Video]](https://your-video-link.com) • [[Dataset on HuggingFace]](https://huggingface.co/datasets/your-dataset-url)
7
+
8
+ ---
9
+
10
+ ## Overview
11
+
12
+ This repository provides the code and dataset accompanying our CVPR 2025 paper:
13
+
14
+ **"Pixel-aligned RGB-NIR Stereo Imaging and Dataset for Robot Vision"**
15
+
16
+ We propose a novel robotic vision system equipped with **two pixel-aligned RGB-NIR stereo cameras** and a **LiDAR sensor** mounted on a mobile robot. Our system captures **RGB-NIR stereo video sequences** and **temporally synchronized LiDAR point clouds**, offering a high-quality, aligned multi-spectral dataset under diverse lighting conditions.
17
+
18
+ ![System Overview](https://divisonofficer.github.io/project_page_Pixel_aligned_RGB_NIR_Stereo/fig_imaging_1.png)
19
+
20
+ ---
21
+
22
+ ## ✨ Highlights
23
+
24
+ - **Pixel-aligned RGB-NIR stereo imaging** for robust vision under challenging lighting.
25
+ - **Continuous video sequences** recorded using a mobile robot.
26
+ - **Sparse LiDAR point clouds** temporally synchronized with stereo imagery.
27
+ - Two proposed methods to utilize RGB-NIR pairs:
28
+ - RGB-NIR **Image Fusion** (pretrained model-compatible)
29
+ - RGB-NIR **Feature Fusion** (for fine-tuned stereo depth estimation)
30
+
31
+ ---
32
+
33
+ ## 📦 Dataset
34
+
35
+ We release a large-scale dataset for training and evaluating robot vision models in realistic environments.
36
+
37
+ ### 📹 Data Statistics
38
+
39
+ | | #Videos | #Frames |
40
+ |---|--------|---------|
41
+ | Training | 80 | 90,000 |
42
+ | Testing | 40 | 7,000 |
43
+
44
+ ### 📁 Per Frame Data Includes:
45
+
46
+ - Pixel-aligned **RGB-NIR stereo images**
47
+ - **Sparse LiDAR** point cloud (in camera coordinates)
48
+ - **Sensor timestamps** (synchronized)
49
+
50
+ ### 🌗 Lighting Scenarios
51
+ <img width="920" alt="image" src="https://github.com/user-attachments/assets/a07bea4e-5674-4277-a585-f556ce9d4825" />
52
+
53
+
54
+ ➡️ **[Code is availabe on github](https://github.com/divisonofficer/Pixel_aligned_RGB_NIR_Stereo)**
55
+
56
+ Each .tar.gz file follows below structure
57
+ ```
58
+ frame1
59
+ --rgb
60
+ -----left_distorted.png (or left.png)
61
+ -----right_distorted.png (or right.png)
62
+ --nir
63
+ -----left_distorted.png (or left.png)
64
+ -----right_distorted.png (or right.png)
65
+ storage.hdf5
66
+ ```
67
+ The frame ids are named after their creation date.
68
+ **_distorted.png** image need to be undistorted. **left.png** and **right.png** are undistorted version.
69
+
70
+ **storage.hdf5** is H5 database. it contains **frame** group with children of each frame ids.
71
+
72
+ ---
73
+
74
+ ## 📷 Imaging System
75
+
76
+ Our robotic platform integrates:
77
+
78
+ - **Two RGB-NIR stereo cameras** (pixel-aligned RGB and NIR sensors)
79
+ - **LiDAR sensor**
80
+ - **Omnidirectional mobile base** (360° movement)
81
+ - **High-capacity battery** (up to 6 hours)
82
+ - **NIR LED bar light source** for consistent active illumination
83
+
84
+ ![Robot Platform](https://divisonofficer.github.io/project_page_Pixel_aligned_RGB_NIR_Stereo/fig_imaging_1.png)
85
+
86
+ ---
87
+
88
+ ## 🔧 Methods
89
+
90
+ ### RGB-NIR synthetic data augmentation
91
+
92
+ ![image](https://github.com/user-attachments/assets/00805f64-44cf-4ac4-927c-a01ace160f39)
93
+
94
+ See **visualize/synth_aug_render.ipynb** for method of synthetic data augmentation to build RGB-NIR training dataset.
95
+
96
+
97
+ ### RGB-NIR Image Fusion
98
+ ![image](https://github.com/user-attachments/assets/0d524c12-8419-48d0-8c3a-0b8a9bc29d1b)
99
+
100
+ We introduce an RGB-NIR **image-level fusion technique** for 3-channel vision tasks. This approach allows existing **RGB-pretrained models** to benefit from NIR information **without additional fine-tuning**.
101
+
102
+ Applicable to:
103
+ - Stereo Depth Estimation
104
+ - Semantic Segmentation
105
+ - Object Detection
106
+
107
+ See **net/image_fusion.py** for pytorch implementation.
108
+
109
+ ### RGB-NIR Feature Fusion (Stereo Depth)
110
+
111
+ We extend RAFT-Stereo with a novel **feature-level fusion strategy**, alternating between fused and NIR **correlation volumes** during iterative disparity estimation using GRUs.
112
+
113
+ ![image](https://github.com/user-attachments/assets/ef954e60-02d4-4a6c-b126-150ee2edeffc)
114
+
115
+ See **net/feature_fusion.py** of implementation with RAFT-Stereo as baseline
116
+ Our setup reflects the **RGB with active illumination** scenario:
117
+ - NIR provides robust depth cues
118
+ - RGB complements NIR with texture under normal lighting
119
+
120
+ ---
121
+
122
+ ## 📊 Experimental Results
123
+
124
+ Our experiments demonstrate that pixel-aligned RGB-NIR inputs:
125
+ - Improve stereo depth accuracy under low-light and high-contrast conditions
126
+ - Enable pretrained RGB models to generalize better
127
+ - Enhance robustness across lighting domains
128
+
129
+
130
+
131
+
132
+ ---
133
+
134
+
135
+
136
+
137
+
138
+ ## 📄 Citation
139
+
140
+ If you use this dataset or code, please cite our work:
141
+
142
+ ```bibtex
143
+ @article{kim2025pixelnir,
144
+ author = {Jinnyeong Kim and Seung-Hwan Baek},
145
+ title = {Pixel-aligned RGB-NIR Stereo Imaging and Dataset for Robot Vision},
146
+ conference = {The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
147
+ year = {2025},
148
+ doi = {10.48550/arXiv.2411.18025},
149
+ url = {https://arxiv.org/abs/2411.18025},
150
+ }