--- pretty_name: Olympiads Reference Dataset --- # AI-MO Olympiad Reference Dataset This dataset contains a structured collection of Olympiad problems and their solutions, organized by competition. Contains high quality data, prioritizing "official" solutions to problems. ## Structure ``` / # Problems and solutions from the International Mathematical Olympiad ├── raw/ # Raw problem/solution statements (.pdf) │ ├── file1.pdf │ ├── file2.pdf ├── download_script/ # the scripts used to download raw data │ ├── download.py ├── md/ # .md files generated from raw/ files │ ├── file1.md │ ├── file2.md ├── segment_script/ # the scripts used to segment the data │ ├── segment.py └── segmented/ # .jsonl segmented data for easier processing ├── file1.jsonl ├── file2.jsonl └── file3.jsonl ``` Each `json` in `jsonl` file follows this structure: ```json { "problem": "string", // Mandatory: The problem statement in latex or markdown "solution": "string", // Mandatory: The solution for the problem "year": "int", // Optional: Year when the problem was presented "problem_type": "string", // Optional: The mathematical domain of the problem. Here are the supported types: //['Algebra', 'Geometry', 'Number Theory', 'Combinatorics', 'Calculus', //'Inequalities', 'Logic and Puzzles', 'Other'] "question_type": "string", // Optional: The form or style of the mathematical problem. // The supported classes are: ['MCQ', 'proof' or 'math-word-problem']. // 'math-word-problem' is a problem with output. "answer": "string", // Optional: final answer is the question_type is "math-word-problem". "source": "string", // Optional: TODO:describe "exam": "string", // Optional: TODO:describe "difficulty": "int", // Optional: TODO:describe "other": "...", // Optional: You can add other fields with metadata } ``` ## Steps to collect data for formalization ### 1. Assign yourself a task Check the [tracker](https://docs.google.com/spreadsheets/d/1PiK-lUjcZ8VKwjtyzYWbd_bLQXnlbIPl-jmm5ebZplw/edit?gid=0#gid=0) and assign yourself one line by updating columns: * status: IN PROGRESS * assignee: your name ### 2. Setup Download data locally. ```bash git lfs install git clone git@hf.co:datasets/AI-MO/olympiads-ref ``` ### 3. Find `.pdf` ressources. First check if there are already available `.pdf` in https://huggingface.co/AI-MO/olympiads-0.1 * if yes upload them in `AI-MO/olympiads-ref//raw/` and continue to step 4. * if no, find sources in internet (preferably with official solution), download and upload in `AI-MO/olympiads-ref//raw/` ### 4. Find `.md` ressources. First check if there are already available `.pdf` in https://huggingface.co/AI-MO/olympiads-0.1 * if yes upload in `AI-MO/olympiads-ref//md/` and continue to step 6. * if no, find sources in internet (preferably with official solution), download and upload in `AI-MO/olympiads-ref//md/` ### 5. Convert `.pdf` to `.md` using Mathpix Use [new_pipeline](https://github.com/project-numina/numina-math/tree/yufan/new_pipeline). Example: ```bash python -m new_pipeline convert_to_md --method=pdf_to_md --input_dir="/home/marvin/workspace/olympiads-ref/IMO/raw" --output_dir="/home/marvin/workspace/olympiads-ref/IMO/md" ``` ### 6. Segment the `.md` files into `.jsonl` Write a `segment.py` that can be applied to your data (please do sanity checks!). Examples are [this](https://huggingface.co/datasets/AI-MO/olympiads-ref/blob/main/IMO/segment_script/segment.py) or [that](https://huggingface.co/datasets/AI-MO/olympiads-ref/blob/main/IMO/segment_script/segment_compendium.py). Once you are fine with your segmentation upload the `.jsonl` in `AI-MO/olympiads-ref//segmented/` and the `segment.py` in `AI-MO/olympiads-ref//segment_script/`. Ask for a review. ### 7. Update the status in the tracker Update the [tracker](https://docs.google.com/spreadsheets/d/1PiK-lUjcZ8VKwjtyzYWbd_bLQXnlbIPl-jmm5ebZplw/edit?gid=0#gid=0) with columns: * status: DONE + a link to your generated data in hf * problem_count: count of problems in data * solution_count: count of solutions in data (different than problem_count since a problem can have several solutions) * years: range of competition years covered in your data (so we can easily track if many years are missing) * assignee: your name ### 8. Integrate the data in a base dataset Create a ticket in git