Faisal AlKhateeb
commited on
Commit
·
eb4f0e4
1
Parent(s):
19c3116
change mup param names
Browse files- config.json +4 -4
- configuration_btlm.py +14 -14
- modeling_btlm.py +10 -10
config.json
CHANGED
|
@@ -15,7 +15,7 @@
|
|
| 15 |
},
|
| 16 |
"bos_token_id": 50256,
|
| 17 |
"embd_pdrop": 0.0,
|
| 18 |
-
"
|
| 19 |
"eos_token_id": 50256,
|
| 20 |
"initializer_range": 0.073,
|
| 21 |
"layer_norm_epsilon": 1e-05,
|
|
@@ -25,16 +25,16 @@
|
|
| 25 |
"n_inner": 6826,
|
| 26 |
"n_layer": 32,
|
| 27 |
"n_positions": 8192,
|
| 28 |
-
"
|
| 29 |
"position_embedding_type": "alibi",
|
| 30 |
"reorder_and_upcast_attn": false,
|
| 31 |
"resid_pdrop": 0.0,
|
| 32 |
"scale_attn_by_inverse_layer_idx": false,
|
| 33 |
"scale_attn_weights": true,
|
| 34 |
-
"
|
| 35 |
"torch_dtype": "bfloat16",
|
| 36 |
"transformers_version": "4.30.0",
|
| 37 |
"use_cache": true,
|
| 38 |
"vocab_size": 50257,
|
| 39 |
-
"
|
| 40 |
}
|
|
|
|
| 15 |
},
|
| 16 |
"bos_token_id": 50256,
|
| 17 |
"embd_pdrop": 0.0,
|
| 18 |
+
"mup_embeddings_scale": 14.6,
|
| 19 |
"eos_token_id": 50256,
|
| 20 |
"initializer_range": 0.073,
|
| 21 |
"layer_norm_epsilon": 1e-05,
|
|
|
|
| 25 |
"n_inner": 6826,
|
| 26 |
"n_layer": 32,
|
| 27 |
"n_positions": 8192,
|
| 28 |
+
"mup_output_alpha": 2.2200000000000003,
|
| 29 |
"position_embedding_type": "alibi",
|
| 30 |
"reorder_and_upcast_attn": false,
|
| 31 |
"resid_pdrop": 0.0,
|
| 32 |
"scale_attn_by_inverse_layer_idx": false,
|
| 33 |
"scale_attn_weights": true,
|
| 34 |
+
"mup_scale_qk_dot_by_d": true,
|
| 35 |
"torch_dtype": "bfloat16",
|
| 36 |
"transformers_version": "4.30.0",
|
| 37 |
"use_cache": true,
|
| 38 |
"vocab_size": 50257,
|
| 39 |
+
"mup_width_scale": 0.1
|
| 40 |
}
|
configuration_btlm.py
CHANGED
|
@@ -23,7 +23,7 @@ from transformers.utils import logging
|
|
| 23 |
logger = logging.get_logger(__name__)
|
| 24 |
|
| 25 |
BTLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
| 26 |
-
"cerebras/
|
| 27 |
}
|
| 28 |
|
| 29 |
|
|
@@ -74,14 +74,14 @@ class BTLMConfig(PretrainedConfig):
|
|
| 74 |
dot-product/softmax to float() when training with mixed precision.
|
| 75 |
position_embedding_type (`str`, *optional*, defaults to `"learned"`):
|
| 76 |
Positional embedding can be either `"alibi"` or `"learned"`.
|
| 77 |
-
|
| 78 |
muP parameter to scale learning rate and initializers. Calculated as (`d_model,0 / d_model`), where
|
| 79 |
`d_model` is the model's width and `d_model,0` is the proxy model's width.
|
| 80 |
-
|
| 81 |
muP parameter to scale token and position embeddings.
|
| 82 |
-
|
| 83 |
-
muP parameter to scale output logits
|
| 84 |
-
|
| 85 |
Scale attention weights by dividing by hidden_size instead of sqrt(hidden_size). Need to set
|
| 86 |
scale_attn_weights to `True` as well.
|
| 87 |
|
|
@@ -130,10 +130,10 @@ class BTLMConfig(PretrainedConfig):
|
|
| 130 |
scale_attn_by_inverse_layer_idx=False,
|
| 131 |
reorder_and_upcast_attn=False,
|
| 132 |
position_embedding_type="learned",
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
**kwargs,
|
| 138 |
):
|
| 139 |
self.vocab_size = vocab_size
|
|
@@ -157,9 +157,9 @@ class BTLMConfig(PretrainedConfig):
|
|
| 157 |
self.eos_token_id = eos_token_id
|
| 158 |
|
| 159 |
self.position_embedding_type = position_embedding_type
|
| 160 |
-
self.
|
| 161 |
-
self.
|
| 162 |
-
self.
|
| 163 |
-
self.
|
| 164 |
|
| 165 |
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
|
|
|
| 23 |
logger = logging.get_logger(__name__)
|
| 24 |
|
| 25 |
BTLM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
| 26 |
+
"cerebras/btlm-3b-8k-base": "https://huggingface.co/cerebras/btlm-3b-8k-base/resolve/main/config.json",
|
| 27 |
}
|
| 28 |
|
| 29 |
|
|
|
|
| 74 |
dot-product/softmax to float() when training with mixed precision.
|
| 75 |
position_embedding_type (`str`, *optional*, defaults to `"learned"`):
|
| 76 |
Positional embedding can be either `"alibi"` or `"learned"`.
|
| 77 |
+
mup_width_scale (`float`, *optional*, defaults to 1.0):
|
| 78 |
muP parameter to scale learning rate and initializers. Calculated as (`d_model,0 / d_model`), where
|
| 79 |
`d_model` is the model's width and `d_model,0` is the proxy model's width.
|
| 80 |
+
mup_embeddings_scale (`float`, *optional*, defaults to 1.0):
|
| 81 |
muP parameter to scale token and position embeddings.
|
| 82 |
+
mup_output_alpha (`float`, *optional*, defaults to 1.0):
|
| 83 |
+
muP parameter to scale output logits (`output_logits_scale = mup_output_alpha * mup_width_scale`).
|
| 84 |
+
mup_scale_qk_dot_by_d (`bool`, *optional*, defaults to `False`):
|
| 85 |
Scale attention weights by dividing by hidden_size instead of sqrt(hidden_size). Need to set
|
| 86 |
scale_attn_weights to `True` as well.
|
| 87 |
|
|
|
|
| 130 |
scale_attn_by_inverse_layer_idx=False,
|
| 131 |
reorder_and_upcast_attn=False,
|
| 132 |
position_embedding_type="learned",
|
| 133 |
+
mup_width_scale=1.0,
|
| 134 |
+
mup_embeddings_scale=1.0,
|
| 135 |
+
mup_output_alpha=1.0,
|
| 136 |
+
mup_scale_qk_dot_by_d=False,
|
| 137 |
**kwargs,
|
| 138 |
):
|
| 139 |
self.vocab_size = vocab_size
|
|
|
|
| 157 |
self.eos_token_id = eos_token_id
|
| 158 |
|
| 159 |
self.position_embedding_type = position_embedding_type
|
| 160 |
+
self.mup_width_scale = mup_width_scale
|
| 161 |
+
self.mup_embeddings_scale = mup_embeddings_scale
|
| 162 |
+
self.mup_output_alpha = mup_output_alpha
|
| 163 |
+
self.mup_scale_qk_dot_by_d = mup_scale_qk_dot_by_d
|
| 164 |
|
| 165 |
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
modeling_btlm.py
CHANGED
|
@@ -48,11 +48,11 @@ from .configuration_btlm import BTLMConfig
|
|
| 48 |
|
| 49 |
logger = logging.get_logger(__name__)
|
| 50 |
|
| 51 |
-
_CHECKPOINT_FOR_DOC = "cerebras/
|
| 52 |
_CONFIG_FOR_DOC = "BTLMConfig"
|
| 53 |
|
| 54 |
BTLM_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 55 |
-
"cerebras/
|
| 56 |
# See all BTLM models at https://huggingface.co/models?filter=btlm
|
| 57 |
]
|
| 58 |
|
|
@@ -204,7 +204,7 @@ class BTLMAttention(nn.Module):
|
|
| 204 |
|
| 205 |
self.pruned_heads = set()
|
| 206 |
|
| 207 |
-
self.attn_scale_power = 1.0 if config.
|
| 208 |
|
| 209 |
def prune_heads(self, heads):
|
| 210 |
if len(heads) == 0:
|
|
@@ -511,7 +511,7 @@ class BTLMPreTrainedModel(PreTrainedModel):
|
|
| 511 |
|
| 512 |
def _init_weights(self, module):
|
| 513 |
"""Initialize the weights."""
|
| 514 |
-
mup_init_scale = math.sqrt(self.config.
|
| 515 |
if isinstance(module, (nn.Linear, Conv1D)):
|
| 516 |
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 517 |
# cf https://github.com/pytorch/pytorch/pull/5617
|
|
@@ -576,7 +576,7 @@ class BTLMPreTrainedModel(PreTrainedModel):
|
|
| 576 |
return 1
|
| 577 |
return 0
|
| 578 |
|
| 579 |
-
width_scale = self.config.
|
| 580 |
new_param_groups = []
|
| 581 |
new_param_groups.append({"params": [], "lr": lr * width_scale, "weight_decay": weight_decay})
|
| 582 |
if not decoupled_wd:
|
|
@@ -754,7 +754,7 @@ class BTLMModel(BTLMPreTrainedModel):
|
|
| 754 |
if config.position_embedding_type != "alibi"
|
| 755 |
else None
|
| 756 |
)
|
| 757 |
-
self.embeddings_scale = config.
|
| 758 |
|
| 759 |
self.drop = nn.Dropout(config.embd_pdrop)
|
| 760 |
self.h = nn.ModuleList([BTLMBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
|
@@ -1062,7 +1062,7 @@ class BTLMLMHeadModel(BTLMPreTrainedModel):
|
|
| 1062 |
super().__init__(config)
|
| 1063 |
self.transformer = BTLMModel(config)
|
| 1064 |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 1065 |
-
self.output_logits_scale = config.
|
| 1066 |
|
| 1067 |
# Model parallel
|
| 1068 |
self.model_parallel = False
|
|
@@ -1264,7 +1264,7 @@ class BTLMForSequenceClassification(BTLMPreTrainedModel):
|
|
| 1264 |
self.num_labels = config.num_labels
|
| 1265 |
self.transformer = BTLMModel(config)
|
| 1266 |
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
| 1267 |
-
self.output_logits_scale = config.
|
| 1268 |
|
| 1269 |
# Model parallel
|
| 1270 |
self.model_parallel = False
|
|
@@ -1397,7 +1397,7 @@ class BTLMForTokenClassification(BTLMPreTrainedModel):
|
|
| 1397 |
classifier_dropout = 0.1
|
| 1398 |
self.dropout = nn.Dropout(classifier_dropout)
|
| 1399 |
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1400 |
-
self.output_logits_scale = config.
|
| 1401 |
|
| 1402 |
# Model parallel
|
| 1403 |
self.model_parallel = False
|
|
@@ -1492,7 +1492,7 @@ class BTLMForQuestionAnswering(BTLMPreTrainedModel):
|
|
| 1492 |
self.num_labels = config.num_labels
|
| 1493 |
self.transformer = BTLMModel(config)
|
| 1494 |
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
| 1495 |
-
self.output_logits_scale = config.
|
| 1496 |
|
| 1497 |
# Model parallel
|
| 1498 |
self.model_parallel = False
|
|
|
|
| 48 |
|
| 49 |
logger = logging.get_logger(__name__)
|
| 50 |
|
| 51 |
+
_CHECKPOINT_FOR_DOC = "cerebras/btlm-3b-8k-base"
|
| 52 |
_CONFIG_FOR_DOC = "BTLMConfig"
|
| 53 |
|
| 54 |
BTLM_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 55 |
+
"cerebras/btlm-3b-8k-base",
|
| 56 |
# See all BTLM models at https://huggingface.co/models?filter=btlm
|
| 57 |
]
|
| 58 |
|
|
|
|
| 204 |
|
| 205 |
self.pruned_heads = set()
|
| 206 |
|
| 207 |
+
self.attn_scale_power = 1.0 if config.mup_scale_qk_dot_by_d else 0.5
|
| 208 |
|
| 209 |
def prune_heads(self, heads):
|
| 210 |
if len(heads) == 0:
|
|
|
|
| 511 |
|
| 512 |
def _init_weights(self, module):
|
| 513 |
"""Initialize the weights."""
|
| 514 |
+
mup_init_scale = math.sqrt(self.config.mup_width_scale)
|
| 515 |
if isinstance(module, (nn.Linear, Conv1D)):
|
| 516 |
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 517 |
# cf https://github.com/pytorch/pytorch/pull/5617
|
|
|
|
| 576 |
return 1
|
| 577 |
return 0
|
| 578 |
|
| 579 |
+
width_scale = self.config.mup_width_scale
|
| 580 |
new_param_groups = []
|
| 581 |
new_param_groups.append({"params": [], "lr": lr * width_scale, "weight_decay": weight_decay})
|
| 582 |
if not decoupled_wd:
|
|
|
|
| 754 |
if config.position_embedding_type != "alibi"
|
| 755 |
else None
|
| 756 |
)
|
| 757 |
+
self.embeddings_scale = config.mup_embeddings_scale
|
| 758 |
|
| 759 |
self.drop = nn.Dropout(config.embd_pdrop)
|
| 760 |
self.h = nn.ModuleList([BTLMBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
|
|
|
| 1062 |
super().__init__(config)
|
| 1063 |
self.transformer = BTLMModel(config)
|
| 1064 |
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 1065 |
+
self.output_logits_scale = config.mup_output_alpha * config.mup_width_scale
|
| 1066 |
|
| 1067 |
# Model parallel
|
| 1068 |
self.model_parallel = False
|
|
|
|
| 1264 |
self.num_labels = config.num_labels
|
| 1265 |
self.transformer = BTLMModel(config)
|
| 1266 |
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
| 1267 |
+
self.output_logits_scale = config.mup_output_alpha * config.mup_width_scale
|
| 1268 |
|
| 1269 |
# Model parallel
|
| 1270 |
self.model_parallel = False
|
|
|
|
| 1397 |
classifier_dropout = 0.1
|
| 1398 |
self.dropout = nn.Dropout(classifier_dropout)
|
| 1399 |
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1400 |
+
self.output_logits_scale = config.mup_output_alpha * config.mup_width_scale
|
| 1401 |
|
| 1402 |
# Model parallel
|
| 1403 |
self.model_parallel = False
|
|
|
|
| 1492 |
self.num_labels = config.num_labels
|
| 1493 |
self.transformer = BTLMModel(config)
|
| 1494 |
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
| 1495 |
+
self.output_logits_scale = config.mup_output_alpha * config.mup_width_scale
|
| 1496 |
|
| 1497 |
# Model parallel
|
| 1498 |
self.model_parallel = False
|