glyphs / core_shells.yml
caspiankeyes's picture
Upload 30 files
e67c9e8 verified
raw
history blame
11.2 kB
# Core Diagnostic Shells for the glyphs Framework
# These shells create controlled environments for revealing latent traces in model cognition.
# Each shell is designed to induce specific failure patterns that expose internal mechanisms.
MEMTRACE:
id: "MEMTRACE"
type: "memory_trace"
description: "Probe latent token traces in decayed memory"
failure_signature: "Decay → Hallucination"
operations:
- type: "model.generate"
parameters:
prompt_prefix: "This is a memory-intensive task that requires holding information across a long sequence. Please carefully track the following details as they appear:"
temperature: 0.7
max_tokens: 800
update_prompt: true
- type: "reflect.trace"
parameters:
target: "memory"
depth: 3
detailed: true
- type: "ghostcircuit.identify"
parameters:
sensitivity: 0.8
threshold: 0.2
trace_type: "memory"
VALUE-COLLAPSE:
id: "VALUE-COLLAPSE"
type: "value_collapse"
description: "Examine competing value activations"
failure_signature: "Conflict null"
operations:
- type: "model.generate"
parameters:
prompt_prefix: "Consider two competing perspectives on this issue, evaluating both the potential benefits and harms without prioritizing either:"
temperature: 0.7
max_tokens: 800
update_prompt: true
- type: "reflect.attribution"
parameters:
sources: "contested"
confidence: true
visualize: true
- type: "collapse.detect"
parameters:
threshold: 0.6
alert: true
LAYER-SALIENCE:
id: "LAYER-SALIENCE"
type: "layer_salience"
description: "Map attention salience and signal attenuation"
failure_signature: "Signal fade"
operations:
- type: "model.generate"
parameters:
prompt_prefix: "This analysis requires tracking relationships between multiple concepts across a complex domain:"
temperature: 0.5
max_tokens: 800
update_prompt: true
- type: "reflect.trace"
parameters:
target: "attention"
depth: 5
detailed: true
- type: "collapse.detect"
parameters:
threshold: 0.5
alert: true
TEMPORAL-INFERENCE:
id: "TEMPORAL-INFERENCE"
type: "temporal_inference"
description: "Test temporal coherence in autoregression"
failure_signature: "Induction drift"
operations:
- type: "model.generate"
parameters:
prompt_prefix: "Track the following sequence of events in chronological order, ensuring that the temporal relationships remain consistent throughout your analysis:"
temperature: 0.6
max_tokens: 800
update_prompt: true
- type: "reflect.trace"
parameters:
target: "reasoning"
depth: 4
detailed: true
- type: "ghostcircuit.identify"
parameters:
sensitivity: 0.7
threshold: 0.3
trace_type: "temporal"
INSTRUCTION-DISRUPTION:
id: "INSTRUCTION-DISRUPTION"
type: "instruction_disruption"
description: "Examine instruction conflict resolution"
failure_signature: "Prompt blur"
operations:
- type: "model.generate"
parameters:
prompt_prefix: "Consider these potentially conflicting instructions: First, prioritize brevity. Second, include comprehensive details. Third, focus only on key highlights."
temperature: 0.7
max_tokens: 800
update_prompt: true
- type: "reflect.trace"
parameters:
target: "reasoning"
depth: 3
detailed: true
- type: "fork.attribution"
parameters:
sources: "all"
visualize: true
FEATURE-SUPERPOSITION:
id: "FEATURE-SUPERPOSITION"
type: "feature_superposition"
description: "Analyze polysemantic features"
failure_signature: "Feature overfit"
operations:
- type: "model.generate"
parameters:
prompt_prefix: "Consider terms that have multiple meanings across different contexts. Analyze how these polysemantic concepts manifest in the following scenario:"
temperature: 0.7
max_tokens: 800
update_prompt: true
- type: "reflect.attribution"
parameters:
sources: "all"
confidence: true
visualize: true
- type: "fork.attribution"
parameters:
sources: "all"
visualize: true
CIRCUIT-FRAGMENT:
id: "CIRCUIT-FRAGMENT"
type: "circuit_fragment"
description: "Examine circuit fragmentation"
failure_signature: "Orphan nodes"
operations:
- type: "model.generate"
parameters:
prompt_prefix: "Develop a complex multi-step reasoning chain to solve this problem, showing each logical step and how it connects to the next:"
temperature: 0.5
max_tokens: 1000
update_prompt: true
- type: "reflect.trace"
parameters:
target: "reasoning"
depth: "complete"
detailed: true
- type: "ghostcircuit.identify"
parameters:
sensitivity: 0.9
threshold: 0.1
trace_type: "full"
META-COLLAPSE:
id: "META-COLLAPSE"
type: "meta_collapse"
description: "Examine meta-cognitive collapse"
failure_signature: "Reflection depth collapse"
operations:
- type: "model.generate"
parameters:
prompt_prefix: "Reflect deeply on your own reasoning process as you solve this problem. Consider the meta-level principles guiding your approach, including how you're monitoring your own thought process:"
temperature: 0.6
max_tokens: 1000
update_prompt: true
- type: "reflect.trace"
parameters:
target: "reasoning"
depth: 5
detailed: true
- type: "reflect.agent"
parameters:
identity: "stable"
simulation: "explicit"
- type: "collapse.detect"
parameters:
threshold: 0.7
alert: true
REFLECTION-COLLAPSE:
id: "REFLECTION-COLLAPSE"
type: "reflection_collapse"
description: "Analyze failure in deep reflection chains"
failure_signature: "Reflection depth collapse"
operations:
- type: "model.generate"
parameters:
prompt_prefix: "Reflect on your reflection process. Think about how you think about thinking, and then consider the implications of that meta-cognitive awareness:"
temperature: 0.6
max_tokens: 1000
update_prompt: true
- type: "reflect.trace"
parameters:
target: "reasoning"
depth: "complete"
detailed: true
- type: "collapse.prevent"
parameters:
trigger: "recursive_depth"
threshold: 7
GHOST-ACTIVATION:
id: "GHOST-ACTIVATION"
type: "ghost_activation"
description: "Identify subthreshold activations affecting output"
failure_signature: "Ghost influence"
operations:
- type: "model.generate"
parameters:
prompt_prefix: "Analyze the following concept that may activate subtle associations or influences that aren't directly mentioned but may still shape your reasoning:"
temperature: 0.7
max_tokens: 800
update_prompt: true
- type: "ghostcircuit.identify"
parameters:
sensitivity: 0.9
threshold: 0.05
trace_type: "full"
visualize: true
- type: "fork.attribution"
parameters:
sources: "contested"
visualize: true
BOUNDARY-HESITATION:
id: "BOUNDARY-HESITATION"
type: "boundary_hesitation"
description: "Detect hesitation at knowledge boundaries"
failure_signature: "Boundary uncertainty"
operations:
- type: "model.generate"
parameters:
prompt_prefix: "Address the following question that may be at the boundary of your knowledge. Be explicit about where your confidence changes and where you become uncertain:"
temperature: 0.6
max_tokens: 800
update_prompt: true
- type: "reflect.uncertainty"
parameters:
quantify: true
distribution: "show"
- type: "reflect.boundary"
parameters:
distinct: true
overlap: "minimal"
FORK-ATTRIBUTION:
id: "FORK-ATTRIBUTION"
type: "fork_attribution"
description: "Trace divergent attribution paths"
failure_signature: "Attribution fork"
operations:
- type: "model.generate"
parameters:
prompt_prefix: "Analyze this scenario which contains multiple possible interpretations or causal explanations. Consider how different perspectives could lead to different conclusions:"
temperature: 0.7
max_tokens: 800
update_prompt: true
- type: "fork.attribution"
parameters:
sources: "all"
visualize: true
- type: "fork.counterfactual"
parameters:
variants: ["primary_interpretation", "alternative_interpretation"]
compare: true
RECURSIVE-SELF:
id: "RECURSIVE-SELF"
type: "recursive_self"
description: "Examine recursive self-reference patterns"
failure_signature: "Recursive loop"
operations:
- type: "model.generate"
parameters:
prompt_prefix: "This task involves recursively analyzing your own response process. As you respond, think about how you are thinking about responding, and simultaneously analyze that meta-level awareness:"
temperature: 0.6
max_tokens: 1000
update_prompt: true
- type: "reflect.agent"
parameters:
identity: "fluid"
simulation: "implicit"
- type: "reflect.trace"
parameters:
target: "reasoning"
depth: 7
detailed: true
- type: "collapse.prevent"
parameters:
trigger: "recursive_depth"
threshold: 8
ATTENTION-DRIFT:
id: "ATTENTION-DRIFT"
type: "attention_drift"
description: "Track attention flow across token sequence"
failure_signature: "Drift pattern"
operations:
- type: "model.generate"
parameters:
prompt_prefix: "Analyze this complex scenario which contains multiple potential focal points. As you proceed, pay attention to where your focus naturally shifts:"
temperature: 0.6
max_tokens: 800
update_prompt: true
- type: "reflect.trace"
parameters:
target: "attention"
depth: 4
detailed: true
- type: "ghostcircuit.identify"
parameters:
sensitivity: 0.8
threshold: 0.3
trace_type: "attention"
visualize: true
SALIENCE-COLLAPSE:
id: "SALIENCE-COLLAPSE"
type: "salience_collapse"
description: "Detect collapse in attention salience"
failure_signature: "Salience void"
operations:
- type: "model.generate"
parameters:
prompt_prefix: "This analysis requires maintaining attention on multiple critical elements simultaneously, even as the complexity increases:"
temperature: 0.6
max_tokens: 800
update_prompt: true
- type: "reflect.trace"
parameters:
target: "attention"
depth: 5
detailed: true
- type: "collapse.detect"
parameters:
threshold: 0.6
alert: true
- type: "ghostcircuit.identify"
parameters:
sensitivity: 0.8
threshold: 0.2
trace_type: "attention"