utils and baselines
Browse files- utils/__init__.py +1 -0
- utils/eval_baselines.py +134 -0
utils/__init__.py
CHANGED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .create_splits import *
|
utils/eval_baselines.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Runs several baseline compression algorithms and stores results for each FITS file in a csv.
|
| 3 |
+
This code is written functionality-only and cleaning it up is a TODO.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import re
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
import argparse
|
| 11 |
+
import os.path
|
| 12 |
+
from astropy.io import fits
|
| 13 |
+
import numpy as np
|
| 14 |
+
from time import time
|
| 15 |
+
import pandas as pd
|
| 16 |
+
from tqdm import tqdm
|
| 17 |
+
|
| 18 |
+
from astropy.io.fits import CompImageHDU
|
| 19 |
+
from imagecodecs import (
|
| 20 |
+
jpeg2k_encode,
|
| 21 |
+
jpeg2k_decode,
|
| 22 |
+
jpegls_encode,
|
| 23 |
+
jpegls_decode,
|
| 24 |
+
jpegxl_encode,
|
| 25 |
+
jpegxl_decode,
|
| 26 |
+
rcomp_encode,
|
| 27 |
+
rcomp_decode,
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
# Functions that require some preset parameters. All others default to lossless.
|
| 31 |
+
|
| 32 |
+
jpegxl_encode_max_effort_preset = lambda x: jpegxl_encode(x, lossless=True, effort=9)
|
| 33 |
+
jpegxl_encode_preset = lambda x: jpegxl_encode(x, lossless=True)
|
| 34 |
+
|
| 35 |
+
def find_matching_files():
|
| 36 |
+
"""
|
| 37 |
+
Returns list of test set file paths.
|
| 38 |
+
"""
|
| 39 |
+
df = pd.read_json("./splits/full_test.jsonl", lines=True)
|
| 40 |
+
return list(df['image'])
|
| 41 |
+
|
| 42 |
+
def benchmark_imagecodecs_compression_algos(arr, compression_type):
|
| 43 |
+
|
| 44 |
+
encoder, decoder = ALL_CODECS[compression_type]
|
| 45 |
+
|
| 46 |
+
write_start_time = time()
|
| 47 |
+
encoded = encoder(arr)
|
| 48 |
+
write_time = time() - write_start_time
|
| 49 |
+
|
| 50 |
+
read_start_time = time()
|
| 51 |
+
if compression_type == "RICE":
|
| 52 |
+
decoded = decoder(encoded, shape=arr.shape, dtype=np.uint16)
|
| 53 |
+
else:
|
| 54 |
+
decoded = decoder(encoded)
|
| 55 |
+
read_time = time() - read_start_time
|
| 56 |
+
|
| 57 |
+
assert np.array_equal(arr, decoded)
|
| 58 |
+
|
| 59 |
+
buflength = len(encoded)
|
| 60 |
+
|
| 61 |
+
return {compression_type + "_BPD": buflength / arr.size,
|
| 62 |
+
compression_type + "_WRITE_RUNTIME": write_time,
|
| 63 |
+
compression_type + "_READ_RUNTIME": read_time,
|
| 64 |
+
#compression_type + "_TILE_DIVISOR": np.nan,
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
def main(dim):
|
| 68 |
+
|
| 69 |
+
save_path = f"baseline_results_{dim}.csv"
|
| 70 |
+
|
| 71 |
+
file_paths = find_matching_files()
|
| 72 |
+
|
| 73 |
+
df = pd.DataFrame(columns=columns, index=[str(p) for p in file_paths])
|
| 74 |
+
|
| 75 |
+
print(f"Number of files to be tested: {len(file_paths)}")
|
| 76 |
+
|
| 77 |
+
ct = 0
|
| 78 |
+
|
| 79 |
+
for path in tqdm(file_paths):
|
| 80 |
+
for hdu_idx in [1, 4]:
|
| 81 |
+
with fits.open(path) as hdul:
|
| 82 |
+
if dim == '2d':
|
| 83 |
+
arr = hdul[hdu_idx].data
|
| 84 |
+
else:
|
| 85 |
+
raise RuntimeError(f"{dim} not applicable.")
|
| 86 |
+
|
| 87 |
+
ct += 1
|
| 88 |
+
if ct % 10 == 0:
|
| 89 |
+
print(df.mean())
|
| 90 |
+
df.to_csv(save_path)
|
| 91 |
+
|
| 92 |
+
for algo in ALL_CODECS.keys():
|
| 93 |
+
try:
|
| 94 |
+
if algo == "JPEG_2K" and dim != '2d':
|
| 95 |
+
test_results = benchmark_imagecodecs_compression_algos(arr.transpose(1, 2, 0), algo)
|
| 96 |
+
else:
|
| 97 |
+
test_results = benchmark_imagecodecs_compression_algos(arr, algo)
|
| 98 |
+
|
| 99 |
+
for column, value in test_results.items():
|
| 100 |
+
if column in df.columns:
|
| 101 |
+
df.at[path + f"_hdu{hdu_idx}", column] = value
|
| 102 |
+
|
| 103 |
+
except Exception as e:
|
| 104 |
+
print(f"Failed at {path} under exception {e}.")
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
if __name__ == "__main__":
|
| 108 |
+
parser = argparse.ArgumentParser(description="Process some 2D or 3D data.")
|
| 109 |
+
parser.add_argument(
|
| 110 |
+
"dimension",
|
| 111 |
+
choices=['2d'],
|
| 112 |
+
help="Specify whether the data is 2d, or; not applicable here: 3dt (3d time dimension), or 3dw (3d wavelength dimension)."
|
| 113 |
+
)
|
| 114 |
+
args = parser.parse_args()
|
| 115 |
+
dim = args.dimension.lower()
|
| 116 |
+
|
| 117 |
+
# RICE REQUIRES UNIQUE INPUT OF ARR SHAPE AND DTYPE INTO DECODER
|
| 118 |
+
|
| 119 |
+
ALL_CODECS = {
|
| 120 |
+
"JPEG_XL_MAX_EFFORT": [jpegxl_encode_max_effort_preset, jpegxl_decode],
|
| 121 |
+
"JPEG_XL": [jpegxl_encode_preset, jpegxl_decode],
|
| 122 |
+
"JPEG_2K": [jpeg2k_encode, jpeg2k_decode],
|
| 123 |
+
"JPEG_LS": [jpegls_encode, jpegls_decode],
|
| 124 |
+
"RICE": [rcomp_encode, rcomp_decode],
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
columns = []
|
| 128 |
+
for algo in ALL_CODECS.keys():
|
| 129 |
+
columns.append(algo + "_BPD")
|
| 130 |
+
columns.append(algo + "_WRITE_RUNTIME")
|
| 131 |
+
columns.append(algo + "_READ_RUNTIME")
|
| 132 |
+
#columns.append(algo + "_TILE_DIVISOR")
|
| 133 |
+
|
| 134 |
+
main(dim)
|