--- library_name: peft base_model: facebook/mbart-large-50-many-to-many-mmt tags: - base_model:adapter:facebook/mbart-large-50-many-to-many-mmt - lora - transformers metrics: - bleu model-index: - name: mbart-50-lora-cb-tl-run-2 results: [] --- # mbart-50-lora-cb-tl-run-2 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.2100 - Bleu: 31.0750 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 800 - num_epochs: 4 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:------:|:----:|:---------------:|:-------:| | 6.3521 | 1.8131 | 500 | 6.2346 | 32.4265 | | 6.3218 | 3.6243 | 1000 | 6.2100 | 31.0750 | ### Framework versions - PEFT 0.17.1 - Transformers 4.57.1 - Pytorch 2.8.0+cu126 - Datasets 4.0.0 - Tokenizers 0.22.1