--- license: apache-2.0 tags: - computer-vision - image-classification - food101 - cnn-vit - hybrid datasets: - food101 metrics: - accuracy library_name: pytorch --- # 🍕 Hybrid Food Image Classifier (CNN + ViT) This model combines ResNet50 (CNN) and DeiT-Base (ViT) with an adaptive fusion module for state-of-the-art food image classification. ## Model Architecture - **CNN Branch**: ResNet50 (pretrained on ImageNet) - **ViT Branch**: DeiT-Base Distilled (pretrained) - **Fusion Module**: Adaptive attention-based fusion with multi-head cross-attention - **Classes**: 101 food categories from Food-101 dataset ## Performance - **Validation Accuracy**: ~82.5% - **Top-5 Accuracy**: >95% ## Files - `best_model.pth`: Trained PyTorch checkpoint - `real_class_mapping.json`: Human-readable class names - `config.yaml`: Training configuration - `food101_class_names.json`: Original class names ## Quick Usage ```python from huggingface_hub import hf_hub_download import torch # Download model ckpt_path = hf_hub_download( repo_id="codealchemist01/food-image-classifier-hybrid", filename="best_model.pth" ) # Load checkpoint checkpoint = torch.load(ckpt_path, map_location="cpu") ``` ## Demo Try the live demo: [Food Classifier Space](https://huggingface.co/spaces/codealchemist01/food-classifier-space) ## Training Details - **Dataset**: Food-101 (101,000 images across 101 categories) - **Framework**: PyTorch 2.0+ - **Image Size**: 224x224 - **Optimizer**: AdamW with cosine annealing warm restarts - **Augmentations**: Albumentations (flip, rotation, color jitter) - **Mixed Precision**: FP16 training ## Citation ```bibtex @misc{food-classifier-hybrid, author = {codealchemist01}, title = {Hybrid Food Image Classifier}, year = {2025}, publisher = {Hugging Face}, howpublished = {\url{https://huggingface.co/codealchemist01/food-image-classifier-hybrid}} } ```