Commit
·
2b1b519
1
Parent(s):
2914730
Update inference.py and meldataset,py
Browse files- inference.py +48 -9
- meldataset.py +129 -40
inference.py
CHANGED
|
@@ -65,9 +65,31 @@ class StyleTTS2(torch.nn.Module):
|
|
| 65 |
super().__init__()
|
| 66 |
self.register_buffer("get_device", torch.empty(0))
|
| 67 |
self.preprocess = Preprocess()
|
| 68 |
-
|
| 69 |
-
config = yaml.safe_load(open(config_path))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
args = self.__recursive_munch(config['model_params'])
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
assert args.decoder.type in ['hifigan'], 'Decoder type unknown'
|
| 73 |
|
|
@@ -186,7 +208,7 @@ class StyleTTS2(torch.nn.Module):
|
|
| 186 |
speed = min(max(speed, 0.0001), 2) #speed range [0, 2]
|
| 187 |
|
| 188 |
phonem = ' '.join(word_tokenize(phonem))
|
| 189 |
-
tokens =
|
| 190 |
tokens.insert(0, 0)
|
| 191 |
tokens.append(0)
|
| 192 |
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
|
|
@@ -231,17 +253,34 @@ class StyleTTS2(torch.nn.Module):
|
|
| 231 |
|
| 232 |
return out.squeeze().cpu().numpy(), duration.mean()
|
| 233 |
|
| 234 |
-
def get_styles(self, speaker, denoise=0.3, avg_style=True):
|
| 235 |
-
if
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
|
|
|
|
|
|
|
|
|
| 239 |
style = {
|
| 240 |
-
'style': ref_s,
|
| 241 |
'path': speaker['path'],
|
| 242 |
'speed': speaker['speed'],
|
| 243 |
}
|
| 244 |
return style
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 245 |
|
| 246 |
def generate(self, phonem, style, stabilize=True, n_merge=16):
|
| 247 |
if stabilize: smooth_value=0.2
|
|
|
|
| 65 |
super().__init__()
|
| 66 |
self.register_buffer("get_device", torch.empty(0))
|
| 67 |
self.preprocess = Preprocess()
|
| 68 |
+
self.ref_s = None
|
| 69 |
+
config = yaml.safe_load(open(config_path, "r", encoding="utf-8"))
|
| 70 |
+
|
| 71 |
+
try:
|
| 72 |
+
symbols = (
|
| 73 |
+
list(config['symbol']['pad']) +
|
| 74 |
+
list(config['symbol']['punctuation']) +
|
| 75 |
+
list(config['symbol']['letters']) +
|
| 76 |
+
list(config['symbol']['letters_ipa']) +
|
| 77 |
+
list(config['symbol']['extend'])
|
| 78 |
+
)
|
| 79 |
+
symbol_dict = {}
|
| 80 |
+
for i in range(len((symbols))):
|
| 81 |
+
symbol_dict[symbols[i]] = i
|
| 82 |
+
|
| 83 |
+
n_token = len(symbol_dict) + 1
|
| 84 |
+
print("\nFound:", n_token, "symbols")
|
| 85 |
+
except Exception as e:
|
| 86 |
+
print(f"\nERROR: Cannot find {e} in config file!\nYour config file is likely outdated, please download updated version from the repository.")
|
| 87 |
+
raise SystemExit(1)
|
| 88 |
+
|
| 89 |
args = self.__recursive_munch(config['model_params'])
|
| 90 |
+
args['n_token'] = n_token
|
| 91 |
+
|
| 92 |
+
self.cleaner = TextCleaner(symbol_dict, debug=False)
|
| 93 |
|
| 94 |
assert args.decoder.type in ['hifigan'], 'Decoder type unknown'
|
| 95 |
|
|
|
|
| 208 |
speed = min(max(speed, 0.0001), 2) #speed range [0, 2]
|
| 209 |
|
| 210 |
phonem = ' '.join(word_tokenize(phonem))
|
| 211 |
+
tokens = self.cleaner(phonem)
|
| 212 |
tokens.insert(0, 0)
|
| 213 |
tokens.append(0)
|
| 214 |
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
|
|
|
|
| 253 |
|
| 254 |
return out.squeeze().cpu().numpy(), duration.mean()
|
| 255 |
|
| 256 |
+
def get_styles(self, speaker, denoise=0.3, avg_style=True, load_styles=False):
|
| 257 |
+
if not load_styles:
|
| 258 |
+
if avg_style: split_dur = 3
|
| 259 |
+
else: split_dur = 0
|
| 260 |
+
self.ref_s = self.__compute_style(speaker['path'], denoise=denoise, split_dur=split_dur)
|
| 261 |
+
else:
|
| 262 |
+
if self.ref_s is None:
|
| 263 |
+
raise Exception("Have to compute or load the styles first!")
|
| 264 |
style = {
|
| 265 |
+
'style': self.ref_s,
|
| 266 |
'path': speaker['path'],
|
| 267 |
'speed': speaker['speed'],
|
| 268 |
}
|
| 269 |
return style
|
| 270 |
+
|
| 271 |
+
def save_styles(self, save_dir):
|
| 272 |
+
if self.ref_s is not None:
|
| 273 |
+
torch.save(self.ref_s, save_dir)
|
| 274 |
+
print("Saved styles!")
|
| 275 |
+
else:
|
| 276 |
+
raise Exception("Have to compute the styles before saving it.")
|
| 277 |
+
|
| 278 |
+
def load_styles(self, save_dir):
|
| 279 |
+
try:
|
| 280 |
+
self.ref_s = torch.load(save_dir)
|
| 281 |
+
print("Loaded styles!")
|
| 282 |
+
except Exception as e:
|
| 283 |
+
print(e)
|
| 284 |
|
| 285 |
def generate(self, phonem, style, stabilize=True, n_merge=16):
|
| 286 |
if stabilize: smooth_value=0.2
|
meldataset.py
CHANGED
|
@@ -1,7 +1,5 @@
|
|
| 1 |
#coding: utf-8
|
| 2 |
-
import os
|
| 3 |
import os.path as osp
|
| 4 |
-
import time
|
| 5 |
import random
|
| 6 |
import numpy as np
|
| 7 |
import random
|
|
@@ -9,10 +7,10 @@ import soundfile as sf
|
|
| 9 |
import librosa
|
| 10 |
|
| 11 |
import torch
|
| 12 |
-
from torch import nn
|
| 13 |
-
import torch.nn.functional as F
|
| 14 |
import torchaudio
|
| 15 |
-
|
|
|
|
|
|
|
| 16 |
|
| 17 |
import logging
|
| 18 |
logger = logging.getLogger(__name__)
|
|
@@ -20,33 +18,19 @@ logger.setLevel(logging.DEBUG)
|
|
| 20 |
|
| 21 |
import pandas as pd
|
| 22 |
|
| 23 |
-
##########################################################
|
| 24 |
-
_pad = "$"
|
| 25 |
-
_punctuation = ';:,.!?¡¿—…"«»“” '
|
| 26 |
-
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz'
|
| 27 |
-
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
| 28 |
-
_extend = "" #ADD MORE SYMBOLS HERE
|
| 29 |
-
|
| 30 |
-
# Export all symbols:
|
| 31 |
-
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa) + list(_extend)
|
| 32 |
-
|
| 33 |
-
dicts = {}
|
| 34 |
-
for i in range(len((symbols))):
|
| 35 |
-
dicts[symbols[i]] = i
|
| 36 |
-
|
| 37 |
-
# Copy this code somewhere else then run with print(len(dicts) + 1) to check total symbols
|
| 38 |
-
##########################################################
|
| 39 |
-
|
| 40 |
class TextCleaner:
|
| 41 |
-
def __init__(self,
|
| 42 |
-
self.word_index_dictionary =
|
|
|
|
| 43 |
def __call__(self, text):
|
| 44 |
indexes = []
|
| 45 |
for char in text:
|
| 46 |
try:
|
| 47 |
indexes.append(self.word_index_dictionary[char])
|
| 48 |
except KeyError as e:
|
| 49 |
-
|
|
|
|
|
|
|
| 50 |
continue
|
| 51 |
return indexes
|
| 52 |
|
|
@@ -75,17 +59,16 @@ class FilePathDataset(torch.utils.data.Dataset):
|
|
| 75 |
def __init__(self,
|
| 76 |
data_list,
|
| 77 |
root_path,
|
|
|
|
| 78 |
sr=24000,
|
| 79 |
data_augmentation=False,
|
| 80 |
-
validation=False
|
|
|
|
| 81 |
):
|
| 82 |
|
| 83 |
-
spect_params = SPECT_PARAMS
|
| 84 |
-
mel_params = MEL_PARAMS
|
| 85 |
-
|
| 86 |
_data_list = [l.strip().split('|') for l in data_list]
|
| 87 |
self.data_list = _data_list #[data if len(data) == 3 else (*data, 0) for data in _data_list] #append speakerid=0 for all
|
| 88 |
-
self.text_cleaner = TextCleaner()
|
| 89 |
self.sr = sr
|
| 90 |
|
| 91 |
self.df = pd.DataFrame(self.data_list)
|
|
@@ -195,9 +178,13 @@ class Collater(object):
|
|
| 195 |
return waves, texts, input_lengths, mels, output_lengths
|
| 196 |
|
| 197 |
|
|
|
|
|
|
|
|
|
|
| 198 |
|
| 199 |
def build_dataloader(path_list,
|
| 200 |
root_path,
|
|
|
|
| 201 |
validation=False,
|
| 202 |
batch_size=4,
|
| 203 |
num_workers=1,
|
|
@@ -205,14 +192,116 @@ def build_dataloader(path_list,
|
|
| 205 |
collate_config={},
|
| 206 |
dataset_config={}):
|
| 207 |
|
| 208 |
-
dataset = FilePathDataset(path_list, root_path, validation=validation, **dataset_config)
|
| 209 |
collate_fn = Collater(**collate_config)
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
#coding: utf-8
|
|
|
|
| 2 |
import os.path as osp
|
|
|
|
| 3 |
import random
|
| 4 |
import numpy as np
|
| 5 |
import random
|
|
|
|
| 7 |
import librosa
|
| 8 |
|
| 9 |
import torch
|
|
|
|
|
|
|
| 10 |
import torchaudio
|
| 11 |
+
import torch.utils.data
|
| 12 |
+
import torch.distributed as dist
|
| 13 |
+
from multiprocessing import Pool
|
| 14 |
|
| 15 |
import logging
|
| 16 |
logger = logging.getLogger(__name__)
|
|
|
|
| 18 |
|
| 19 |
import pandas as pd
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
class TextCleaner:
|
| 22 |
+
def __init__(self, symbol_dict, debug=True):
|
| 23 |
+
self.word_index_dictionary = symbol_dict
|
| 24 |
+
self.debug = debug
|
| 25 |
def __call__(self, text):
|
| 26 |
indexes = []
|
| 27 |
for char in text:
|
| 28 |
try:
|
| 29 |
indexes.append(self.word_index_dictionary[char])
|
| 30 |
except KeyError as e:
|
| 31 |
+
if self.debug:
|
| 32 |
+
print("\nWARNING UNKNOWN IPA CHARACTERS/LETTERS: ", char)
|
| 33 |
+
print("To ignore set 'debug' to false in the config")
|
| 34 |
continue
|
| 35 |
return indexes
|
| 36 |
|
|
|
|
| 59 |
def __init__(self,
|
| 60 |
data_list,
|
| 61 |
root_path,
|
| 62 |
+
symbol_dict,
|
| 63 |
sr=24000,
|
| 64 |
data_augmentation=False,
|
| 65 |
+
validation=False,
|
| 66 |
+
debug=True
|
| 67 |
):
|
| 68 |
|
|
|
|
|
|
|
|
|
|
| 69 |
_data_list = [l.strip().split('|') for l in data_list]
|
| 70 |
self.data_list = _data_list #[data if len(data) == 3 else (*data, 0) for data in _data_list] #append speakerid=0 for all
|
| 71 |
+
self.text_cleaner = TextCleaner(symbol_dict, debug)
|
| 72 |
self.sr = sr
|
| 73 |
|
| 74 |
self.df = pd.DataFrame(self.data_list)
|
|
|
|
| 178 |
return waves, texts, input_lengths, mels, output_lengths
|
| 179 |
|
| 180 |
|
| 181 |
+
def get_length(wave_path, root_path):
|
| 182 |
+
info = sf.info(osp.join(root_path, wave_path))
|
| 183 |
+
return info.frames * (24000 / info.samplerate)
|
| 184 |
|
| 185 |
def build_dataloader(path_list,
|
| 186 |
root_path,
|
| 187 |
+
symbol_dict,
|
| 188 |
validation=False,
|
| 189 |
batch_size=4,
|
| 190 |
num_workers=1,
|
|
|
|
| 192 |
collate_config={},
|
| 193 |
dataset_config={}):
|
| 194 |
|
| 195 |
+
dataset = FilePathDataset(path_list, root_path, symbol_dict, validation=validation, **dataset_config)
|
| 196 |
collate_fn = Collater(**collate_config)
|
| 197 |
+
|
| 198 |
+
print("Getting sample lengths...")
|
| 199 |
+
|
| 200 |
+
num_processes = num_workers * 2
|
| 201 |
+
if num_processes != 0:
|
| 202 |
+
list_of_tuples = [(d[0], root_path) for d in dataset.data_list]
|
| 203 |
+
with Pool(processes=num_processes) as pool:
|
| 204 |
+
sample_lengths = pool.starmap(get_length, list_of_tuples, chunksize=16)
|
| 205 |
+
else:
|
| 206 |
+
sample_lengths = []
|
| 207 |
+
for d in dataset.data_list:
|
| 208 |
+
sample_lengths.append(get_length(d[0], root_path))
|
| 209 |
+
|
| 210 |
+
data_loader = torch.utils.data.DataLoader(
|
| 211 |
+
dataset,
|
| 212 |
+
num_workers=num_workers,
|
| 213 |
+
batch_sampler=BatchSampler(
|
| 214 |
+
sample_lengths,
|
| 215 |
+
batch_size,
|
| 216 |
+
shuffle=(not validation),
|
| 217 |
+
drop_last=(not validation),
|
| 218 |
+
num_replicas=1,
|
| 219 |
+
rank=0,
|
| 220 |
+
),
|
| 221 |
+
collate_fn=collate_fn,
|
| 222 |
+
pin_memory=(device != "cpu"),
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
return data_loader
|
| 226 |
+
|
| 227 |
+
#https://github.com/duerig/StyleTTS2/
|
| 228 |
+
class BatchSampler(torch.utils.data.Sampler):
|
| 229 |
+
def __init__(
|
| 230 |
+
self,
|
| 231 |
+
sample_lengths,
|
| 232 |
+
batch_sizes,
|
| 233 |
+
num_replicas=None,
|
| 234 |
+
rank=None,
|
| 235 |
+
shuffle=True,
|
| 236 |
+
drop_last=False,
|
| 237 |
+
):
|
| 238 |
+
self.batch_sizes = batch_sizes
|
| 239 |
+
if num_replicas is None:
|
| 240 |
+
self.num_replicas = dist.get_world_size()
|
| 241 |
+
else:
|
| 242 |
+
self.num_replicas = num_replicas
|
| 243 |
+
if rank is None:
|
| 244 |
+
self.rank = dist.get_rank()
|
| 245 |
+
else:
|
| 246 |
+
self.rank = rank
|
| 247 |
+
self.shuffle = shuffle
|
| 248 |
+
self.drop_last = drop_last
|
| 249 |
+
|
| 250 |
+
self.time_bins = {}
|
| 251 |
+
self.epoch = 0
|
| 252 |
+
self.total_len = 0
|
| 253 |
+
self.last_bin = None
|
| 254 |
+
|
| 255 |
+
for i in range(len(sample_lengths)):
|
| 256 |
+
bin_num = self.get_time_bin(sample_lengths[i])
|
| 257 |
+
if bin_num != -1:
|
| 258 |
+
if bin_num not in self.time_bins:
|
| 259 |
+
self.time_bins[bin_num] = []
|
| 260 |
+
self.time_bins[bin_num].append(i)
|
| 261 |
+
|
| 262 |
+
for key in self.time_bins.keys():
|
| 263 |
+
val = self.time_bins[key]
|
| 264 |
+
total_batch = self.batch_sizes * num_replicas
|
| 265 |
+
self.total_len += len(val) // total_batch
|
| 266 |
+
if not self.drop_last and len(val) % total_batch != 0:
|
| 267 |
+
self.total_len += 1
|
| 268 |
+
|
| 269 |
+
def __iter__(self):
|
| 270 |
+
sampler_order = list(self.time_bins.keys())
|
| 271 |
+
sampler_indices = []
|
| 272 |
+
|
| 273 |
+
if self.shuffle:
|
| 274 |
+
sampler_indices = torch.randperm(len(sampler_order)).tolist()
|
| 275 |
+
else:
|
| 276 |
+
sampler_indices = list(range(len(sampler_order)))
|
| 277 |
+
|
| 278 |
+
for index in sampler_indices:
|
| 279 |
+
key = sampler_order[index]
|
| 280 |
+
current_bin = self.time_bins[key]
|
| 281 |
+
dist = torch.utils.data.distributed.DistributedSampler(
|
| 282 |
+
current_bin,
|
| 283 |
+
num_replicas=self.num_replicas,
|
| 284 |
+
rank=self.rank,
|
| 285 |
+
shuffle=self.shuffle,
|
| 286 |
+
drop_last=self.drop_last,
|
| 287 |
+
)
|
| 288 |
+
dist.set_epoch(self.epoch)
|
| 289 |
+
sampler = torch.utils.data.sampler.BatchSampler(
|
| 290 |
+
dist, self.batch_sizes, self.drop_last
|
| 291 |
+
)
|
| 292 |
+
for item_list in sampler:
|
| 293 |
+
self.last_bin = key
|
| 294 |
+
yield [current_bin[i] for i in item_list]
|
| 295 |
+
|
| 296 |
+
def __len__(self):
|
| 297 |
+
return self.total_len
|
| 298 |
+
|
| 299 |
+
def set_epoch(self, epoch):
|
| 300 |
+
self.epoch = epoch
|
| 301 |
+
|
| 302 |
+
def get_time_bin(self, sample_count):
|
| 303 |
+
result = -1
|
| 304 |
+
frames = sample_count // 300
|
| 305 |
+
if frames >= 20:
|
| 306 |
+
result = (frames - 20) // 20
|
| 307 |
+
return result
|