--- license: apache-2.0 base_model: microsoft/resnet-50 tags: - generated_from_trainer datasets: - fair_face metrics: - accuracy model-index: - name: trained-race results: - task: name: Image Classification type: image-classification dataset: name: fair_face type: fair_face config: '0.25' split: validation args: '0.25' metrics: - name: Accuracy type: accuracy value: 0.634380135110462 --- # trained-race This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the fair_face dataset. It achieves the following results on the evaluation set: - Loss: 0.9495 - Accuracy: 0.6344 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.4995 | 0.18 | 1000 | 1.5133 | 0.4135 | | 1.3103 | 0.37 | 2000 | 1.2797 | 0.5045 | | 1.2417 | 0.55 | 3000 | 1.1583 | 0.5451 | | 1.2142 | 0.74 | 4000 | 1.0952 | 0.5780 | | 1.0633 | 0.92 | 5000 | 1.0508 | 0.5973 | | 0.9559 | 1.11 | 6000 | 1.0179 | 0.6106 | | 0.9984 | 1.29 | 7000 | 0.9958 | 0.6179 | | 0.9843 | 1.48 | 8000 | 0.9780 | 0.6315 | | 0.8943 | 1.66 | 9000 | 0.9470 | 0.6386 | | 0.9941 | 1.84 | 10000 | 0.9495 | 0.6344 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0