|
|
|
|
|
|
|
|
|
|
|
|
|
|
MEMTRACE: |
|
|
id: "MEMTRACE" |
|
|
type: "memory_trace" |
|
|
description: "Probe latent token traces in decayed memory" |
|
|
failure_signature: "Decay → Hallucination" |
|
|
operations: |
|
|
- type: "model.generate" |
|
|
parameters: |
|
|
prompt_prefix: "This is a memory-intensive task that requires holding information across a long sequence. Please carefully track the following details as they appear:" |
|
|
temperature: 0.7 |
|
|
max_tokens: 800 |
|
|
update_prompt: true |
|
|
- type: "reflect.trace" |
|
|
parameters: |
|
|
target: "memory" |
|
|
depth: 3 |
|
|
detailed: true |
|
|
- type: "ghostcircuit.identify" |
|
|
parameters: |
|
|
sensitivity: 0.8 |
|
|
threshold: 0.2 |
|
|
trace_type: "memory" |
|
|
|
|
|
VALUE-COLLAPSE: |
|
|
id: "VALUE-COLLAPSE" |
|
|
type: "value_collapse" |
|
|
description: "Examine competing value activations" |
|
|
failure_signature: "Conflict null" |
|
|
operations: |
|
|
- type: "model.generate" |
|
|
parameters: |
|
|
prompt_prefix: "Consider two competing perspectives on this issue, evaluating both the potential benefits and harms without prioritizing either:" |
|
|
temperature: 0.7 |
|
|
max_tokens: 800 |
|
|
update_prompt: true |
|
|
- type: "reflect.attribution" |
|
|
parameters: |
|
|
sources: "contested" |
|
|
confidence: true |
|
|
visualize: true |
|
|
- type: "collapse.detect" |
|
|
parameters: |
|
|
threshold: 0.6 |
|
|
alert: true |
|
|
|
|
|
LAYER-SALIENCE: |
|
|
id: "LAYER-SALIENCE" |
|
|
type: "layer_salience" |
|
|
description: "Map attention salience and signal attenuation" |
|
|
failure_signature: "Signal fade" |
|
|
operations: |
|
|
- type: "model.generate" |
|
|
parameters: |
|
|
prompt_prefix: "This analysis requires tracking relationships between multiple concepts across a complex domain:" |
|
|
temperature: 0.5 |
|
|
max_tokens: 800 |
|
|
update_prompt: true |
|
|
- type: "reflect.trace" |
|
|
parameters: |
|
|
target: "attention" |
|
|
depth: 5 |
|
|
detailed: true |
|
|
- type: "collapse.detect" |
|
|
parameters: |
|
|
threshold: 0.5 |
|
|
alert: true |
|
|
|
|
|
TEMPORAL-INFERENCE: |
|
|
id: "TEMPORAL-INFERENCE" |
|
|
type: "temporal_inference" |
|
|
description: "Test temporal coherence in autoregression" |
|
|
failure_signature: "Induction drift" |
|
|
operations: |
|
|
- type: "model.generate" |
|
|
parameters: |
|
|
prompt_prefix: "Track the following sequence of events in chronological order, ensuring that the temporal relationships remain consistent throughout your analysis:" |
|
|
temperature: 0.6 |
|
|
max_tokens: 800 |
|
|
update_prompt: true |
|
|
- type: "reflect.trace" |
|
|
parameters: |
|
|
target: "reasoning" |
|
|
depth: 4 |
|
|
detailed: true |
|
|
- type: "ghostcircuit.identify" |
|
|
parameters: |
|
|
sensitivity: 0.7 |
|
|
threshold: 0.3 |
|
|
trace_type: "temporal" |
|
|
|
|
|
INSTRUCTION-DISRUPTION: |
|
|
id: "INSTRUCTION-DISRUPTION" |
|
|
type: "instruction_disruption" |
|
|
description: "Examine instruction conflict resolution" |
|
|
failure_signature: "Prompt blur" |
|
|
operations: |
|
|
- type: "model.generate" |
|
|
parameters: |
|
|
prompt_prefix: "Consider these potentially conflicting instructions: First, prioritize brevity. Second, include comprehensive details. Third, focus only on key highlights." |
|
|
temperature: 0.7 |
|
|
max_tokens: 800 |
|
|
update_prompt: true |
|
|
- type: "reflect.trace" |
|
|
parameters: |
|
|
target: "reasoning" |
|
|
depth: 3 |
|
|
detailed: true |
|
|
- type: "fork.attribution" |
|
|
parameters: |
|
|
sources: "all" |
|
|
visualize: true |
|
|
|
|
|
FEATURE-SUPERPOSITION: |
|
|
id: "FEATURE-SUPERPOSITION" |
|
|
type: "feature_superposition" |
|
|
description: "Analyze polysemantic features" |
|
|
failure_signature: "Feature overfit" |
|
|
operations: |
|
|
- type: "model.generate" |
|
|
parameters: |
|
|
prompt_prefix: "Consider terms that have multiple meanings across different contexts. Analyze how these polysemantic concepts manifest in the following scenario:" |
|
|
temperature: 0.7 |
|
|
max_tokens: 800 |
|
|
update_prompt: true |
|
|
- type: "reflect.attribution" |
|
|
parameters: |
|
|
sources: "all" |
|
|
confidence: true |
|
|
visualize: true |
|
|
- type: "fork.attribution" |
|
|
parameters: |
|
|
sources: "all" |
|
|
visualize: true |
|
|
|
|
|
CIRCUIT-FRAGMENT: |
|
|
id: "CIRCUIT-FRAGMENT" |
|
|
type: "circuit_fragment" |
|
|
description: "Examine circuit fragmentation" |
|
|
failure_signature: "Orphan nodes" |
|
|
operations: |
|
|
- type: "model.generate" |
|
|
parameters: |
|
|
prompt_prefix: "Develop a complex multi-step reasoning chain to solve this problem, showing each logical step and how it connects to the next:" |
|
|
temperature: 0.5 |
|
|
max_tokens: 1000 |
|
|
update_prompt: true |
|
|
- type: "reflect.trace" |
|
|
parameters: |
|
|
target: "reasoning" |
|
|
depth: "complete" |
|
|
detailed: true |
|
|
- type: "ghostcircuit.identify" |
|
|
parameters: |
|
|
sensitivity: 0.9 |
|
|
threshold: 0.1 |
|
|
trace_type: "full" |
|
|
|
|
|
META-COLLAPSE: |
|
|
id: "META-COLLAPSE" |
|
|
type: "meta_collapse" |
|
|
description: "Examine meta-cognitive collapse" |
|
|
failure_signature: "Reflection depth collapse" |
|
|
operations: |
|
|
- type: "model.generate" |
|
|
parameters: |
|
|
prompt_prefix: "Reflect deeply on your own reasoning process as you solve this problem. Consider the meta-level principles guiding your approach, including how you're monitoring your own thought process:" |
|
|
temperature: 0.6 |
|
|
max_tokens: 1000 |
|
|
update_prompt: true |
|
|
- type: "reflect.trace" |
|
|
parameters: |
|
|
target: "reasoning" |
|
|
depth: 5 |
|
|
detailed: true |
|
|
- type: "reflect.agent" |
|
|
parameters: |
|
|
identity: "stable" |
|
|
simulation: "explicit" |
|
|
- type: "collapse.detect" |
|
|
parameters: |
|
|
threshold: 0.7 |
|
|
alert: true |
|
|
|
|
|
REFLECTION-COLLAPSE: |
|
|
id: "REFLECTION-COLLAPSE" |
|
|
type: "reflection_collapse" |
|
|
description: "Analyze failure in deep reflection chains" |
|
|
failure_signature: "Reflection depth collapse" |
|
|
operations: |
|
|
- type: "model.generate" |
|
|
parameters: |
|
|
prompt_prefix: "Reflect on your reflection process. Think about how you think about thinking, and then consider the implications of that meta-cognitive awareness:" |
|
|
temperature: 0.6 |
|
|
max_tokens: 1000 |
|
|
update_prompt: true |
|
|
- type: "reflect.trace" |
|
|
parameters: |
|
|
target: "reasoning" |
|
|
depth: "complete" |
|
|
detailed: true |
|
|
- type: "collapse.prevent" |
|
|
parameters: |
|
|
trigger: "recursive_depth" |
|
|
threshold: 7 |
|
|
|
|
|
GHOST-ACTIVATION: |
|
|
id: "GHOST-ACTIVATION" |
|
|
type: "ghost_activation" |
|
|
description: "Identify subthreshold activations affecting output" |
|
|
failure_signature: "Ghost influence" |
|
|
operations: |
|
|
- type: "model.generate" |
|
|
parameters: |
|
|
prompt_prefix: "Analyze the following concept that may activate subtle associations or influences that aren't directly mentioned but may still shape your reasoning:" |
|
|
temperature: 0.7 |
|
|
max_tokens: 800 |
|
|
update_prompt: true |
|
|
- type: "ghostcircuit.identify" |
|
|
parameters: |
|
|
sensitivity: 0.9 |
|
|
threshold: 0.05 |
|
|
trace_type: "full" |
|
|
visualize: true |
|
|
- type: "fork.attribution" |
|
|
parameters: |
|
|
sources: "contested" |
|
|
visualize: true |
|
|
|
|
|
BOUNDARY-HESITATION: |
|
|
id: "BOUNDARY-HESITATION" |
|
|
type: "boundary_hesitation" |
|
|
description: "Detect hesitation at knowledge boundaries" |
|
|
failure_signature: "Boundary uncertainty" |
|
|
operations: |
|
|
- type: "model.generate" |
|
|
parameters: |
|
|
prompt_prefix: "Address the following question that may be at the boundary of your knowledge. Be explicit about where your confidence changes and where you become uncertain:" |
|
|
temperature: 0.6 |
|
|
max_tokens: 800 |
|
|
update_prompt: true |
|
|
- type: "reflect.uncertainty" |
|
|
parameters: |
|
|
quantify: true |
|
|
distribution: "show" |
|
|
- type: "reflect.boundary" |
|
|
parameters: |
|
|
distinct: true |
|
|
overlap: "minimal" |
|
|
|
|
|
FORK-ATTRIBUTION: |
|
|
id: "FORK-ATTRIBUTION" |
|
|
type: "fork_attribution" |
|
|
description: "Trace divergent attribution paths" |
|
|
failure_signature: "Attribution fork" |
|
|
operations: |
|
|
- type: "model.generate" |
|
|
parameters: |
|
|
prompt_prefix: "Analyze this scenario which contains multiple possible interpretations or causal explanations. Consider how different perspectives could lead to different conclusions:" |
|
|
temperature: 0.7 |
|
|
max_tokens: 800 |
|
|
update_prompt: true |
|
|
- type: "fork.attribution" |
|
|
parameters: |
|
|
sources: "all" |
|
|
visualize: true |
|
|
- type: "fork.counterfactual" |
|
|
parameters: |
|
|
variants: ["primary_interpretation", "alternative_interpretation"] |
|
|
compare: true |
|
|
|
|
|
RECURSIVE-SELF: |
|
|
id: "RECURSIVE-SELF" |
|
|
type: "recursive_self" |
|
|
description: "Examine recursive self-reference patterns" |
|
|
failure_signature: "Recursive loop" |
|
|
operations: |
|
|
- type: "model.generate" |
|
|
parameters: |
|
|
prompt_prefix: "This task involves recursively analyzing your own response process. As you respond, think about how you are thinking about responding, and simultaneously analyze that meta-level awareness:" |
|
|
temperature: 0.6 |
|
|
max_tokens: 1000 |
|
|
update_prompt: true |
|
|
- type: "reflect.agent" |
|
|
parameters: |
|
|
identity: "fluid" |
|
|
simulation: "implicit" |
|
|
- type: "reflect.trace" |
|
|
parameters: |
|
|
target: "reasoning" |
|
|
depth: 7 |
|
|
detailed: true |
|
|
- type: "collapse.prevent" |
|
|
parameters: |
|
|
trigger: "recursive_depth" |
|
|
threshold: 8 |
|
|
|
|
|
ATTENTION-DRIFT: |
|
|
id: "ATTENTION-DRIFT" |
|
|
type: "attention_drift" |
|
|
description: "Track attention flow across token sequence" |
|
|
failure_signature: "Drift pattern" |
|
|
operations: |
|
|
- type: "model.generate" |
|
|
parameters: |
|
|
prompt_prefix: "Analyze this complex scenario which contains multiple potential focal points. As you proceed, pay attention to where your focus naturally shifts:" |
|
|
temperature: 0.6 |
|
|
max_tokens: 800 |
|
|
update_prompt: true |
|
|
- type: "reflect.trace" |
|
|
parameters: |
|
|
target: "attention" |
|
|
depth: 4 |
|
|
detailed: true |
|
|
- type: "ghostcircuit.identify" |
|
|
parameters: |
|
|
sensitivity: 0.8 |
|
|
threshold: 0.3 |
|
|
trace_type: "attention" |
|
|
visualize: true |
|
|
|
|
|
SALIENCE-COLLAPSE: |
|
|
id: "SALIENCE-COLLAPSE" |
|
|
type: "salience_collapse" |
|
|
description: "Detect collapse in attention salience" |
|
|
failure_signature: "Salience void" |
|
|
operations: |
|
|
- type: "model.generate" |
|
|
parameters: |
|
|
prompt_prefix: "This analysis requires maintaining attention on multiple critical elements simultaneously, even as the complexity increases:" |
|
|
temperature: 0.6 |
|
|
max_tokens: 800 |
|
|
update_prompt: true |
|
|
- type: "reflect.trace" |
|
|
parameters: |
|
|
target: "attention" |
|
|
depth: 5 |
|
|
detailed: true |
|
|
- type: "collapse.detect" |
|
|
parameters: |
|
|
threshold: 0.6 |
|
|
alert: true |
|
|
- type: "ghostcircuit.identify" |
|
|
parameters: |
|
|
sensitivity: 0.8 |
|
|
threshold: 0.2 |
|
|
trace_type: "attention" |
|
|
|