Upload folder using huggingface_hub
Browse files- README.md +31 -0
- config.json +12 -0
- model.skops +0 -0
- requirements.txt +2 -0
README.md
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: sklearn
|
| 3 |
+
tags:
|
| 4 |
+
- sklearn
|
| 5 |
+
- tabular-regression
|
| 6 |
+
- soma
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
# Modelo de Soma
|
| 10 |
+
|
| 11 |
+
Modelo de regressão linear simples que soma dois números: x1 + x2 = y
|
| 12 |
+
|
| 13 |
+
## Como usar
|
| 14 |
+
```python
|
| 15 |
+
from huggingface_hub import hf_hub_download
|
| 16 |
+
from skops.io import load
|
| 17 |
+
import numpy as np
|
| 18 |
+
|
| 19 |
+
# Baixar modelo
|
| 20 |
+
model_path = hf_hub_download(
|
| 21 |
+
repo_id="seu_usuario/modelo-soma",
|
| 22 |
+
filename="model.skops"
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
# Carregar
|
| 26 |
+
model = load(model_path, trusted=True)
|
| 27 |
+
|
| 28 |
+
# Usar
|
| 29 |
+
resultado = model.predict([[10, 20]])
|
| 30 |
+
print(resultado) # [30.]
|
| 31 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"sklearn": {
|
| 3 |
+
"columns": [
|
| 4 |
+
"x1",
|
| 5 |
+
"x2"
|
| 6 |
+
],
|
| 7 |
+
"model": {
|
| 8 |
+
"type": "LinearRegression"
|
| 9 |
+
},
|
| 10 |
+
"task": "tabular-regression"
|
| 11 |
+
}
|
| 12 |
+
}
|
model.skops
ADDED
|
Binary file (5.5 kB). View file
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
scikit-learn
|
| 2 |
+
skops
|