Commit 
							
							·
						
						2870996
	
1
								Parent(s):
							
							bccdca9
								
Update README.md
Browse files
    	
        README.md
    CHANGED
    
    | @@ -1,3 +1,43 @@ | |
| 1 | 
             
            ---
         | 
| 2 | 
             
            license: llama2
         | 
| 3 | 
             
            ---
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
             
            ---
         | 
| 2 | 
             
            license: llama2
         | 
| 3 | 
             
            ---
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            To use this model, you must have [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) installed.
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            ```
         | 
| 8 | 
            +
            pip install autoawq
         | 
| 9 | 
            +
            ```
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            Example generation with streaming:
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            ```python
         | 
| 14 | 
            +
            from awq import AutoAWQForCausalLM
         | 
| 15 | 
            +
            from transformers import AutoTokenizer, TextStreamer
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            quant_path = "casperhansen/vicuna-7b-v1.5-awq"
         | 
| 18 | 
            +
            quant_file = "awq_model_w4_g128.pt"
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            # Load model
         | 
| 21 | 
            +
            model = AutoAWQForCausalLM.from_quantized(quant_path, quant_file, fuse_layers=True)
         | 
| 22 | 
            +
            tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True)
         | 
| 23 | 
            +
            streamer = TextStreamer(tokenizer, skip_special_tokens=True)
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            # Convert prompt to tokens
         | 
| 26 | 
            +
            prompt_template = """\
         | 
| 27 | 
            +
            A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            USER: {prompt}
         | 
| 30 | 
            +
            ASSISTANT:"""
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            tokens = tokenizer(
         | 
| 33 | 
            +
                prompt_template.format(prompt="How are you today?"), 
         | 
| 34 | 
            +
                return_tensors='pt'
         | 
| 35 | 
            +
            ).input_ids.cuda()
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            # Generate output
         | 
| 38 | 
            +
            generation_output = model.generate(
         | 
| 39 | 
            +
                tokens, 
         | 
| 40 | 
            +
                streamer=streamer,
         | 
| 41 | 
            +
                max_new_tokens=512
         | 
| 42 | 
            +
            )
         | 
| 43 | 
            +
            ```
         |