Update main.py
Browse files
main.py
CHANGED
|
@@ -1,104 +1,104 @@
|
|
| 1 |
-
import tensorflow as tf
|
| 2 |
-
from translator import Translator
|
| 3 |
-
from utils import tokenizer_utils
|
| 4 |
-
from utils.preprocessing import input_processing, output_processing
|
| 5 |
-
from models.transformer import Transformer
|
| 6 |
-
from models.encoder import Encoder
|
| 7 |
-
from models.decoder import Decoder
|
| 8 |
-
from models.layers import EncoderLayer, DecoderLayer, MultiHeadAttention, point_wise_feed_forward_network
|
| 9 |
-
from models.utils import masked_loss, masked_accuracy
|
| 10 |
-
import argparse
|
| 11 |
-
|
| 12 |
-
def main(sentences: list, model: tf.keras.Model, en_tokenizer, vi_tokenizer) -> None:
|
| 13 |
-
"""
|
| 14 |
-
Translates input English sentences to Vietnamese using a pre-trained model.
|
| 15 |
-
|
| 16 |
-
Args:
|
| 17 |
-
sentences (list): List of English sentences to translate.
|
| 18 |
-
model (tf.keras.Model): The pre-trained translation model.
|
| 19 |
-
en_tokenizer: English tokenizer.
|
| 20 |
-
vi_tokenizer: Vietnamese tokenizer.
|
| 21 |
-
"""
|
| 22 |
-
# Initialize the translator with tokenizers and the model
|
| 23 |
-
translator = Translator(en_tokenizer, vi_tokenizer, model)
|
| 24 |
-
|
| 25 |
-
# Process and translate each sentence
|
| 26 |
-
for sentence in sentences:
|
| 27 |
-
processed_sentence = input_processing(sentence)
|
| 28 |
-
translated_text = translator(processed_sentence)
|
| 29 |
-
translated_text = output_processing(translated_text)
|
| 30 |
-
|
| 31 |
-
# Display the input and translated text
|
| 32 |
-
print("Input:", processed_sentence)
|
| 33 |
-
print("Translated:", translated_text)
|
| 34 |
-
print("-" * 50)
|
| 35 |
-
|
| 36 |
-
if __name__ == "__main__":
|
| 37 |
-
# Set up argument parser
|
| 38 |
-
parser = argparse.ArgumentParser(
|
| 39 |
-
description="Translate English sentences to Vietnamese using a pre-trained transformer model.",
|
| 40 |
-
epilog="Example: python translate.py --sentence 'Hello, world!' --sentence 'The sun is shining.'"
|
| 41 |
-
)
|
| 42 |
-
parser.add_argument(
|
| 43 |
-
"--sentence",
|
| 44 |
-
type=str,
|
| 45 |
-
nargs="*",
|
| 46 |
-
default=[
|
| 47 |
-
(
|
| 48 |
-
"For at least six centuries, residents along a lake in the mountains of central Japan "
|
| 49 |
-
"have marked the depth of winter by celebrating the return of a natural phenomenon "
|
| 50 |
-
"once revered as the trail of a wandering god."
|
| 51 |
-
)
|
| 52 |
-
],
|
| 53 |
-
help="One or more English sentences to translate (default: provided example sentence)"
|
| 54 |
-
)
|
| 55 |
-
parser.add_argument(
|
| 56 |
-
"--model_path",
|
| 57 |
-
type=str,
|
| 58 |
-
default="
|
| 59 |
-
help="Path to the pre-trained model file (default:
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
# Parse arguments
|
| 63 |
-
args = parser.parse_args()
|
| 64 |
-
|
| 65 |
-
# Define custom objects required for loading the model
|
| 66 |
-
custom_objects = {
|
| 67 |
-
"Transformer": Transformer,
|
| 68 |
-
"Encoder": Encoder,
|
| 69 |
-
"Decoder": Decoder,
|
| 70 |
-
"EncoderLayer": EncoderLayer,
|
| 71 |
-
"DecoderLayer": DecoderLayer,
|
| 72 |
-
"MultiHeadAttention": MultiHeadAttention,
|
| 73 |
-
"point_wise_feed_forward_network": point_wise_feed_forward_network,
|
| 74 |
-
"masked_loss": masked_loss,
|
| 75 |
-
"masked_accuracy": masked_accuracy,
|
| 76 |
-
}
|
| 77 |
-
|
| 78 |
-
# Load the pre-trained model once
|
| 79 |
-
print("Loading model from:", args.model_path)
|
| 80 |
-
loaded_model = tf.keras.models.load_model(
|
| 81 |
-
args.model_path, custom_objects=custom_objects
|
| 82 |
-
)
|
| 83 |
-
print("Model loaded successfully.")
|
| 84 |
-
|
| 85 |
-
# Load English and Vietnamese tokenizers once
|
| 86 |
-
en_tokenizer, vi_tokenizer = tokenizer_utils.load_tokenizers()
|
| 87 |
-
|
| 88 |
-
# Run the translation for all provided sentences
|
| 89 |
-
main(sentences=args.sentence, model=loaded_model, en_tokenizer=en_tokenizer, vi_tokenizer=vi_tokenizer)
|
| 90 |
-
|
| 91 |
-
# Interactive loop for additional translations
|
| 92 |
-
while True:
|
| 93 |
-
choice = input("Would you like to translate another sentence? (Y/n): ").strip().lower()
|
| 94 |
-
if choice in ['no', 'n', 'quit', 'q']:
|
| 95 |
-
print("Exiting the program.")
|
| 96 |
-
break
|
| 97 |
-
elif choice in ['yes', 'y']:
|
| 98 |
-
new_sentence = input("Enter an English sentence to translate: ").strip()
|
| 99 |
-
if new_sentence:
|
| 100 |
-
main(sentences=[new_sentence], model=loaded_model, en_tokenizer=en_tokenizer, vi_tokenizer=vi_tokenizer)
|
| 101 |
-
else:
|
| 102 |
-
print("No sentence provided. Please try again.")
|
| 103 |
-
else:
|
| 104 |
print("Invalid input. Please enter 'y' or 'n'.")
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
from translator import Translator
|
| 3 |
+
from utils import tokenizer_utils
|
| 4 |
+
from utils.preprocessing import input_processing, output_processing
|
| 5 |
+
from models.transformer import Transformer
|
| 6 |
+
from models.encoder import Encoder
|
| 7 |
+
from models.decoder import Decoder
|
| 8 |
+
from models.layers import EncoderLayer, DecoderLayer, MultiHeadAttention, point_wise_feed_forward_network
|
| 9 |
+
from models.utils import masked_loss, masked_accuracy
|
| 10 |
+
import argparse
|
| 11 |
+
|
| 12 |
+
def main(sentences: list, model: tf.keras.Model, en_tokenizer, vi_tokenizer) -> None:
|
| 13 |
+
"""
|
| 14 |
+
Translates input English sentences to Vietnamese using a pre-trained model.
|
| 15 |
+
|
| 16 |
+
Args:
|
| 17 |
+
sentences (list): List of English sentences to translate.
|
| 18 |
+
model (tf.keras.Model): The pre-trained translation model.
|
| 19 |
+
en_tokenizer: English tokenizer.
|
| 20 |
+
vi_tokenizer: Vietnamese tokenizer.
|
| 21 |
+
"""
|
| 22 |
+
# Initialize the translator with tokenizers and the model
|
| 23 |
+
translator = Translator(en_tokenizer, vi_tokenizer, model)
|
| 24 |
+
|
| 25 |
+
# Process and translate each sentence
|
| 26 |
+
for sentence in sentences:
|
| 27 |
+
processed_sentence = input_processing(sentence)
|
| 28 |
+
translated_text = translator(processed_sentence)
|
| 29 |
+
translated_text = output_processing(translated_text)
|
| 30 |
+
|
| 31 |
+
# Display the input and translated text
|
| 32 |
+
print("Input:", processed_sentence)
|
| 33 |
+
print("Translated:", translated_text)
|
| 34 |
+
print("-" * 50)
|
| 35 |
+
|
| 36 |
+
if __name__ == "__main__":
|
| 37 |
+
# Set up argument parser
|
| 38 |
+
parser = argparse.ArgumentParser(
|
| 39 |
+
description="Translate English sentences to Vietnamese using a pre-trained transformer model.",
|
| 40 |
+
epilog="Example: python translate.py --sentence 'Hello, world!' --sentence 'The sun is shining.'"
|
| 41 |
+
)
|
| 42 |
+
parser.add_argument(
|
| 43 |
+
"--sentence",
|
| 44 |
+
type=str,
|
| 45 |
+
nargs="*",
|
| 46 |
+
default=[
|
| 47 |
+
(
|
| 48 |
+
"For at least six centuries, residents along a lake in the mountains of central Japan "
|
| 49 |
+
"have marked the depth of winter by celebrating the return of a natural phenomenon "
|
| 50 |
+
"once revered as the trail of a wandering god."
|
| 51 |
+
)
|
| 52 |
+
],
|
| 53 |
+
help="One or more English sentences to translate (default: provided example sentence)"
|
| 54 |
+
)
|
| 55 |
+
parser.add_argument(
|
| 56 |
+
"--model_path",
|
| 57 |
+
type=str,
|
| 58 |
+
default="ckpts/en_vi_translation.keras",
|
| 59 |
+
help="Path to the pre-trained model file (default: ckpts/en_vi_translation.keras)"
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
# Parse arguments
|
| 63 |
+
args = parser.parse_args()
|
| 64 |
+
|
| 65 |
+
# Define custom objects required for loading the model
|
| 66 |
+
custom_objects = {
|
| 67 |
+
"Transformer": Transformer,
|
| 68 |
+
"Encoder": Encoder,
|
| 69 |
+
"Decoder": Decoder,
|
| 70 |
+
"EncoderLayer": EncoderLayer,
|
| 71 |
+
"DecoderLayer": DecoderLayer,
|
| 72 |
+
"MultiHeadAttention": MultiHeadAttention,
|
| 73 |
+
"point_wise_feed_forward_network": point_wise_feed_forward_network,
|
| 74 |
+
"masked_loss": masked_loss,
|
| 75 |
+
"masked_accuracy": masked_accuracy,
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
# Load the pre-trained model once
|
| 79 |
+
print("Loading model from:", args.model_path)
|
| 80 |
+
loaded_model = tf.keras.models.load_model(
|
| 81 |
+
args.model_path, custom_objects=custom_objects
|
| 82 |
+
)
|
| 83 |
+
print("Model loaded successfully.")
|
| 84 |
+
|
| 85 |
+
# Load English and Vietnamese tokenizers once
|
| 86 |
+
en_tokenizer, vi_tokenizer = tokenizer_utils.load_tokenizers()
|
| 87 |
+
|
| 88 |
+
# Run the translation for all provided sentences
|
| 89 |
+
main(sentences=args.sentence, model=loaded_model, en_tokenizer=en_tokenizer, vi_tokenizer=vi_tokenizer)
|
| 90 |
+
|
| 91 |
+
# Interactive loop for additional translations
|
| 92 |
+
while True:
|
| 93 |
+
choice = input("Would you like to translate another sentence? (Y/n): ").strip().lower()
|
| 94 |
+
if choice in ['no', 'n', 'quit', 'q']:
|
| 95 |
+
print("Exiting the program.")
|
| 96 |
+
break
|
| 97 |
+
elif choice in ['yes', 'y']:
|
| 98 |
+
new_sentence = input("Enter an English sentence to translate: ").strip()
|
| 99 |
+
if new_sentence:
|
| 100 |
+
main(sentences=[new_sentence], model=loaded_model, en_tokenizer=en_tokenizer, vi_tokenizer=vi_tokenizer)
|
| 101 |
+
else:
|
| 102 |
+
print("No sentence provided. Please try again.")
|
| 103 |
+
else:
|
| 104 |
print("Invalid input. Please enter 'y' or 'n'.")
|