File size: 3,053 Bytes
31c5f68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
library_name: transformers
license: apache-2.0
base_model: google-t5/t5-3b
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: 64e2108fc55edcc92327e54cb544ba55
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 64e2108fc55edcc92327e54cb544ba55

This model is a fine-tuned version of [google-t5/t5-3b](https://huggingface.co/google-t5/t5-3b) on the Helsinki-NLP/opus_books [en-nl] dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1715
- Data Size: 1.0
- Epoch Runtime: 455.8688
- Bleu: 8.7940

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Data Size | Epoch Runtime | Bleu   |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:-------------:|:------:|
| No log        | 0     | 0     | 2.6616          | 0         | 28.2970       | 1.7281 |
| No log        | 1     | 966   | 2.2039          | 0.0078    | 32.5855       | 2.7291 |
| No log        | 2     | 1932  | 2.0539          | 0.0156    | 43.6727       | 3.8064 |
| 0.0505        | 3     | 2898  | 1.9161          | 0.0312    | 48.5563       | 4.2945 |
| 2.0261        | 4     | 3864  | 1.7818          | 0.0625    | 63.5191       | 4.3479 |
| 1.8616        | 5     | 4830  | 1.6349          | 0.125     | 87.2131       | 5.1001 |
| 1.6977        | 6     | 5796  | 1.4992          | 0.25      | 139.6249      | 5.8257 |
| 1.4842        | 7     | 6762  | 1.3557          | 0.5       | 240.0775      | 6.6527 |
| 1.2894        | 8.0   | 7728  | 1.2250          | 1.0       | 446.9474      | 7.6431 |
| 1.1553        | 9.0   | 8694  | 1.1645          | 1.0       | 447.2167      | 8.0025 |
| 1.0527        | 10.0  | 9660  | 1.1327          | 1.0       | 454.2894      | 8.3299 |
| 0.9251        | 11.0  | 10626 | 1.1213          | 1.0       | 455.9962      | 8.4725 |
| 0.8492        | 12.0  | 11592 | 1.1249          | 1.0       | 434.8186      | 8.5219 |
| 0.7611        | 13.0  | 12558 | 1.1337          | 1.0       | 458.0648      | 8.6364 |
| 0.7174        | 14.0  | 13524 | 1.1428          | 1.0       | 457.5247      | 8.7487 |
| 0.6356        | 15.0  | 14490 | 1.1715          | 1.0       | 455.8688      | 8.7940 |


### Framework versions

- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.2.0
- Tokenizers 0.22.1