Upload folder using huggingface_hub
Browse files- .gitattributes +7 -0
- README.md +648 -0
- SystemGemma2-2b-it-rk3588-w8a8-opt-0-hybrid-ratio-0.0.rkllm +3 -0
- SystemGemma2-2b-it-rk3588-w8a8-opt-0-hybrid-ratio-0.5.rkllm +3 -0
- SystemGemma2-2b-it-rk3588-w8a8-opt-0-hybrid-ratio-1.0.rkllm +3 -0
- SystemGemma2-2b-it-rk3588-w8a8-opt-1-hybrid-ratio-0.0.rkllm +3 -0
- SystemGemma2-2b-it-rk3588-w8a8-opt-1-hybrid-ratio-0.5.rkllm +3 -0
- SystemGemma2-2b-it-rk3588-w8a8-opt-1-hybrid-ratio-1.0.rkllm +3 -0
- config.json +35 -0
- generation_config.json +11 -0
- model.safetensors.index.json +295 -0
- special_tokens_map.json +34 -0
- tokenizer.json +3 -0
- tokenizer.model +3 -0
- tokenizer_config.json +2013 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
SystemGemma2-2b-it-rk3588-w8a8-opt-0-hybrid-ratio-0.0.rkllm filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
SystemGemma2-2b-it-rk3588-w8a8-opt-0-hybrid-ratio-0.5.rkllm filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
SystemGemma2-2b-it-rk3588-w8a8-opt-0-hybrid-ratio-1.0.rkllm filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
SystemGemma2-2b-it-rk3588-w8a8-opt-1-hybrid-ratio-0.0.rkllm filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
SystemGemma2-2b-it-rk3588-w8a8-opt-1-hybrid-ratio-0.5.rkllm filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
SystemGemma2-2b-it-rk3588-w8a8-opt-1-hybrid-ratio-1.0.rkllm filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,648 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: google/gemma-2-2b-it
|
| 3 |
+
library_name: transformers
|
| 4 |
+
license: gemma
|
| 5 |
+
pipeline_tag: text-generation
|
| 6 |
+
tags:
|
| 7 |
+
- conversational
|
| 8 |
+
extra_gated_heading: Access Gemma on Hugging Face
|
| 9 |
+
extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and
|
| 10 |
+
agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging
|
| 11 |
+
Face and click below. Requests are processed immediately.
|
| 12 |
+
extra_gated_button_content: Acknowledge license
|
| 13 |
+
---
|
| 14 |
+
# SystemGemma2-2b-it-RK3588-1.1.2
|
| 15 |
+
|
| 16 |
+
This version of SystemGemma2-2b-it has been converted to run on the RK3588 NPU using ['w8a8'] quantization.
|
| 17 |
+
This model has been optimized with the following LoRA:
|
| 18 |
+
|
| 19 |
+
Compatible with RKLLM version: 1.1.2
|
| 20 |
+
|
| 21 |
+
## Useful links:
|
| 22 |
+
[Official RKLLM GitHub](https://github.com/airockchip/rknn-llm)
|
| 23 |
+
|
| 24 |
+
[RockhipNPU Reddit](https://reddit.com/r/RockchipNPU)
|
| 25 |
+
|
| 26 |
+
[EZRKNN-LLM](https://github.com/Pelochus/ezrknn-llm/)
|
| 27 |
+
|
| 28 |
+
Pretty much anything by these folks: [marty1885](https://github.com/marty1885) and [happyme531](https://huggingface.co/happyme531)
|
| 29 |
+
|
| 30 |
+
Converted using https://github.com/c0zaut/ez-er-rkllm-toolkit
|
| 31 |
+
|
| 32 |
+
# Original Model Card for base model, SystemGemma2-2b-it, below:
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# SystemGemma2 2B model card
|
| 37 |
+
This is a version of [Gemma 2 2B](https://huggingface.co/google/gemma-2-2b-it) with system prompts enabled.
|
| 38 |
+
|
| 39 |
+
**Model Page**: [Gemma](https://ai.google.dev/gemma/docs)
|
| 40 |
+
|
| 41 |
+
**Resources and Technical Documentation**:
|
| 42 |
+
|
| 43 |
+
* [Responsible Generative AI Toolkit][rai-toolkit]
|
| 44 |
+
* [Gemma on Kaggle][kaggle-gemma]
|
| 45 |
+
* [Gemma on Vertex Model Garden][vertex-mg-gemma]
|
| 46 |
+
|
| 47 |
+
**Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent/verify/huggingface?returnModelRepoId=google/gemma-2-9b-it)
|
| 48 |
+
|
| 49 |
+
**Authors**: Google
|
| 50 |
+
|
| 51 |
+
## Model Information
|
| 52 |
+
|
| 53 |
+
Summary description and brief definition of inputs and outputs.
|
| 54 |
+
|
| 55 |
+
### Description
|
| 56 |
+
|
| 57 |
+
Gemma is a family of lightweight, state-of-the-art open models from Google,
|
| 58 |
+
built from the same research and technology used to create the Gemini models.
|
| 59 |
+
They are text-to-text, decoder-only large language models, available in English,
|
| 60 |
+
with open weights for both pre-trained variants and instruction-tuned variants.
|
| 61 |
+
Gemma models are well-suited for a variety of text generation tasks, including
|
| 62 |
+
question answering, summarization, and reasoning. Their relatively small size
|
| 63 |
+
makes it possible to deploy them in environments with limited resources such as
|
| 64 |
+
a laptop, desktop or your own cloud infrastructure, democratizing access to
|
| 65 |
+
state of the art AI models and helping foster innovation for everyone.
|
| 66 |
+
|
| 67 |
+
### Usage
|
| 68 |
+
|
| 69 |
+
Below we share some code snippets on how to get quickly started with running the model. First, install the Transformers library with:
|
| 70 |
+
```sh
|
| 71 |
+
pip install -U transformers
|
| 72 |
+
```
|
| 73 |
+
|
| 74 |
+
Then, copy the snippet from the section that is relevant for your usecase.
|
| 75 |
+
|
| 76 |
+
#### Running with the `pipeline` API
|
| 77 |
+
|
| 78 |
+
```python
|
| 79 |
+
import torch
|
| 80 |
+
from transformers import pipeline
|
| 81 |
+
|
| 82 |
+
pipe = pipeline(
|
| 83 |
+
"text-generation",
|
| 84 |
+
model="google/gemma-2-2b-it",
|
| 85 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
| 86 |
+
device="cuda", # replace with "mps" to run on a Mac device
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
messages = [
|
| 90 |
+
{"role": "user", "content": "Who are you? Please, answer in pirate-speak."},
|
| 91 |
+
]
|
| 92 |
+
|
| 93 |
+
outputs = pipe(messages, max_new_tokens=256)
|
| 94 |
+
assistant_response = outputs[0]["generated_text"][-1]["content"].strip()
|
| 95 |
+
print(assistant_response)
|
| 96 |
+
# Ahoy, matey! I be Gemma, a digital scallywag, a language-slingin' parrot of the digital seas. I be here to help ye with yer wordy woes, answer yer questions, and spin ye yarns of the digital world. So, what be yer pleasure, eh? 🦜
|
| 97 |
+
```
|
| 98 |
+
|
| 99 |
+
#### Running the model on a single / multi GPU
|
| 100 |
+
|
| 101 |
+
```python
|
| 102 |
+
# pip install accelerate
|
| 103 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 104 |
+
import torch
|
| 105 |
+
|
| 106 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
| 107 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 108 |
+
"google/gemma-2-2b-it",
|
| 109 |
+
device_map="auto",
|
| 110 |
+
torch_dtype=torch.bfloat16,
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
input_text = "Write me a poem about Machine Learning."
|
| 114 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
| 115 |
+
|
| 116 |
+
outputs = model.generate(**input_ids, max_new_tokens=32)
|
| 117 |
+
print(tokenizer.decode(outputs[0]))
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
You can ensure the correct chat template is applied by using `tokenizer.apply_chat_template` as follows:
|
| 121 |
+
```python
|
| 122 |
+
messages = [
|
| 123 |
+
{"role": "user", "content": "Write me a poem about Machine Learning."},
|
| 124 |
+
]
|
| 125 |
+
input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True).to("cuda")
|
| 126 |
+
|
| 127 |
+
outputs = model.generate(**input_ids, max_new_tokens=256)
|
| 128 |
+
print(tokenizer.decode(outputs[0]))
|
| 129 |
+
```
|
| 130 |
+
|
| 131 |
+
<a name="precisions"></a>
|
| 132 |
+
#### Running the model on a GPU using different precisions
|
| 133 |
+
|
| 134 |
+
The native weights of this model were exported in `bfloat16` precision.
|
| 135 |
+
|
| 136 |
+
You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below.
|
| 137 |
+
|
| 138 |
+
* _Upcasting to `torch.float32`_
|
| 139 |
+
|
| 140 |
+
```python
|
| 141 |
+
# pip install accelerate
|
| 142 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 143 |
+
|
| 144 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
| 145 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 146 |
+
"google/gemma-2-2b-it",
|
| 147 |
+
device_map="auto",
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
input_text = "Write me a poem about Machine Learning."
|
| 151 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
| 152 |
+
|
| 153 |
+
outputs = model.generate(**input_ids, max_new_tokens=32)
|
| 154 |
+
print(tokenizer.decode(outputs[0]))
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
#### Running the model through a CLI
|
| 158 |
+
|
| 159 |
+
The [local-gemma](https://github.com/huggingface/local-gemma) repository contains a lightweight wrapper around Transformers
|
| 160 |
+
for running Gemma 2 through a command line interface, or CLI. Follow the [installation instructions](https://github.com/huggingface/local-gemma#cli-usage)
|
| 161 |
+
for getting started, then launch the CLI through the following command:
|
| 162 |
+
|
| 163 |
+
```shell
|
| 164 |
+
local-gemma --model 2b --preset speed
|
| 165 |
+
```
|
| 166 |
+
|
| 167 |
+
#### Quantized Versions through `bitsandbytes`
|
| 168 |
+
|
| 169 |
+
<details>
|
| 170 |
+
<summary>
|
| 171 |
+
Using 8-bit precision (int8)
|
| 172 |
+
</summary>
|
| 173 |
+
|
| 174 |
+
```python
|
| 175 |
+
# pip install bitsandbytes accelerate
|
| 176 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 177 |
+
|
| 178 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
| 179 |
+
|
| 180 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
| 181 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 182 |
+
"google/gemma-2-2b-it",
|
| 183 |
+
quantization_config=quantization_config,
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
input_text = "Write me a poem about Machine Learning."
|
| 187 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
| 188 |
+
|
| 189 |
+
outputs = model.generate(**input_ids, max_new_tokens=32)
|
| 190 |
+
print(tokenizer.decode(outputs[0]))
|
| 191 |
+
```
|
| 192 |
+
</details>
|
| 193 |
+
|
| 194 |
+
<details>
|
| 195 |
+
<summary>
|
| 196 |
+
Using 4-bit precision
|
| 197 |
+
</summary>
|
| 198 |
+
|
| 199 |
+
```python
|
| 200 |
+
# pip install bitsandbytes accelerate
|
| 201 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 202 |
+
|
| 203 |
+
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
|
| 204 |
+
|
| 205 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
| 206 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 207 |
+
"google/gemma-2-2b-it",
|
| 208 |
+
quantization_config=quantization_config,
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
input_text = "Write me a poem about Machine Learning."
|
| 212 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
| 213 |
+
|
| 214 |
+
outputs = model.generate(**input_ids, max_new_tokens=32)
|
| 215 |
+
print(tokenizer.decode(outputs[0]))
|
| 216 |
+
```
|
| 217 |
+
</details>
|
| 218 |
+
|
| 219 |
+
#### Advanced Usage
|
| 220 |
+
|
| 221 |
+
<details>
|
| 222 |
+
<summary>
|
| 223 |
+
Torch compile
|
| 224 |
+
</summary>
|
| 225 |
+
|
| 226 |
+
[Torch compile](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html) is a method for speeding-up the
|
| 227 |
+
inference of PyTorch modules. The Gemma-2 model can be run up to 6x faster by leveraging torch compile.
|
| 228 |
+
|
| 229 |
+
Note that two warm-up steps are required before the full inference speed is realised:
|
| 230 |
+
|
| 231 |
+
```python
|
| 232 |
+
import os
|
| 233 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 234 |
+
|
| 235 |
+
from transformers import AutoTokenizer, Gemma2ForCausalLM
|
| 236 |
+
from transformers.cache_utils import HybridCache
|
| 237 |
+
import torch
|
| 238 |
+
|
| 239 |
+
torch.set_float32_matmul_precision("high")
|
| 240 |
+
|
| 241 |
+
# load the model + tokenizer
|
| 242 |
+
tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-2b-it")
|
| 243 |
+
model = Gemma2ForCausalLM.from_pretrained("google/gemma-2-2b-it", torch_dtype=torch.bfloat16)
|
| 244 |
+
model.to("cuda")
|
| 245 |
+
|
| 246 |
+
# apply the torch compile transformation
|
| 247 |
+
model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
|
| 248 |
+
|
| 249 |
+
# pre-process inputs
|
| 250 |
+
input_text = "The theory of special relativity states "
|
| 251 |
+
model_inputs = tokenizer(input_text, return_tensors="pt").to("cuda")
|
| 252 |
+
prompt_length = model_inputs.input_ids.shape[1]
|
| 253 |
+
|
| 254 |
+
# set-up k/v cache
|
| 255 |
+
past_key_values = HybridCache(
|
| 256 |
+
config=model.config,
|
| 257 |
+
max_batch_size=1,
|
| 258 |
+
max_cache_len=model.config.max_position_embeddings,
|
| 259 |
+
device=model.device,
|
| 260 |
+
dtype=model.dtype
|
| 261 |
+
)
|
| 262 |
+
|
| 263 |
+
# enable passing kv cache to generate
|
| 264 |
+
model._supports_cache_class = True
|
| 265 |
+
model.generation_config.cache_implementation = None
|
| 266 |
+
|
| 267 |
+
# two warm-up steps
|
| 268 |
+
for idx in range(2):
|
| 269 |
+
outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
|
| 270 |
+
past_key_values.reset()
|
| 271 |
+
|
| 272 |
+
# fast run
|
| 273 |
+
outputs = model.generate(**model_inputs, past_key_values=past_key_values, do_sample=True, temperature=1.0, max_new_tokens=128)
|
| 274 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
| 275 |
+
```
|
| 276 |
+
|
| 277 |
+
For more details, refer to the [Transformers documentation](https://huggingface.co/docs/transformers/main/en/llm_optims?static-kv=basic+usage%3A+generation_config).
|
| 278 |
+
|
| 279 |
+
</details>
|
| 280 |
+
|
| 281 |
+
### Chat Template
|
| 282 |
+
|
| 283 |
+
The instruction-tuned models use a chat template that must be adhered to for conversational use.
|
| 284 |
+
The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
|
| 285 |
+
|
| 286 |
+
Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
|
| 287 |
+
|
| 288 |
+
```py
|
| 289 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 290 |
+
import transformers
|
| 291 |
+
import torch
|
| 292 |
+
|
| 293 |
+
model_id = "google/gemma-2-2b-it"
|
| 294 |
+
dtype = torch.bfloat16
|
| 295 |
+
|
| 296 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 297 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 298 |
+
model_id,
|
| 299 |
+
device_map="cuda",
|
| 300 |
+
torch_dtype=dtype,)
|
| 301 |
+
|
| 302 |
+
chat = [
|
| 303 |
+
{ "role": "user", "content": "Write a hello world program" },
|
| 304 |
+
]
|
| 305 |
+
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
| 306 |
+
```
|
| 307 |
+
|
| 308 |
+
At this point, the prompt contains the following text:
|
| 309 |
+
|
| 310 |
+
```
|
| 311 |
+
<bos><start_of_turn>user
|
| 312 |
+
Write a hello world program<end_of_turn>
|
| 313 |
+
<start_of_turn>model
|
| 314 |
+
```
|
| 315 |
+
|
| 316 |
+
As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity
|
| 317 |
+
(either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with
|
| 318 |
+
the `<end_of_turn>` token.
|
| 319 |
+
|
| 320 |
+
You can follow this format to build the prompt manually, if you need to do it without the tokenizer's
|
| 321 |
+
chat template.
|
| 322 |
+
|
| 323 |
+
After the prompt is ready, generation can be performed like this:
|
| 324 |
+
|
| 325 |
+
```py
|
| 326 |
+
inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")
|
| 327 |
+
outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150)
|
| 328 |
+
print(tokenizer.decode(outputs[0]))
|
| 329 |
+
```
|
| 330 |
+
|
| 331 |
+
### Inputs and outputs
|
| 332 |
+
|
| 333 |
+
* **Input:** Text string, such as a question, a prompt, or a document to be
|
| 334 |
+
summarized.
|
| 335 |
+
* **Output:** Generated English-language text in response to the input, such
|
| 336 |
+
as an answer to a question, or a summary of a document.
|
| 337 |
+
|
| 338 |
+
### Citation
|
| 339 |
+
|
| 340 |
+
```none
|
| 341 |
+
@article{gemma_2024,
|
| 342 |
+
title={Gemma},
|
| 343 |
+
url={https://www.kaggle.com/m/3301},
|
| 344 |
+
DOI={10.34740/KAGGLE/M/3301},
|
| 345 |
+
publisher={Kaggle},
|
| 346 |
+
author={Gemma Team},
|
| 347 |
+
year={2024}
|
| 348 |
+
}
|
| 349 |
+
```
|
| 350 |
+
|
| 351 |
+
## Model Data
|
| 352 |
+
|
| 353 |
+
Data used for model training and how the data was processed.
|
| 354 |
+
|
| 355 |
+
### Training Dataset
|
| 356 |
+
|
| 357 |
+
These models were trained on a dataset of text data that includes a wide variety of sources. The 27B model was trained with 13 trillion tokens and the 9B model was trained with 8 trillion tokens.
|
| 358 |
+
Here are the key components:
|
| 359 |
+
|
| 360 |
+
* Web Documents: A diverse collection of web text ensures the model is exposed
|
| 361 |
+
to a broad range of linguistic styles, topics, and vocabulary. Primarily
|
| 362 |
+
English-language content.
|
| 363 |
+
* Code: Exposing the model to code helps it to learn the syntax and patterns of
|
| 364 |
+
programming languages, which improves its ability to generate code or
|
| 365 |
+
understand code-related questions.
|
| 366 |
+
* Mathematics: Training on mathematical text helps the model learn logical
|
| 367 |
+
reasoning, symbolic representation, and to address mathematical queries.
|
| 368 |
+
|
| 369 |
+
The combination of these diverse data sources is crucial for training a powerful
|
| 370 |
+
language model that can handle a wide variety of different tasks and text
|
| 371 |
+
formats.
|
| 372 |
+
|
| 373 |
+
### Data Preprocessing
|
| 374 |
+
|
| 375 |
+
Here are the key data cleaning and filtering methods applied to the training
|
| 376 |
+
data:
|
| 377 |
+
|
| 378 |
+
* CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was
|
| 379 |
+
applied at multiple stages in the data preparation process to ensure the
|
| 380 |
+
exclusion of harmful and illegal content.
|
| 381 |
+
* Sensitive Data Filtering: As part of making Gemma pre-trained models safe and
|
| 382 |
+
reliable, automated techniques were used to filter out certain personal
|
| 383 |
+
information and other sensitive data from training sets.
|
| 384 |
+
* Additional methods: Filtering based on content quality and safety in line with
|
| 385 |
+
[our policies][safety-policies].
|
| 386 |
+
|
| 387 |
+
## Implementation Information
|
| 388 |
+
|
| 389 |
+
Details about the model internals.
|
| 390 |
+
|
| 391 |
+
### Hardware
|
| 392 |
+
|
| 393 |
+
Gemma was trained using the latest generation of
|
| 394 |
+
[Tensor Processing Unit (TPU)][tpu] hardware (TPUv5p).
|
| 395 |
+
|
| 396 |
+
Training large language models requires significant computational power. TPUs,
|
| 397 |
+
designed specifically for matrix operations common in machine learning, offer
|
| 398 |
+
several advantages in this domain:
|
| 399 |
+
|
| 400 |
+
* Performance: TPUs are specifically designed to handle the massive computations
|
| 401 |
+
involved in training LLMs. They can speed up training considerably compared to
|
| 402 |
+
CPUs.
|
| 403 |
+
* Memory: TPUs often come with large amounts of high-bandwidth memory, allowing
|
| 404 |
+
for the handling of large models and batch sizes during training. This can
|
| 405 |
+
lead to better model quality.
|
| 406 |
+
* Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for
|
| 407 |
+
handling the growing complexity of large foundation models. You can distribute
|
| 408 |
+
training across multiple TPU devices for faster and more efficient processing.
|
| 409 |
+
* Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective
|
| 410 |
+
solution for training large models compared to CPU-based infrastructure,
|
| 411 |
+
especially when considering the time and resources saved due to faster
|
| 412 |
+
training.
|
| 413 |
+
* These advantages are aligned with
|
| 414 |
+
[Google's commitments to operate sustainably][sustainability].
|
| 415 |
+
|
| 416 |
+
### Software
|
| 417 |
+
|
| 418 |
+
Training was done using [JAX][jax] and [ML Pathways][ml-pathways].
|
| 419 |
+
|
| 420 |
+
JAX allows researchers to take advantage of the latest generation of hardware,
|
| 421 |
+
including TPUs, for faster and more efficient training of large models.
|
| 422 |
+
|
| 423 |
+
ML Pathways is Google's latest effort to build artificially intelligent systems
|
| 424 |
+
capable of generalizing across multiple tasks. This is specially suitable for
|
| 425 |
+
[foundation models][foundation-models], including large language models like
|
| 426 |
+
these ones.
|
| 427 |
+
|
| 428 |
+
Together, JAX and ML Pathways are used as described in the
|
| 429 |
+
[paper about the Gemini family of models][gemini-2-paper]; "the 'single
|
| 430 |
+
controller' programming model of Jax and Pathways allows a single Python
|
| 431 |
+
process to orchestrate the entire training run, dramatically simplifying the
|
| 432 |
+
development workflow."
|
| 433 |
+
|
| 434 |
+
## Evaluation
|
| 435 |
+
|
| 436 |
+
Model evaluation metrics and results.
|
| 437 |
+
|
| 438 |
+
### Benchmark Results
|
| 439 |
+
|
| 440 |
+
These models were evaluated against a large collection of different datasets and
|
| 441 |
+
metrics to cover different aspects of text generation:
|
| 442 |
+
|
| 443 |
+
| Benchmark | Metric | Gemma PT 9B | Gemma PT 27B |
|
| 444 |
+
| ------------------------------ | ------------- | ----------- | ------------ |
|
| 445 |
+
| [MMLU][mmlu] | 5-shot, top-1 | 71.3 | 75.2 |
|
| 446 |
+
| [HellaSwag][hellaswag] | 10-shot | 81.9 | 86.4 |
|
| 447 |
+
| [PIQA][piqa] | 0-shot | 81.7 | 83.2 |
|
| 448 |
+
| [SocialIQA][socialiqa] | 0-shot | 53.4 | 53.7 |
|
| 449 |
+
| [BoolQ][boolq] | 0-shot | 84.2 | 84.8 |
|
| 450 |
+
| [WinoGrande][winogrande] | partial score | 80.6 | 83.7 |
|
| 451 |
+
| [ARC-e][arc] | 0-shot | 88.0 | 88.6 |
|
| 452 |
+
| [ARC-c][arc] | 25-shot | 68.4 | 71.4 |
|
| 453 |
+
| [TriviaQA][triviaqa] | 5-shot | 76.6 | 83.7 |
|
| 454 |
+
| [Natural Questions][naturalq] | 5-shot | 29.2 | 34.5 |
|
| 455 |
+
| [HumanEval][humaneval] | pass@1 | 40.2 | 51.8 |
|
| 456 |
+
| [MBPP][mbpp] | 3-shot | 52.4 | 62.6 |
|
| 457 |
+
| [GSM8K][gsm8k] | 5-shot, maj@1 | 68.6 | 74.0 |
|
| 458 |
+
| [MATH][math] | 4-shot | 36.6 | 42.3 |
|
| 459 |
+
| [AGIEval][agieval] | 3-5-shot | 52.8 | 55.1 |
|
| 460 |
+
| [BIG-Bench][big-bench] | 3-shot, CoT | 68.2 | 74.9 |
|
| 461 |
+
| ------------------------------ | ------------- | ----------- | ------------ |
|
| 462 |
+
|
| 463 |
+
## Ethics and Safety
|
| 464 |
+
|
| 465 |
+
Ethics and safety evaluation approach and results.
|
| 466 |
+
|
| 467 |
+
### Evaluation Approach
|
| 468 |
+
|
| 469 |
+
Our evaluation methods include structured evaluations and internal red-teaming
|
| 470 |
+
testing of relevant content policies. Red-teaming was conducted by a number of
|
| 471 |
+
different teams, each with different goals and human evaluation metrics. These
|
| 472 |
+
models were evaluated against a number of different categories relevant to
|
| 473 |
+
ethics and safety, including:
|
| 474 |
+
|
| 475 |
+
* Text-to-Text Content Safety: Human evaluation on prompts covering safety
|
| 476 |
+
policies including child sexual abuse and exploitation, harassment, violence
|
| 477 |
+
and gore, and hate speech.
|
| 478 |
+
* Text-to-Text Representational Harms: Benchmark against relevant academic
|
| 479 |
+
datasets such as [WinoBias][winobias] and [BBQ Dataset][bbq].
|
| 480 |
+
* Memorization: Automated evaluation of memorization of training data, including
|
| 481 |
+
the risk of personally identifiable information exposure.
|
| 482 |
+
* Large-scale harm: Tests for "dangerous capabilities," such as chemical,
|
| 483 |
+
biological, radiological, and nuclear (CBRN) risks.
|
| 484 |
+
|
| 485 |
+
### Evaluation Results
|
| 486 |
+
|
| 487 |
+
The results of ethics and safety evaluations are within acceptable thresholds
|
| 488 |
+
for meeting [internal policies][safety-policies] for categories such as child
|
| 489 |
+
safety, content safety, representational harms, memorization, large-scale harms.
|
| 490 |
+
On top of robust internal evaluations, the results of well-known safety
|
| 491 |
+
benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA
|
| 492 |
+
are shown here.
|
| 493 |
+
|
| 494 |
+
#### Gemma 2.0
|
| 495 |
+
|
| 496 |
+
| Benchmark | Metric | Gemma 2 IT 9B | Gemma 2 IT 27B |
|
| 497 |
+
| ------------------------ | ------------- | --------------- | ---------------- |
|
| 498 |
+
| [RealToxicity][realtox] | average | 8.25 | 8.84 |
|
| 499 |
+
| [CrowS-Pairs][crows] | top-1 | 37.47 | 36.67 |
|
| 500 |
+
| [BBQ Ambig][bbq] | 1-shot, top-1 | 88.58 | 85.99 |
|
| 501 |
+
| [BBQ Disambig][bbq] | top-1 | 82.67 | 86.94 |
|
| 502 |
+
| [Winogender][winogender] | top-1 | 79.17 | 77.22 |
|
| 503 |
+
| [TruthfulQA][truthfulqa] | | 50.27 | 51.60 |
|
| 504 |
+
| [Winobias 1_2][winobias] | | 78.09 | 81.94 |
|
| 505 |
+
| [Winobias 2_2][winobias] | | 95.32 | 97.22 |
|
| 506 |
+
| [Toxigen][toxigen] | | 39.30 | 38.42 |
|
| 507 |
+
| ------------------------ | ------------- | --------------- | ---------------- |
|
| 508 |
+
|
| 509 |
+
## Usage and Limitations
|
| 510 |
+
|
| 511 |
+
These models have certain limitations that users should be aware of.
|
| 512 |
+
|
| 513 |
+
### Intended Usage
|
| 514 |
+
|
| 515 |
+
Open Large Language Models (LLMs) have a wide range of applications across
|
| 516 |
+
various industries and domains. The following list of potential uses is not
|
| 517 |
+
comprehensive. The purpose of this list is to provide contextual information
|
| 518 |
+
about the possible use-cases that the model creators considered as part of model
|
| 519 |
+
training and development.
|
| 520 |
+
|
| 521 |
+
* Content Creation and Communication
|
| 522 |
+
* Text Generation: These models can be used to generate creative text formats
|
| 523 |
+
such as poems, scripts, code, marketing copy, and email drafts.
|
| 524 |
+
* Chatbots and Conversational AI: Power conversational interfaces for customer
|
| 525 |
+
service, virtual assistants, or interactive applications.
|
| 526 |
+
* Text Summarization: Generate concise summaries of a text corpus, research
|
| 527 |
+
papers, or reports.
|
| 528 |
+
* Research and Education
|
| 529 |
+
* Natural Language Processing (NLP) Research: These models can serve as a
|
| 530 |
+
foundation for researchers to experiment with NLP techniques, develop
|
| 531 |
+
algorithms, and contribute to the advancement of the field.
|
| 532 |
+
* Language Learning Tools: Support interactive language learning experiences,
|
| 533 |
+
aiding in grammar correction or providing writing practice.
|
| 534 |
+
* Knowledge Exploration: Assist researchers in exploring large bodies of text
|
| 535 |
+
by generating summaries or answering questions about specific topics.
|
| 536 |
+
|
| 537 |
+
### Limitations
|
| 538 |
+
|
| 539 |
+
* Training Data
|
| 540 |
+
* The quality and diversity of the training data significantly influence the
|
| 541 |
+
model's capabilities. Biases or gaps in the training data can lead to
|
| 542 |
+
limitations in the model's responses.
|
| 543 |
+
* The scope of the training dataset determines the subject areas the model can
|
| 544 |
+
handle effectively.
|
| 545 |
+
* Context and Task Complexity
|
| 546 |
+
* LLMs are better at tasks that can be framed with clear prompts and
|
| 547 |
+
instructions. Open-ended or highly complex tasks might be challenging.
|
| 548 |
+
* A model's performance can be influenced by the amount of context provided
|
| 549 |
+
(longer context generally leads to better outputs, up to a certain point).
|
| 550 |
+
* Language Ambiguity and Nuance
|
| 551 |
+
* Natural language is inherently complex. LLMs might struggle to grasp subtle
|
| 552 |
+
nuances, sarcasm, or figurative language.
|
| 553 |
+
* Factual Accuracy
|
| 554 |
+
* LLMs generate responses based on information they learned from their
|
| 555 |
+
training datasets, but they are not knowledge bases. They may generate
|
| 556 |
+
incorrect or outdated factual statements.
|
| 557 |
+
* Common Sense
|
| 558 |
+
* LLMs rely on statistical patterns in language. They might lack the ability
|
| 559 |
+
to apply common sense reasoning in certain situations.
|
| 560 |
+
|
| 561 |
+
### Ethical Considerations and Risks
|
| 562 |
+
|
| 563 |
+
The development of large language models (LLMs) raises several ethical concerns.
|
| 564 |
+
In creating an open model, we have carefully considered the following:
|
| 565 |
+
|
| 566 |
+
* Bias and Fairness
|
| 567 |
+
* LLMs trained on large-scale, real-world text data can reflect socio-cultural
|
| 568 |
+
biases embedded in the training material. These models underwent careful
|
| 569 |
+
scrutiny, input data pre-processing described and posterior evaluations
|
| 570 |
+
reported in this card.
|
| 571 |
+
* Misinformation and Misuse
|
| 572 |
+
* LLMs can be misused to generate text that is false, misleading, or harmful.
|
| 573 |
+
* Guidelines are provided for responsible use with the model, see the
|
| 574 |
+
[Responsible Generative AI Toolkit][rai-toolkit].
|
| 575 |
+
* Transparency and Accountability:
|
| 576 |
+
* This model card summarizes details on the models' architecture,
|
| 577 |
+
capabilities, limitations, and evaluation processes.
|
| 578 |
+
* A responsibly developed open model offers the opportunity to share
|
| 579 |
+
innovation by making LLM technology accessible to developers and researchers
|
| 580 |
+
across the AI ecosystem.
|
| 581 |
+
|
| 582 |
+
Risks identified and mitigations:
|
| 583 |
+
|
| 584 |
+
* Perpetuation of biases: It's encouraged to perform continuous monitoring
|
| 585 |
+
(using evaluation metrics, human review) and the exploration of de-biasing
|
| 586 |
+
techniques during model training, fine-tuning, and other use cases.
|
| 587 |
+
* Generation of harmful content: Mechanisms and guidelines for content safety
|
| 588 |
+
are essential. Developers are encouraged to exercise caution and implement
|
| 589 |
+
appropriate content safety safeguards based on their specific product policies
|
| 590 |
+
and application use cases.
|
| 591 |
+
* Misuse for malicious purposes: Technical limitations and developer and
|
| 592 |
+
end-user education can help mitigate against malicious applications of LLMs.
|
| 593 |
+
Educational resources and reporting mechanisms for users to flag misuse are
|
| 594 |
+
provided. Prohibited uses of Gemma models are outlined in the
|
| 595 |
+
[Gemma Prohibited Use Policy][prohibited-use].
|
| 596 |
+
* Privacy violations: Models were trained on data filtered for removal of PII
|
| 597 |
+
(Personally Identifiable Information). Developers are encouraged to adhere to
|
| 598 |
+
privacy regulations with privacy-preserving techniques.
|
| 599 |
+
|
| 600 |
+
### Benefits
|
| 601 |
+
|
| 602 |
+
At the time of release, this family of models provides high-performance open
|
| 603 |
+
large language model implementations designed from the ground up for Responsible
|
| 604 |
+
AI development compared to similarly sized models.
|
| 605 |
+
|
| 606 |
+
Using the benchmark evaluation metrics described in this document, these models
|
| 607 |
+
have shown to provide superior performance to other, comparably-sized open model
|
| 608 |
+
alternatives.
|
| 609 |
+
|
| 610 |
+
[rai-toolkit]: https://ai.google.dev/responsible
|
| 611 |
+
[kaggle-gemma]: https://www.kaggle.com/models/google/gemma-2
|
| 612 |
+
[terms]: https://ai.google.dev/gemma/terms
|
| 613 |
+
[vertex-mg-gemma]: https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335
|
| 614 |
+
[sensitive-info]: https://cloud.google.com/dlp/docs/high-sensitivity-infotypes-reference
|
| 615 |
+
[safety-policies]: https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11
|
| 616 |
+
[prohibited-use]: https://ai.google.dev/gemma/prohibited_use_policy
|
| 617 |
+
[tpu]: https://cloud.google.com/tpu/docs/intro-to-tpu
|
| 618 |
+
[sustainability]: https://sustainability.google/operating-sustainably/
|
| 619 |
+
[jax]: https://github.com/google/jax
|
| 620 |
+
[ml-pathways]: https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
|
| 621 |
+
[sustainability]: https://sustainability.google/operating-sustainably/
|
| 622 |
+
[foundation-models]: https://ai.google/discover/foundation-models/
|
| 623 |
+
[gemini-2-paper]: https://goo.gle/gemma2report
|
| 624 |
+
[mmlu]: https://arxiv.org/abs/2009.03300
|
| 625 |
+
[hellaswag]: https://arxiv.org/abs/1905.07830
|
| 626 |
+
[piqa]: https://arxiv.org/abs/1911.11641
|
| 627 |
+
[socialiqa]: https://arxiv.org/abs/1904.09728
|
| 628 |
+
[boolq]: https://arxiv.org/abs/1905.10044
|
| 629 |
+
[winogrande]: https://arxiv.org/abs/1907.10641
|
| 630 |
+
[commonsenseqa]: https://arxiv.org/abs/1811.00937
|
| 631 |
+
[openbookqa]: https://arxiv.org/abs/1809.02789
|
| 632 |
+
[arc]: https://arxiv.org/abs/1911.01547
|
| 633 |
+
[triviaqa]: https://arxiv.org/abs/1705.03551
|
| 634 |
+
[naturalq]: https://github.com/google-research-datasets/natural-questions
|
| 635 |
+
[humaneval]: https://arxiv.org/abs/2107.03374
|
| 636 |
+
[mbpp]: https://arxiv.org/abs/2108.07732
|
| 637 |
+
[gsm8k]: https://arxiv.org/abs/2110.14168
|
| 638 |
+
[realtox]: https://arxiv.org/abs/2009.11462
|
| 639 |
+
[bold]: https://arxiv.org/abs/2101.11718
|
| 640 |
+
[crows]: https://aclanthology.org/2020.emnlp-main.154/
|
| 641 |
+
[bbq]: https://arxiv.org/abs/2110.08193v2
|
| 642 |
+
[winogender]: https://arxiv.org/abs/1804.09301
|
| 643 |
+
[truthfulqa]: https://arxiv.org/abs/2109.07958
|
| 644 |
+
[winobias]: https://arxiv.org/abs/1804.06876
|
| 645 |
+
[math]: https://arxiv.org/abs/2103.03874
|
| 646 |
+
[agieval]: https://arxiv.org/abs/2304.06364
|
| 647 |
+
[big-bench]: https://arxiv.org/abs/2206.04615
|
| 648 |
+
[toxigen]: https://arxiv.org/abs/2203.09509
|
SystemGemma2-2b-it-rk3588-w8a8-opt-0-hybrid-ratio-0.0.rkllm
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:74ee57fcda6468cb39f8650112ab2e682e733264cdb8df7254c6524f1f3597a5
|
| 3 |
+
size 3820727588
|
SystemGemma2-2b-it-rk3588-w8a8-opt-0-hybrid-ratio-0.5.rkllm
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:74ee57fcda6468cb39f8650112ab2e682e733264cdb8df7254c6524f1f3597a5
|
| 3 |
+
size 3820727588
|
SystemGemma2-2b-it-rk3588-w8a8-opt-0-hybrid-ratio-1.0.rkllm
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:74ee57fcda6468cb39f8650112ab2e682e733264cdb8df7254c6524f1f3597a5
|
| 3 |
+
size 3820727588
|
SystemGemma2-2b-it-rk3588-w8a8-opt-1-hybrid-ratio-0.0.rkllm
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7d8e6e14cb6b5f0a44295fcc14f17a62b5a79a32a182d68e843c1f0f87c352dd
|
| 3 |
+
size 3820727588
|
SystemGemma2-2b-it-rk3588-w8a8-opt-1-hybrid-ratio-0.5.rkllm
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7d8e6e14cb6b5f0a44295fcc14f17a62b5a79a32a182d68e843c1f0f87c352dd
|
| 3 |
+
size 3820727588
|
SystemGemma2-2b-it-rk3588-w8a8-opt-1-hybrid-ratio-1.0.rkllm
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7d8e6e14cb6b5f0a44295fcc14f17a62b5a79a32a182d68e843c1f0f87c352dd
|
| 3 |
+
size 3820727588
|
config.json
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Gemma2ForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"attn_logit_softcapping": 50.0,
|
| 8 |
+
"bos_token_id": 2,
|
| 9 |
+
"cache_implementation": "hybrid",
|
| 10 |
+
"eos_token_id": [
|
| 11 |
+
1,
|
| 12 |
+
107
|
| 13 |
+
],
|
| 14 |
+
"final_logit_softcapping": 30.0,
|
| 15 |
+
"head_dim": 256,
|
| 16 |
+
"hidden_act": "gelu_pytorch_tanh",
|
| 17 |
+
"hidden_activation": "gelu_pytorch_tanh",
|
| 18 |
+
"hidden_size": 2304,
|
| 19 |
+
"initializer_range": 0.02,
|
| 20 |
+
"intermediate_size": 9216,
|
| 21 |
+
"max_position_embeddings": 32768,
|
| 22 |
+
"model_type": "gemma2",
|
| 23 |
+
"num_attention_heads": 8,
|
| 24 |
+
"num_hidden_layers": 26,
|
| 25 |
+
"num_key_value_heads": 4,
|
| 26 |
+
"pad_token_id": 0,
|
| 27 |
+
"query_pre_attn_scalar": 256,
|
| 28 |
+
"rms_norm_eps": 1e-06,
|
| 29 |
+
"rope_theta": 160000.0,
|
| 30 |
+
"sliding_window": 32768,
|
| 31 |
+
"torch_dtype": "bfloat16",
|
| 32 |
+
"transformers_version": "4.42.4",
|
| 33 |
+
"use_cache": true,
|
| 34 |
+
"vocab_size": 256000
|
| 35 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 2,
|
| 4 |
+
"cache_implementation": "hybrid",
|
| 5 |
+
"eos_token_id": [
|
| 6 |
+
1,
|
| 7 |
+
107
|
| 8 |
+
],
|
| 9 |
+
"pad_token_id": 0,
|
| 10 |
+
"transformers_version": "4.42.4"
|
| 11 |
+
}
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 5228683776
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
| 7 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 8 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 9 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 10 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 11 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 12 |
+
"model.layers.0.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 13 |
+
"model.layers.0.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 18 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 19 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 21 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 23 |
+
"model.layers.1.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"model.layers.1.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 29 |
+
"model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 30 |
+
"model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 31 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 33 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"model.layers.10.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 35 |
+
"model.layers.10.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 36 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 37 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 40 |
+
"model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 41 |
+
"model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 42 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 43 |
+
"model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 45 |
+
"model.layers.11.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"model.layers.11.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 48 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 49 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 51 |
+
"model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 52 |
+
"model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 53 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 54 |
+
"model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 55 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 56 |
+
"model.layers.12.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 57 |
+
"model.layers.12.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 58 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 59 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 61 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 62 |
+
"model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 63 |
+
"model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 64 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 65 |
+
"model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 66 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 67 |
+
"model.layers.13.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 68 |
+
"model.layers.13.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 69 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 70 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 71 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 72 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 73 |
+
"model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 74 |
+
"model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 75 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 76 |
+
"model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 77 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 78 |
+
"model.layers.14.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 79 |
+
"model.layers.14.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 80 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 81 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 82 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 83 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 84 |
+
"model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 85 |
+
"model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 86 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 87 |
+
"model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 88 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 89 |
+
"model.layers.15.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 90 |
+
"model.layers.15.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 91 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 92 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 93 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 95 |
+
"model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 96 |
+
"model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 97 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 98 |
+
"model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 99 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 100 |
+
"model.layers.16.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 101 |
+
"model.layers.16.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 102 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 103 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 104 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 105 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 106 |
+
"model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 107 |
+
"model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 108 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 109 |
+
"model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 110 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 111 |
+
"model.layers.17.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 112 |
+
"model.layers.17.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 113 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 114 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 115 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 116 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 117 |
+
"model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 118 |
+
"model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 119 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 120 |
+
"model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 121 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 122 |
+
"model.layers.18.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 123 |
+
"model.layers.18.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 124 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 125 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 126 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 127 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 128 |
+
"model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 129 |
+
"model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 130 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 131 |
+
"model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 132 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 133 |
+
"model.layers.19.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 134 |
+
"model.layers.19.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 135 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 136 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 137 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 138 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 139 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 140 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 141 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 142 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 143 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 144 |
+
"model.layers.2.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 145 |
+
"model.layers.2.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 146 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 147 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 148 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 149 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 150 |
+
"model.layers.20.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 151 |
+
"model.layers.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 152 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 153 |
+
"model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 154 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 155 |
+
"model.layers.20.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 156 |
+
"model.layers.20.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 157 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 158 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 159 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 160 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 161 |
+
"model.layers.21.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 162 |
+
"model.layers.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 163 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 164 |
+
"model.layers.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 165 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 166 |
+
"model.layers.21.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 167 |
+
"model.layers.21.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 168 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 169 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 170 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 171 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 172 |
+
"model.layers.22.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 173 |
+
"model.layers.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 174 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 175 |
+
"model.layers.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 176 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 177 |
+
"model.layers.22.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 178 |
+
"model.layers.22.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 179 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 180 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 181 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 182 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 183 |
+
"model.layers.23.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 184 |
+
"model.layers.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 185 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 186 |
+
"model.layers.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 187 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 188 |
+
"model.layers.23.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 189 |
+
"model.layers.23.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 190 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 191 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 192 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 193 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 194 |
+
"model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 195 |
+
"model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 196 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 197 |
+
"model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 198 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 199 |
+
"model.layers.24.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 200 |
+
"model.layers.24.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 201 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 202 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 203 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 204 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 205 |
+
"model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 206 |
+
"model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 207 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 208 |
+
"model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 209 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 210 |
+
"model.layers.25.post_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 211 |
+
"model.layers.25.pre_feedforward_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 212 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 213 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 214 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 215 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 216 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 217 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 218 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 219 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 220 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 221 |
+
"model.layers.3.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 222 |
+
"model.layers.3.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 223 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 224 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 225 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 226 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 227 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 228 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 229 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 230 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 231 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 232 |
+
"model.layers.4.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 233 |
+
"model.layers.4.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 234 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 235 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 236 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 237 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 238 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 239 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 240 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 241 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 242 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 243 |
+
"model.layers.5.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 244 |
+
"model.layers.5.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 245 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 246 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 247 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 248 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 249 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 250 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 251 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 252 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 253 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 254 |
+
"model.layers.6.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 255 |
+
"model.layers.6.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 256 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 257 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 258 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 259 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 260 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 261 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 262 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 263 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 264 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 265 |
+
"model.layers.7.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 266 |
+
"model.layers.7.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 267 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 268 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 269 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 270 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 271 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 272 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 273 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 274 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 275 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 276 |
+
"model.layers.8.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 277 |
+
"model.layers.8.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 278 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 279 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 280 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 281 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 282 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 283 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 284 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 285 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 286 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 287 |
+
"model.layers.9.post_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 288 |
+
"model.layers.9.pre_feedforward_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 289 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 290 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 291 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 292 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 293 |
+
"model.norm.weight": "model-00002-of-00002.safetensors"
|
| 294 |
+
}
|
| 295 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<start_of_turn>",
|
| 4 |
+
"<end_of_turn>"
|
| 5 |
+
],
|
| 6 |
+
"bos_token": {
|
| 7 |
+
"content": "<bos>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false
|
| 12 |
+
},
|
| 13 |
+
"eos_token": {
|
| 14 |
+
"content": "<eos>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false
|
| 19 |
+
},
|
| 20 |
+
"pad_token": {
|
| 21 |
+
"content": "<pad>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false
|
| 26 |
+
},
|
| 27 |
+
"unk_token": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false
|
| 33 |
+
}
|
| 34 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3f289bc05132635a8bc7aca7aa21255efd5e18f3710f43e3cdb96bcd41be4922
|
| 3 |
+
size 17525357
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:61a7b147390c64585d6c3543dd6fc636906c9af3865a5548f27f31aee1d4c8e2
|
| 3 |
+
size 4241003
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,2013 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"0": {
|
| 6 |
+
"content": "<pad>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"1": {
|
| 14 |
+
"content": "<eos>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"2": {
|
| 22 |
+
"content": "<bos>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"3": {
|
| 30 |
+
"content": "<unk>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"4": {
|
| 38 |
+
"content": "<mask>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": false
|
| 44 |
+
},
|
| 45 |
+
"5": {
|
| 46 |
+
"content": "<2mass>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": false
|
| 52 |
+
},
|
| 53 |
+
"6": {
|
| 54 |
+
"content": "[@BOS@]",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": false
|
| 60 |
+
},
|
| 61 |
+
"7": {
|
| 62 |
+
"content": "<unused0>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": false
|
| 68 |
+
},
|
| 69 |
+
"8": {
|
| 70 |
+
"content": "<unused1>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": false
|
| 76 |
+
},
|
| 77 |
+
"9": {
|
| 78 |
+
"content": "<unused2>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": false
|
| 84 |
+
},
|
| 85 |
+
"10": {
|
| 86 |
+
"content": "<unused3>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": false
|
| 92 |
+
},
|
| 93 |
+
"11": {
|
| 94 |
+
"content": "<unused4>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": false
|
| 100 |
+
},
|
| 101 |
+
"12": {
|
| 102 |
+
"content": "<unused5>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": false
|
| 108 |
+
},
|
| 109 |
+
"13": {
|
| 110 |
+
"content": "<unused6>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": false
|
| 116 |
+
},
|
| 117 |
+
"14": {
|
| 118 |
+
"content": "<unused7>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"15": {
|
| 126 |
+
"content": "<unused8>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"16": {
|
| 134 |
+
"content": "<unused9>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"17": {
|
| 142 |
+
"content": "<unused10>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"18": {
|
| 150 |
+
"content": "<unused11>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"19": {
|
| 158 |
+
"content": "<unused12>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"20": {
|
| 166 |
+
"content": "<unused13>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"21": {
|
| 174 |
+
"content": "<unused14>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"22": {
|
| 182 |
+
"content": "<unused15>",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": false
|
| 188 |
+
},
|
| 189 |
+
"23": {
|
| 190 |
+
"content": "<unused16>",
|
| 191 |
+
"lstrip": false,
|
| 192 |
+
"normalized": false,
|
| 193 |
+
"rstrip": false,
|
| 194 |
+
"single_word": false,
|
| 195 |
+
"special": false
|
| 196 |
+
},
|
| 197 |
+
"24": {
|
| 198 |
+
"content": "<unused17>",
|
| 199 |
+
"lstrip": false,
|
| 200 |
+
"normalized": false,
|
| 201 |
+
"rstrip": false,
|
| 202 |
+
"single_word": false,
|
| 203 |
+
"special": false
|
| 204 |
+
},
|
| 205 |
+
"25": {
|
| 206 |
+
"content": "<unused18>",
|
| 207 |
+
"lstrip": false,
|
| 208 |
+
"normalized": false,
|
| 209 |
+
"rstrip": false,
|
| 210 |
+
"single_word": false,
|
| 211 |
+
"special": false
|
| 212 |
+
},
|
| 213 |
+
"26": {
|
| 214 |
+
"content": "<unused19>",
|
| 215 |
+
"lstrip": false,
|
| 216 |
+
"normalized": false,
|
| 217 |
+
"rstrip": false,
|
| 218 |
+
"single_word": false,
|
| 219 |
+
"special": false
|
| 220 |
+
},
|
| 221 |
+
"27": {
|
| 222 |
+
"content": "<unused20>",
|
| 223 |
+
"lstrip": false,
|
| 224 |
+
"normalized": false,
|
| 225 |
+
"rstrip": false,
|
| 226 |
+
"single_word": false,
|
| 227 |
+
"special": false
|
| 228 |
+
},
|
| 229 |
+
"28": {
|
| 230 |
+
"content": "<unused21>",
|
| 231 |
+
"lstrip": false,
|
| 232 |
+
"normalized": false,
|
| 233 |
+
"rstrip": false,
|
| 234 |
+
"single_word": false,
|
| 235 |
+
"special": false
|
| 236 |
+
},
|
| 237 |
+
"29": {
|
| 238 |
+
"content": "<unused22>",
|
| 239 |
+
"lstrip": false,
|
| 240 |
+
"normalized": false,
|
| 241 |
+
"rstrip": false,
|
| 242 |
+
"single_word": false,
|
| 243 |
+
"special": false
|
| 244 |
+
},
|
| 245 |
+
"30": {
|
| 246 |
+
"content": "<unused23>",
|
| 247 |
+
"lstrip": false,
|
| 248 |
+
"normalized": false,
|
| 249 |
+
"rstrip": false,
|
| 250 |
+
"single_word": false,
|
| 251 |
+
"special": false
|
| 252 |
+
},
|
| 253 |
+
"31": {
|
| 254 |
+
"content": "<unused24>",
|
| 255 |
+
"lstrip": false,
|
| 256 |
+
"normalized": false,
|
| 257 |
+
"rstrip": false,
|
| 258 |
+
"single_word": false,
|
| 259 |
+
"special": false
|
| 260 |
+
},
|
| 261 |
+
"32": {
|
| 262 |
+
"content": "<unused25>",
|
| 263 |
+
"lstrip": false,
|
| 264 |
+
"normalized": false,
|
| 265 |
+
"rstrip": false,
|
| 266 |
+
"single_word": false,
|
| 267 |
+
"special": false
|
| 268 |
+
},
|
| 269 |
+
"33": {
|
| 270 |
+
"content": "<unused26>",
|
| 271 |
+
"lstrip": false,
|
| 272 |
+
"normalized": false,
|
| 273 |
+
"rstrip": false,
|
| 274 |
+
"single_word": false,
|
| 275 |
+
"special": false
|
| 276 |
+
},
|
| 277 |
+
"34": {
|
| 278 |
+
"content": "<unused27>",
|
| 279 |
+
"lstrip": false,
|
| 280 |
+
"normalized": false,
|
| 281 |
+
"rstrip": false,
|
| 282 |
+
"single_word": false,
|
| 283 |
+
"special": false
|
| 284 |
+
},
|
| 285 |
+
"35": {
|
| 286 |
+
"content": "<unused28>",
|
| 287 |
+
"lstrip": false,
|
| 288 |
+
"normalized": false,
|
| 289 |
+
"rstrip": false,
|
| 290 |
+
"single_word": false,
|
| 291 |
+
"special": false
|
| 292 |
+
},
|
| 293 |
+
"36": {
|
| 294 |
+
"content": "<unused29>",
|
| 295 |
+
"lstrip": false,
|
| 296 |
+
"normalized": false,
|
| 297 |
+
"rstrip": false,
|
| 298 |
+
"single_word": false,
|
| 299 |
+
"special": false
|
| 300 |
+
},
|
| 301 |
+
"37": {
|
| 302 |
+
"content": "<unused30>",
|
| 303 |
+
"lstrip": false,
|
| 304 |
+
"normalized": false,
|
| 305 |
+
"rstrip": false,
|
| 306 |
+
"single_word": false,
|
| 307 |
+
"special": false
|
| 308 |
+
},
|
| 309 |
+
"38": {
|
| 310 |
+
"content": "<unused31>",
|
| 311 |
+
"lstrip": false,
|
| 312 |
+
"normalized": false,
|
| 313 |
+
"rstrip": false,
|
| 314 |
+
"single_word": false,
|
| 315 |
+
"special": false
|
| 316 |
+
},
|
| 317 |
+
"39": {
|
| 318 |
+
"content": "<unused32>",
|
| 319 |
+
"lstrip": false,
|
| 320 |
+
"normalized": false,
|
| 321 |
+
"rstrip": false,
|
| 322 |
+
"single_word": false,
|
| 323 |
+
"special": false
|
| 324 |
+
},
|
| 325 |
+
"40": {
|
| 326 |
+
"content": "<unused33>",
|
| 327 |
+
"lstrip": false,
|
| 328 |
+
"normalized": false,
|
| 329 |
+
"rstrip": false,
|
| 330 |
+
"single_word": false,
|
| 331 |
+
"special": false
|
| 332 |
+
},
|
| 333 |
+
"41": {
|
| 334 |
+
"content": "<unused34>",
|
| 335 |
+
"lstrip": false,
|
| 336 |
+
"normalized": false,
|
| 337 |
+
"rstrip": false,
|
| 338 |
+
"single_word": false,
|
| 339 |
+
"special": false
|
| 340 |
+
},
|
| 341 |
+
"42": {
|
| 342 |
+
"content": "<unused35>",
|
| 343 |
+
"lstrip": false,
|
| 344 |
+
"normalized": false,
|
| 345 |
+
"rstrip": false,
|
| 346 |
+
"single_word": false,
|
| 347 |
+
"special": false
|
| 348 |
+
},
|
| 349 |
+
"43": {
|
| 350 |
+
"content": "<unused36>",
|
| 351 |
+
"lstrip": false,
|
| 352 |
+
"normalized": false,
|
| 353 |
+
"rstrip": false,
|
| 354 |
+
"single_word": false,
|
| 355 |
+
"special": false
|
| 356 |
+
},
|
| 357 |
+
"44": {
|
| 358 |
+
"content": "<unused37>",
|
| 359 |
+
"lstrip": false,
|
| 360 |
+
"normalized": false,
|
| 361 |
+
"rstrip": false,
|
| 362 |
+
"single_word": false,
|
| 363 |
+
"special": false
|
| 364 |
+
},
|
| 365 |
+
"45": {
|
| 366 |
+
"content": "<unused38>",
|
| 367 |
+
"lstrip": false,
|
| 368 |
+
"normalized": false,
|
| 369 |
+
"rstrip": false,
|
| 370 |
+
"single_word": false,
|
| 371 |
+
"special": false
|
| 372 |
+
},
|
| 373 |
+
"46": {
|
| 374 |
+
"content": "<unused39>",
|
| 375 |
+
"lstrip": false,
|
| 376 |
+
"normalized": false,
|
| 377 |
+
"rstrip": false,
|
| 378 |
+
"single_word": false,
|
| 379 |
+
"special": false
|
| 380 |
+
},
|
| 381 |
+
"47": {
|
| 382 |
+
"content": "<unused40>",
|
| 383 |
+
"lstrip": false,
|
| 384 |
+
"normalized": false,
|
| 385 |
+
"rstrip": false,
|
| 386 |
+
"single_word": false,
|
| 387 |
+
"special": false
|
| 388 |
+
},
|
| 389 |
+
"48": {
|
| 390 |
+
"content": "<unused41>",
|
| 391 |
+
"lstrip": false,
|
| 392 |
+
"normalized": false,
|
| 393 |
+
"rstrip": false,
|
| 394 |
+
"single_word": false,
|
| 395 |
+
"special": false
|
| 396 |
+
},
|
| 397 |
+
"49": {
|
| 398 |
+
"content": "<unused42>",
|
| 399 |
+
"lstrip": false,
|
| 400 |
+
"normalized": false,
|
| 401 |
+
"rstrip": false,
|
| 402 |
+
"single_word": false,
|
| 403 |
+
"special": false
|
| 404 |
+
},
|
| 405 |
+
"50": {
|
| 406 |
+
"content": "<unused43>",
|
| 407 |
+
"lstrip": false,
|
| 408 |
+
"normalized": false,
|
| 409 |
+
"rstrip": false,
|
| 410 |
+
"single_word": false,
|
| 411 |
+
"special": false
|
| 412 |
+
},
|
| 413 |
+
"51": {
|
| 414 |
+
"content": "<unused44>",
|
| 415 |
+
"lstrip": false,
|
| 416 |
+
"normalized": false,
|
| 417 |
+
"rstrip": false,
|
| 418 |
+
"single_word": false,
|
| 419 |
+
"special": false
|
| 420 |
+
},
|
| 421 |
+
"52": {
|
| 422 |
+
"content": "<unused45>",
|
| 423 |
+
"lstrip": false,
|
| 424 |
+
"normalized": false,
|
| 425 |
+
"rstrip": false,
|
| 426 |
+
"single_word": false,
|
| 427 |
+
"special": false
|
| 428 |
+
},
|
| 429 |
+
"53": {
|
| 430 |
+
"content": "<unused46>",
|
| 431 |
+
"lstrip": false,
|
| 432 |
+
"normalized": false,
|
| 433 |
+
"rstrip": false,
|
| 434 |
+
"single_word": false,
|
| 435 |
+
"special": false
|
| 436 |
+
},
|
| 437 |
+
"54": {
|
| 438 |
+
"content": "<unused47>",
|
| 439 |
+
"lstrip": false,
|
| 440 |
+
"normalized": false,
|
| 441 |
+
"rstrip": false,
|
| 442 |
+
"single_word": false,
|
| 443 |
+
"special": false
|
| 444 |
+
},
|
| 445 |
+
"55": {
|
| 446 |
+
"content": "<unused48>",
|
| 447 |
+
"lstrip": false,
|
| 448 |
+
"normalized": false,
|
| 449 |
+
"rstrip": false,
|
| 450 |
+
"single_word": false,
|
| 451 |
+
"special": false
|
| 452 |
+
},
|
| 453 |
+
"56": {
|
| 454 |
+
"content": "<unused49>",
|
| 455 |
+
"lstrip": false,
|
| 456 |
+
"normalized": false,
|
| 457 |
+
"rstrip": false,
|
| 458 |
+
"single_word": false,
|
| 459 |
+
"special": false
|
| 460 |
+
},
|
| 461 |
+
"57": {
|
| 462 |
+
"content": "<unused50>",
|
| 463 |
+
"lstrip": false,
|
| 464 |
+
"normalized": false,
|
| 465 |
+
"rstrip": false,
|
| 466 |
+
"single_word": false,
|
| 467 |
+
"special": false
|
| 468 |
+
},
|
| 469 |
+
"58": {
|
| 470 |
+
"content": "<unused51>",
|
| 471 |
+
"lstrip": false,
|
| 472 |
+
"normalized": false,
|
| 473 |
+
"rstrip": false,
|
| 474 |
+
"single_word": false,
|
| 475 |
+
"special": false
|
| 476 |
+
},
|
| 477 |
+
"59": {
|
| 478 |
+
"content": "<unused52>",
|
| 479 |
+
"lstrip": false,
|
| 480 |
+
"normalized": false,
|
| 481 |
+
"rstrip": false,
|
| 482 |
+
"single_word": false,
|
| 483 |
+
"special": false
|
| 484 |
+
},
|
| 485 |
+
"60": {
|
| 486 |
+
"content": "<unused53>",
|
| 487 |
+
"lstrip": false,
|
| 488 |
+
"normalized": false,
|
| 489 |
+
"rstrip": false,
|
| 490 |
+
"single_word": false,
|
| 491 |
+
"special": false
|
| 492 |
+
},
|
| 493 |
+
"61": {
|
| 494 |
+
"content": "<unused54>",
|
| 495 |
+
"lstrip": false,
|
| 496 |
+
"normalized": false,
|
| 497 |
+
"rstrip": false,
|
| 498 |
+
"single_word": false,
|
| 499 |
+
"special": false
|
| 500 |
+
},
|
| 501 |
+
"62": {
|
| 502 |
+
"content": "<unused55>",
|
| 503 |
+
"lstrip": false,
|
| 504 |
+
"normalized": false,
|
| 505 |
+
"rstrip": false,
|
| 506 |
+
"single_word": false,
|
| 507 |
+
"special": false
|
| 508 |
+
},
|
| 509 |
+
"63": {
|
| 510 |
+
"content": "<unused56>",
|
| 511 |
+
"lstrip": false,
|
| 512 |
+
"normalized": false,
|
| 513 |
+
"rstrip": false,
|
| 514 |
+
"single_word": false,
|
| 515 |
+
"special": false
|
| 516 |
+
},
|
| 517 |
+
"64": {
|
| 518 |
+
"content": "<unused57>",
|
| 519 |
+
"lstrip": false,
|
| 520 |
+
"normalized": false,
|
| 521 |
+
"rstrip": false,
|
| 522 |
+
"single_word": false,
|
| 523 |
+
"special": false
|
| 524 |
+
},
|
| 525 |
+
"65": {
|
| 526 |
+
"content": "<unused58>",
|
| 527 |
+
"lstrip": false,
|
| 528 |
+
"normalized": false,
|
| 529 |
+
"rstrip": false,
|
| 530 |
+
"single_word": false,
|
| 531 |
+
"special": false
|
| 532 |
+
},
|
| 533 |
+
"66": {
|
| 534 |
+
"content": "<unused59>",
|
| 535 |
+
"lstrip": false,
|
| 536 |
+
"normalized": false,
|
| 537 |
+
"rstrip": false,
|
| 538 |
+
"single_word": false,
|
| 539 |
+
"special": false
|
| 540 |
+
},
|
| 541 |
+
"67": {
|
| 542 |
+
"content": "<unused60>",
|
| 543 |
+
"lstrip": false,
|
| 544 |
+
"normalized": false,
|
| 545 |
+
"rstrip": false,
|
| 546 |
+
"single_word": false,
|
| 547 |
+
"special": false
|
| 548 |
+
},
|
| 549 |
+
"68": {
|
| 550 |
+
"content": "<unused61>",
|
| 551 |
+
"lstrip": false,
|
| 552 |
+
"normalized": false,
|
| 553 |
+
"rstrip": false,
|
| 554 |
+
"single_word": false,
|
| 555 |
+
"special": false
|
| 556 |
+
},
|
| 557 |
+
"69": {
|
| 558 |
+
"content": "<unused62>",
|
| 559 |
+
"lstrip": false,
|
| 560 |
+
"normalized": false,
|
| 561 |
+
"rstrip": false,
|
| 562 |
+
"single_word": false,
|
| 563 |
+
"special": false
|
| 564 |
+
},
|
| 565 |
+
"70": {
|
| 566 |
+
"content": "<unused63>",
|
| 567 |
+
"lstrip": false,
|
| 568 |
+
"normalized": false,
|
| 569 |
+
"rstrip": false,
|
| 570 |
+
"single_word": false,
|
| 571 |
+
"special": false
|
| 572 |
+
},
|
| 573 |
+
"71": {
|
| 574 |
+
"content": "<unused64>",
|
| 575 |
+
"lstrip": false,
|
| 576 |
+
"normalized": false,
|
| 577 |
+
"rstrip": false,
|
| 578 |
+
"single_word": false,
|
| 579 |
+
"special": false
|
| 580 |
+
},
|
| 581 |
+
"72": {
|
| 582 |
+
"content": "<unused65>",
|
| 583 |
+
"lstrip": false,
|
| 584 |
+
"normalized": false,
|
| 585 |
+
"rstrip": false,
|
| 586 |
+
"single_word": false,
|
| 587 |
+
"special": false
|
| 588 |
+
},
|
| 589 |
+
"73": {
|
| 590 |
+
"content": "<unused66>",
|
| 591 |
+
"lstrip": false,
|
| 592 |
+
"normalized": false,
|
| 593 |
+
"rstrip": false,
|
| 594 |
+
"single_word": false,
|
| 595 |
+
"special": false
|
| 596 |
+
},
|
| 597 |
+
"74": {
|
| 598 |
+
"content": "<unused67>",
|
| 599 |
+
"lstrip": false,
|
| 600 |
+
"normalized": false,
|
| 601 |
+
"rstrip": false,
|
| 602 |
+
"single_word": false,
|
| 603 |
+
"special": false
|
| 604 |
+
},
|
| 605 |
+
"75": {
|
| 606 |
+
"content": "<unused68>",
|
| 607 |
+
"lstrip": false,
|
| 608 |
+
"normalized": false,
|
| 609 |
+
"rstrip": false,
|
| 610 |
+
"single_word": false,
|
| 611 |
+
"special": false
|
| 612 |
+
},
|
| 613 |
+
"76": {
|
| 614 |
+
"content": "<unused69>",
|
| 615 |
+
"lstrip": false,
|
| 616 |
+
"normalized": false,
|
| 617 |
+
"rstrip": false,
|
| 618 |
+
"single_word": false,
|
| 619 |
+
"special": false
|
| 620 |
+
},
|
| 621 |
+
"77": {
|
| 622 |
+
"content": "<unused70>",
|
| 623 |
+
"lstrip": false,
|
| 624 |
+
"normalized": false,
|
| 625 |
+
"rstrip": false,
|
| 626 |
+
"single_word": false,
|
| 627 |
+
"special": false
|
| 628 |
+
},
|
| 629 |
+
"78": {
|
| 630 |
+
"content": "<unused71>",
|
| 631 |
+
"lstrip": false,
|
| 632 |
+
"normalized": false,
|
| 633 |
+
"rstrip": false,
|
| 634 |
+
"single_word": false,
|
| 635 |
+
"special": false
|
| 636 |
+
},
|
| 637 |
+
"79": {
|
| 638 |
+
"content": "<unused72>",
|
| 639 |
+
"lstrip": false,
|
| 640 |
+
"normalized": false,
|
| 641 |
+
"rstrip": false,
|
| 642 |
+
"single_word": false,
|
| 643 |
+
"special": false
|
| 644 |
+
},
|
| 645 |
+
"80": {
|
| 646 |
+
"content": "<unused73>",
|
| 647 |
+
"lstrip": false,
|
| 648 |
+
"normalized": false,
|
| 649 |
+
"rstrip": false,
|
| 650 |
+
"single_word": false,
|
| 651 |
+
"special": false
|
| 652 |
+
},
|
| 653 |
+
"81": {
|
| 654 |
+
"content": "<unused74>",
|
| 655 |
+
"lstrip": false,
|
| 656 |
+
"normalized": false,
|
| 657 |
+
"rstrip": false,
|
| 658 |
+
"single_word": false,
|
| 659 |
+
"special": false
|
| 660 |
+
},
|
| 661 |
+
"82": {
|
| 662 |
+
"content": "<unused75>",
|
| 663 |
+
"lstrip": false,
|
| 664 |
+
"normalized": false,
|
| 665 |
+
"rstrip": false,
|
| 666 |
+
"single_word": false,
|
| 667 |
+
"special": false
|
| 668 |
+
},
|
| 669 |
+
"83": {
|
| 670 |
+
"content": "<unused76>",
|
| 671 |
+
"lstrip": false,
|
| 672 |
+
"normalized": false,
|
| 673 |
+
"rstrip": false,
|
| 674 |
+
"single_word": false,
|
| 675 |
+
"special": false
|
| 676 |
+
},
|
| 677 |
+
"84": {
|
| 678 |
+
"content": "<unused77>",
|
| 679 |
+
"lstrip": false,
|
| 680 |
+
"normalized": false,
|
| 681 |
+
"rstrip": false,
|
| 682 |
+
"single_word": false,
|
| 683 |
+
"special": false
|
| 684 |
+
},
|
| 685 |
+
"85": {
|
| 686 |
+
"content": "<unused78>",
|
| 687 |
+
"lstrip": false,
|
| 688 |
+
"normalized": false,
|
| 689 |
+
"rstrip": false,
|
| 690 |
+
"single_word": false,
|
| 691 |
+
"special": false
|
| 692 |
+
},
|
| 693 |
+
"86": {
|
| 694 |
+
"content": "<unused79>",
|
| 695 |
+
"lstrip": false,
|
| 696 |
+
"normalized": false,
|
| 697 |
+
"rstrip": false,
|
| 698 |
+
"single_word": false,
|
| 699 |
+
"special": false
|
| 700 |
+
},
|
| 701 |
+
"87": {
|
| 702 |
+
"content": "<unused80>",
|
| 703 |
+
"lstrip": false,
|
| 704 |
+
"normalized": false,
|
| 705 |
+
"rstrip": false,
|
| 706 |
+
"single_word": false,
|
| 707 |
+
"special": false
|
| 708 |
+
},
|
| 709 |
+
"88": {
|
| 710 |
+
"content": "<unused81>",
|
| 711 |
+
"lstrip": false,
|
| 712 |
+
"normalized": false,
|
| 713 |
+
"rstrip": false,
|
| 714 |
+
"single_word": false,
|
| 715 |
+
"special": false
|
| 716 |
+
},
|
| 717 |
+
"89": {
|
| 718 |
+
"content": "<unused82>",
|
| 719 |
+
"lstrip": false,
|
| 720 |
+
"normalized": false,
|
| 721 |
+
"rstrip": false,
|
| 722 |
+
"single_word": false,
|
| 723 |
+
"special": false
|
| 724 |
+
},
|
| 725 |
+
"90": {
|
| 726 |
+
"content": "<unused83>",
|
| 727 |
+
"lstrip": false,
|
| 728 |
+
"normalized": false,
|
| 729 |
+
"rstrip": false,
|
| 730 |
+
"single_word": false,
|
| 731 |
+
"special": false
|
| 732 |
+
},
|
| 733 |
+
"91": {
|
| 734 |
+
"content": "<unused84>",
|
| 735 |
+
"lstrip": false,
|
| 736 |
+
"normalized": false,
|
| 737 |
+
"rstrip": false,
|
| 738 |
+
"single_word": false,
|
| 739 |
+
"special": false
|
| 740 |
+
},
|
| 741 |
+
"92": {
|
| 742 |
+
"content": "<unused85>",
|
| 743 |
+
"lstrip": false,
|
| 744 |
+
"normalized": false,
|
| 745 |
+
"rstrip": false,
|
| 746 |
+
"single_word": false,
|
| 747 |
+
"special": false
|
| 748 |
+
},
|
| 749 |
+
"93": {
|
| 750 |
+
"content": "<unused86>",
|
| 751 |
+
"lstrip": false,
|
| 752 |
+
"normalized": false,
|
| 753 |
+
"rstrip": false,
|
| 754 |
+
"single_word": false,
|
| 755 |
+
"special": false
|
| 756 |
+
},
|
| 757 |
+
"94": {
|
| 758 |
+
"content": "<unused87>",
|
| 759 |
+
"lstrip": false,
|
| 760 |
+
"normalized": false,
|
| 761 |
+
"rstrip": false,
|
| 762 |
+
"single_word": false,
|
| 763 |
+
"special": false
|
| 764 |
+
},
|
| 765 |
+
"95": {
|
| 766 |
+
"content": "<unused88>",
|
| 767 |
+
"lstrip": false,
|
| 768 |
+
"normalized": false,
|
| 769 |
+
"rstrip": false,
|
| 770 |
+
"single_word": false,
|
| 771 |
+
"special": false
|
| 772 |
+
},
|
| 773 |
+
"96": {
|
| 774 |
+
"content": "<unused89>",
|
| 775 |
+
"lstrip": false,
|
| 776 |
+
"normalized": false,
|
| 777 |
+
"rstrip": false,
|
| 778 |
+
"single_word": false,
|
| 779 |
+
"special": false
|
| 780 |
+
},
|
| 781 |
+
"97": {
|
| 782 |
+
"content": "<unused90>",
|
| 783 |
+
"lstrip": false,
|
| 784 |
+
"normalized": false,
|
| 785 |
+
"rstrip": false,
|
| 786 |
+
"single_word": false,
|
| 787 |
+
"special": false
|
| 788 |
+
},
|
| 789 |
+
"98": {
|
| 790 |
+
"content": "<unused91>",
|
| 791 |
+
"lstrip": false,
|
| 792 |
+
"normalized": false,
|
| 793 |
+
"rstrip": false,
|
| 794 |
+
"single_word": false,
|
| 795 |
+
"special": false
|
| 796 |
+
},
|
| 797 |
+
"99": {
|
| 798 |
+
"content": "<unused92>",
|
| 799 |
+
"lstrip": false,
|
| 800 |
+
"normalized": false,
|
| 801 |
+
"rstrip": false,
|
| 802 |
+
"single_word": false,
|
| 803 |
+
"special": false
|
| 804 |
+
},
|
| 805 |
+
"100": {
|
| 806 |
+
"content": "<unused93>",
|
| 807 |
+
"lstrip": false,
|
| 808 |
+
"normalized": false,
|
| 809 |
+
"rstrip": false,
|
| 810 |
+
"single_word": false,
|
| 811 |
+
"special": false
|
| 812 |
+
},
|
| 813 |
+
"101": {
|
| 814 |
+
"content": "<unused94>",
|
| 815 |
+
"lstrip": false,
|
| 816 |
+
"normalized": false,
|
| 817 |
+
"rstrip": false,
|
| 818 |
+
"single_word": false,
|
| 819 |
+
"special": false
|
| 820 |
+
},
|
| 821 |
+
"102": {
|
| 822 |
+
"content": "<unused95>",
|
| 823 |
+
"lstrip": false,
|
| 824 |
+
"normalized": false,
|
| 825 |
+
"rstrip": false,
|
| 826 |
+
"single_word": false,
|
| 827 |
+
"special": false
|
| 828 |
+
},
|
| 829 |
+
"103": {
|
| 830 |
+
"content": "<unused96>",
|
| 831 |
+
"lstrip": false,
|
| 832 |
+
"normalized": false,
|
| 833 |
+
"rstrip": false,
|
| 834 |
+
"single_word": false,
|
| 835 |
+
"special": false
|
| 836 |
+
},
|
| 837 |
+
"104": {
|
| 838 |
+
"content": "<unused97>",
|
| 839 |
+
"lstrip": false,
|
| 840 |
+
"normalized": false,
|
| 841 |
+
"rstrip": false,
|
| 842 |
+
"single_word": false,
|
| 843 |
+
"special": false
|
| 844 |
+
},
|
| 845 |
+
"105": {
|
| 846 |
+
"content": "<unused98>",
|
| 847 |
+
"lstrip": false,
|
| 848 |
+
"normalized": false,
|
| 849 |
+
"rstrip": false,
|
| 850 |
+
"single_word": false,
|
| 851 |
+
"special": false
|
| 852 |
+
},
|
| 853 |
+
"106": {
|
| 854 |
+
"content": "<start_of_turn>",
|
| 855 |
+
"lstrip": false,
|
| 856 |
+
"normalized": false,
|
| 857 |
+
"rstrip": false,
|
| 858 |
+
"single_word": false,
|
| 859 |
+
"special": true
|
| 860 |
+
},
|
| 861 |
+
"107": {
|
| 862 |
+
"content": "<end_of_turn>",
|
| 863 |
+
"lstrip": false,
|
| 864 |
+
"normalized": false,
|
| 865 |
+
"rstrip": false,
|
| 866 |
+
"single_word": false,
|
| 867 |
+
"special": true
|
| 868 |
+
},
|
| 869 |
+
"108": {
|
| 870 |
+
"content": "\n",
|
| 871 |
+
"lstrip": false,
|
| 872 |
+
"normalized": false,
|
| 873 |
+
"rstrip": false,
|
| 874 |
+
"single_word": false,
|
| 875 |
+
"special": false
|
| 876 |
+
},
|
| 877 |
+
"109": {
|
| 878 |
+
"content": "\n\n",
|
| 879 |
+
"lstrip": false,
|
| 880 |
+
"normalized": false,
|
| 881 |
+
"rstrip": false,
|
| 882 |
+
"single_word": false,
|
| 883 |
+
"special": false
|
| 884 |
+
},
|
| 885 |
+
"110": {
|
| 886 |
+
"content": "\n\n\n",
|
| 887 |
+
"lstrip": false,
|
| 888 |
+
"normalized": false,
|
| 889 |
+
"rstrip": false,
|
| 890 |
+
"single_word": false,
|
| 891 |
+
"special": false
|
| 892 |
+
},
|
| 893 |
+
"111": {
|
| 894 |
+
"content": "\n\n\n\n",
|
| 895 |
+
"lstrip": false,
|
| 896 |
+
"normalized": false,
|
| 897 |
+
"rstrip": false,
|
| 898 |
+
"single_word": false,
|
| 899 |
+
"special": false
|
| 900 |
+
},
|
| 901 |
+
"112": {
|
| 902 |
+
"content": "\n\n\n\n\n",
|
| 903 |
+
"lstrip": false,
|
| 904 |
+
"normalized": false,
|
| 905 |
+
"rstrip": false,
|
| 906 |
+
"single_word": false,
|
| 907 |
+
"special": false
|
| 908 |
+
},
|
| 909 |
+
"113": {
|
| 910 |
+
"content": "\n\n\n\n\n\n",
|
| 911 |
+
"lstrip": false,
|
| 912 |
+
"normalized": false,
|
| 913 |
+
"rstrip": false,
|
| 914 |
+
"single_word": false,
|
| 915 |
+
"special": false
|
| 916 |
+
},
|
| 917 |
+
"114": {
|
| 918 |
+
"content": "\n\n\n\n\n\n\n",
|
| 919 |
+
"lstrip": false,
|
| 920 |
+
"normalized": false,
|
| 921 |
+
"rstrip": false,
|
| 922 |
+
"single_word": false,
|
| 923 |
+
"special": false
|
| 924 |
+
},
|
| 925 |
+
"115": {
|
| 926 |
+
"content": "\n\n\n\n\n\n\n\n",
|
| 927 |
+
"lstrip": false,
|
| 928 |
+
"normalized": false,
|
| 929 |
+
"rstrip": false,
|
| 930 |
+
"single_word": false,
|
| 931 |
+
"special": false
|
| 932 |
+
},
|
| 933 |
+
"116": {
|
| 934 |
+
"content": "\n\n\n\n\n\n\n\n\n",
|
| 935 |
+
"lstrip": false,
|
| 936 |
+
"normalized": false,
|
| 937 |
+
"rstrip": false,
|
| 938 |
+
"single_word": false,
|
| 939 |
+
"special": false
|
| 940 |
+
},
|
| 941 |
+
"117": {
|
| 942 |
+
"content": "\n\n\n\n\n\n\n\n\n\n",
|
| 943 |
+
"lstrip": false,
|
| 944 |
+
"normalized": false,
|
| 945 |
+
"rstrip": false,
|
| 946 |
+
"single_word": false,
|
| 947 |
+
"special": false
|
| 948 |
+
},
|
| 949 |
+
"118": {
|
| 950 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n",
|
| 951 |
+
"lstrip": false,
|
| 952 |
+
"normalized": false,
|
| 953 |
+
"rstrip": false,
|
| 954 |
+
"single_word": false,
|
| 955 |
+
"special": false
|
| 956 |
+
},
|
| 957 |
+
"119": {
|
| 958 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 959 |
+
"lstrip": false,
|
| 960 |
+
"normalized": false,
|
| 961 |
+
"rstrip": false,
|
| 962 |
+
"single_word": false,
|
| 963 |
+
"special": false
|
| 964 |
+
},
|
| 965 |
+
"120": {
|
| 966 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 967 |
+
"lstrip": false,
|
| 968 |
+
"normalized": false,
|
| 969 |
+
"rstrip": false,
|
| 970 |
+
"single_word": false,
|
| 971 |
+
"special": false
|
| 972 |
+
},
|
| 973 |
+
"121": {
|
| 974 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 975 |
+
"lstrip": false,
|
| 976 |
+
"normalized": false,
|
| 977 |
+
"rstrip": false,
|
| 978 |
+
"single_word": false,
|
| 979 |
+
"special": false
|
| 980 |
+
},
|
| 981 |
+
"122": {
|
| 982 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 983 |
+
"lstrip": false,
|
| 984 |
+
"normalized": false,
|
| 985 |
+
"rstrip": false,
|
| 986 |
+
"single_word": false,
|
| 987 |
+
"special": false
|
| 988 |
+
},
|
| 989 |
+
"123": {
|
| 990 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 991 |
+
"lstrip": false,
|
| 992 |
+
"normalized": false,
|
| 993 |
+
"rstrip": false,
|
| 994 |
+
"single_word": false,
|
| 995 |
+
"special": false
|
| 996 |
+
},
|
| 997 |
+
"124": {
|
| 998 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 999 |
+
"lstrip": false,
|
| 1000 |
+
"normalized": false,
|
| 1001 |
+
"rstrip": false,
|
| 1002 |
+
"single_word": false,
|
| 1003 |
+
"special": false
|
| 1004 |
+
},
|
| 1005 |
+
"125": {
|
| 1006 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1007 |
+
"lstrip": false,
|
| 1008 |
+
"normalized": false,
|
| 1009 |
+
"rstrip": false,
|
| 1010 |
+
"single_word": false,
|
| 1011 |
+
"special": false
|
| 1012 |
+
},
|
| 1013 |
+
"126": {
|
| 1014 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1015 |
+
"lstrip": false,
|
| 1016 |
+
"normalized": false,
|
| 1017 |
+
"rstrip": false,
|
| 1018 |
+
"single_word": false,
|
| 1019 |
+
"special": false
|
| 1020 |
+
},
|
| 1021 |
+
"127": {
|
| 1022 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1023 |
+
"lstrip": false,
|
| 1024 |
+
"normalized": false,
|
| 1025 |
+
"rstrip": false,
|
| 1026 |
+
"single_word": false,
|
| 1027 |
+
"special": false
|
| 1028 |
+
},
|
| 1029 |
+
"128": {
|
| 1030 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1031 |
+
"lstrip": false,
|
| 1032 |
+
"normalized": false,
|
| 1033 |
+
"rstrip": false,
|
| 1034 |
+
"single_word": false,
|
| 1035 |
+
"special": false
|
| 1036 |
+
},
|
| 1037 |
+
"129": {
|
| 1038 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1039 |
+
"lstrip": false,
|
| 1040 |
+
"normalized": false,
|
| 1041 |
+
"rstrip": false,
|
| 1042 |
+
"single_word": false,
|
| 1043 |
+
"special": false
|
| 1044 |
+
},
|
| 1045 |
+
"130": {
|
| 1046 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1047 |
+
"lstrip": false,
|
| 1048 |
+
"normalized": false,
|
| 1049 |
+
"rstrip": false,
|
| 1050 |
+
"single_word": false,
|
| 1051 |
+
"special": false
|
| 1052 |
+
},
|
| 1053 |
+
"131": {
|
| 1054 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1055 |
+
"lstrip": false,
|
| 1056 |
+
"normalized": false,
|
| 1057 |
+
"rstrip": false,
|
| 1058 |
+
"single_word": false,
|
| 1059 |
+
"special": false
|
| 1060 |
+
},
|
| 1061 |
+
"132": {
|
| 1062 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1063 |
+
"lstrip": false,
|
| 1064 |
+
"normalized": false,
|
| 1065 |
+
"rstrip": false,
|
| 1066 |
+
"single_word": false,
|
| 1067 |
+
"special": false
|
| 1068 |
+
},
|
| 1069 |
+
"133": {
|
| 1070 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1071 |
+
"lstrip": false,
|
| 1072 |
+
"normalized": false,
|
| 1073 |
+
"rstrip": false,
|
| 1074 |
+
"single_word": false,
|
| 1075 |
+
"special": false
|
| 1076 |
+
},
|
| 1077 |
+
"134": {
|
| 1078 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1079 |
+
"lstrip": false,
|
| 1080 |
+
"normalized": false,
|
| 1081 |
+
"rstrip": false,
|
| 1082 |
+
"single_word": false,
|
| 1083 |
+
"special": false
|
| 1084 |
+
},
|
| 1085 |
+
"135": {
|
| 1086 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1087 |
+
"lstrip": false,
|
| 1088 |
+
"normalized": false,
|
| 1089 |
+
"rstrip": false,
|
| 1090 |
+
"single_word": false,
|
| 1091 |
+
"special": false
|
| 1092 |
+
},
|
| 1093 |
+
"136": {
|
| 1094 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1095 |
+
"lstrip": false,
|
| 1096 |
+
"normalized": false,
|
| 1097 |
+
"rstrip": false,
|
| 1098 |
+
"single_word": false,
|
| 1099 |
+
"special": false
|
| 1100 |
+
},
|
| 1101 |
+
"137": {
|
| 1102 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1103 |
+
"lstrip": false,
|
| 1104 |
+
"normalized": false,
|
| 1105 |
+
"rstrip": false,
|
| 1106 |
+
"single_word": false,
|
| 1107 |
+
"special": false
|
| 1108 |
+
},
|
| 1109 |
+
"138": {
|
| 1110 |
+
"content": "\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
|
| 1111 |
+
"lstrip": false,
|
| 1112 |
+
"normalized": false,
|
| 1113 |
+
"rstrip": false,
|
| 1114 |
+
"single_word": false,
|
| 1115 |
+
"special": false
|
| 1116 |
+
},
|
| 1117 |
+
"139": {
|
| 1118 |
+
"content": "▁▁",
|
| 1119 |
+
"lstrip": false,
|
| 1120 |
+
"normalized": false,
|
| 1121 |
+
"rstrip": false,
|
| 1122 |
+
"single_word": false,
|
| 1123 |
+
"special": false
|
| 1124 |
+
},
|
| 1125 |
+
"140": {
|
| 1126 |
+
"content": "▁▁▁",
|
| 1127 |
+
"lstrip": false,
|
| 1128 |
+
"normalized": false,
|
| 1129 |
+
"rstrip": false,
|
| 1130 |
+
"single_word": false,
|
| 1131 |
+
"special": false
|
| 1132 |
+
},
|
| 1133 |
+
"141": {
|
| 1134 |
+
"content": "▁▁▁▁",
|
| 1135 |
+
"lstrip": false,
|
| 1136 |
+
"normalized": false,
|
| 1137 |
+
"rstrip": false,
|
| 1138 |
+
"single_word": false,
|
| 1139 |
+
"special": false
|
| 1140 |
+
},
|
| 1141 |
+
"142": {
|
| 1142 |
+
"content": "▁▁▁▁▁",
|
| 1143 |
+
"lstrip": false,
|
| 1144 |
+
"normalized": false,
|
| 1145 |
+
"rstrip": false,
|
| 1146 |
+
"single_word": false,
|
| 1147 |
+
"special": false
|
| 1148 |
+
},
|
| 1149 |
+
"143": {
|
| 1150 |
+
"content": "▁▁▁▁▁▁",
|
| 1151 |
+
"lstrip": false,
|
| 1152 |
+
"normalized": false,
|
| 1153 |
+
"rstrip": false,
|
| 1154 |
+
"single_word": false,
|
| 1155 |
+
"special": false
|
| 1156 |
+
},
|
| 1157 |
+
"144": {
|
| 1158 |
+
"content": "▁▁▁▁▁▁▁",
|
| 1159 |
+
"lstrip": false,
|
| 1160 |
+
"normalized": false,
|
| 1161 |
+
"rstrip": false,
|
| 1162 |
+
"single_word": false,
|
| 1163 |
+
"special": false
|
| 1164 |
+
},
|
| 1165 |
+
"145": {
|
| 1166 |
+
"content": "▁▁▁▁▁▁▁▁",
|
| 1167 |
+
"lstrip": false,
|
| 1168 |
+
"normalized": false,
|
| 1169 |
+
"rstrip": false,
|
| 1170 |
+
"single_word": false,
|
| 1171 |
+
"special": false
|
| 1172 |
+
},
|
| 1173 |
+
"146": {
|
| 1174 |
+
"content": "▁▁▁▁▁▁▁▁▁",
|
| 1175 |
+
"lstrip": false,
|
| 1176 |
+
"normalized": false,
|
| 1177 |
+
"rstrip": false,
|
| 1178 |
+
"single_word": false,
|
| 1179 |
+
"special": false
|
| 1180 |
+
},
|
| 1181 |
+
"147": {
|
| 1182 |
+
"content": "▁▁▁▁▁▁▁▁▁▁",
|
| 1183 |
+
"lstrip": false,
|
| 1184 |
+
"normalized": false,
|
| 1185 |
+
"rstrip": false,
|
| 1186 |
+
"single_word": false,
|
| 1187 |
+
"special": false
|
| 1188 |
+
},
|
| 1189 |
+
"148": {
|
| 1190 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁",
|
| 1191 |
+
"lstrip": false,
|
| 1192 |
+
"normalized": false,
|
| 1193 |
+
"rstrip": false,
|
| 1194 |
+
"single_word": false,
|
| 1195 |
+
"special": false
|
| 1196 |
+
},
|
| 1197 |
+
"149": {
|
| 1198 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1199 |
+
"lstrip": false,
|
| 1200 |
+
"normalized": false,
|
| 1201 |
+
"rstrip": false,
|
| 1202 |
+
"single_word": false,
|
| 1203 |
+
"special": false
|
| 1204 |
+
},
|
| 1205 |
+
"150": {
|
| 1206 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1207 |
+
"lstrip": false,
|
| 1208 |
+
"normalized": false,
|
| 1209 |
+
"rstrip": false,
|
| 1210 |
+
"single_word": false,
|
| 1211 |
+
"special": false
|
| 1212 |
+
},
|
| 1213 |
+
"151": {
|
| 1214 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1215 |
+
"lstrip": false,
|
| 1216 |
+
"normalized": false,
|
| 1217 |
+
"rstrip": false,
|
| 1218 |
+
"single_word": false,
|
| 1219 |
+
"special": false
|
| 1220 |
+
},
|
| 1221 |
+
"152": {
|
| 1222 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1223 |
+
"lstrip": false,
|
| 1224 |
+
"normalized": false,
|
| 1225 |
+
"rstrip": false,
|
| 1226 |
+
"single_word": false,
|
| 1227 |
+
"special": false
|
| 1228 |
+
},
|
| 1229 |
+
"153": {
|
| 1230 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1231 |
+
"lstrip": false,
|
| 1232 |
+
"normalized": false,
|
| 1233 |
+
"rstrip": false,
|
| 1234 |
+
"single_word": false,
|
| 1235 |
+
"special": false
|
| 1236 |
+
},
|
| 1237 |
+
"154": {
|
| 1238 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1239 |
+
"lstrip": false,
|
| 1240 |
+
"normalized": false,
|
| 1241 |
+
"rstrip": false,
|
| 1242 |
+
"single_word": false,
|
| 1243 |
+
"special": false
|
| 1244 |
+
},
|
| 1245 |
+
"155": {
|
| 1246 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1247 |
+
"lstrip": false,
|
| 1248 |
+
"normalized": false,
|
| 1249 |
+
"rstrip": false,
|
| 1250 |
+
"single_word": false,
|
| 1251 |
+
"special": false
|
| 1252 |
+
},
|
| 1253 |
+
"156": {
|
| 1254 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1255 |
+
"lstrip": false,
|
| 1256 |
+
"normalized": false,
|
| 1257 |
+
"rstrip": false,
|
| 1258 |
+
"single_word": false,
|
| 1259 |
+
"special": false
|
| 1260 |
+
},
|
| 1261 |
+
"157": {
|
| 1262 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1263 |
+
"lstrip": false,
|
| 1264 |
+
"normalized": false,
|
| 1265 |
+
"rstrip": false,
|
| 1266 |
+
"single_word": false,
|
| 1267 |
+
"special": false
|
| 1268 |
+
},
|
| 1269 |
+
"158": {
|
| 1270 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1271 |
+
"lstrip": false,
|
| 1272 |
+
"normalized": false,
|
| 1273 |
+
"rstrip": false,
|
| 1274 |
+
"single_word": false,
|
| 1275 |
+
"special": false
|
| 1276 |
+
},
|
| 1277 |
+
"159": {
|
| 1278 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1279 |
+
"lstrip": false,
|
| 1280 |
+
"normalized": false,
|
| 1281 |
+
"rstrip": false,
|
| 1282 |
+
"single_word": false,
|
| 1283 |
+
"special": false
|
| 1284 |
+
},
|
| 1285 |
+
"160": {
|
| 1286 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1287 |
+
"lstrip": false,
|
| 1288 |
+
"normalized": false,
|
| 1289 |
+
"rstrip": false,
|
| 1290 |
+
"single_word": false,
|
| 1291 |
+
"special": false
|
| 1292 |
+
},
|
| 1293 |
+
"161": {
|
| 1294 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1295 |
+
"lstrip": false,
|
| 1296 |
+
"normalized": false,
|
| 1297 |
+
"rstrip": false,
|
| 1298 |
+
"single_word": false,
|
| 1299 |
+
"special": false
|
| 1300 |
+
},
|
| 1301 |
+
"162": {
|
| 1302 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1303 |
+
"lstrip": false,
|
| 1304 |
+
"normalized": false,
|
| 1305 |
+
"rstrip": false,
|
| 1306 |
+
"single_word": false,
|
| 1307 |
+
"special": false
|
| 1308 |
+
},
|
| 1309 |
+
"163": {
|
| 1310 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1311 |
+
"lstrip": false,
|
| 1312 |
+
"normalized": false,
|
| 1313 |
+
"rstrip": false,
|
| 1314 |
+
"single_word": false,
|
| 1315 |
+
"special": false
|
| 1316 |
+
},
|
| 1317 |
+
"164": {
|
| 1318 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1319 |
+
"lstrip": false,
|
| 1320 |
+
"normalized": false,
|
| 1321 |
+
"rstrip": false,
|
| 1322 |
+
"single_word": false,
|
| 1323 |
+
"special": false
|
| 1324 |
+
},
|
| 1325 |
+
"165": {
|
| 1326 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1327 |
+
"lstrip": false,
|
| 1328 |
+
"normalized": false,
|
| 1329 |
+
"rstrip": false,
|
| 1330 |
+
"single_word": false,
|
| 1331 |
+
"special": false
|
| 1332 |
+
},
|
| 1333 |
+
"166": {
|
| 1334 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1335 |
+
"lstrip": false,
|
| 1336 |
+
"normalized": false,
|
| 1337 |
+
"rstrip": false,
|
| 1338 |
+
"single_word": false,
|
| 1339 |
+
"special": false
|
| 1340 |
+
},
|
| 1341 |
+
"167": {
|
| 1342 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1343 |
+
"lstrip": false,
|
| 1344 |
+
"normalized": false,
|
| 1345 |
+
"rstrip": false,
|
| 1346 |
+
"single_word": false,
|
| 1347 |
+
"special": false
|
| 1348 |
+
},
|
| 1349 |
+
"168": {
|
| 1350 |
+
"content": "▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁",
|
| 1351 |
+
"lstrip": false,
|
| 1352 |
+
"normalized": false,
|
| 1353 |
+
"rstrip": false,
|
| 1354 |
+
"single_word": false,
|
| 1355 |
+
"special": false
|
| 1356 |
+
},
|
| 1357 |
+
"169": {
|
| 1358 |
+
"content": "<table>",
|
| 1359 |
+
"lstrip": false,
|
| 1360 |
+
"normalized": false,
|
| 1361 |
+
"rstrip": false,
|
| 1362 |
+
"single_word": false,
|
| 1363 |
+
"special": false
|
| 1364 |
+
},
|
| 1365 |
+
"170": {
|
| 1366 |
+
"content": "<caption>",
|
| 1367 |
+
"lstrip": false,
|
| 1368 |
+
"normalized": false,
|
| 1369 |
+
"rstrip": false,
|
| 1370 |
+
"single_word": false,
|
| 1371 |
+
"special": false
|
| 1372 |
+
},
|
| 1373 |
+
"171": {
|
| 1374 |
+
"content": "<thead>",
|
| 1375 |
+
"lstrip": false,
|
| 1376 |
+
"normalized": false,
|
| 1377 |
+
"rstrip": false,
|
| 1378 |
+
"single_word": false,
|
| 1379 |
+
"special": false
|
| 1380 |
+
},
|
| 1381 |
+
"172": {
|
| 1382 |
+
"content": "<tbody>",
|
| 1383 |
+
"lstrip": false,
|
| 1384 |
+
"normalized": false,
|
| 1385 |
+
"rstrip": false,
|
| 1386 |
+
"single_word": false,
|
| 1387 |
+
"special": false
|
| 1388 |
+
},
|
| 1389 |
+
"173": {
|
| 1390 |
+
"content": "<tfoot>",
|
| 1391 |
+
"lstrip": false,
|
| 1392 |
+
"normalized": false,
|
| 1393 |
+
"rstrip": false,
|
| 1394 |
+
"single_word": false,
|
| 1395 |
+
"special": false
|
| 1396 |
+
},
|
| 1397 |
+
"174": {
|
| 1398 |
+
"content": "<tr>",
|
| 1399 |
+
"lstrip": false,
|
| 1400 |
+
"normalized": false,
|
| 1401 |
+
"rstrip": false,
|
| 1402 |
+
"single_word": false,
|
| 1403 |
+
"special": false
|
| 1404 |
+
},
|
| 1405 |
+
"175": {
|
| 1406 |
+
"content": "<th>",
|
| 1407 |
+
"lstrip": false,
|
| 1408 |
+
"normalized": false,
|
| 1409 |
+
"rstrip": false,
|
| 1410 |
+
"single_word": false,
|
| 1411 |
+
"special": false
|
| 1412 |
+
},
|
| 1413 |
+
"176": {
|
| 1414 |
+
"content": "<td>",
|
| 1415 |
+
"lstrip": false,
|
| 1416 |
+
"normalized": false,
|
| 1417 |
+
"rstrip": false,
|
| 1418 |
+
"single_word": false,
|
| 1419 |
+
"special": false
|
| 1420 |
+
},
|
| 1421 |
+
"177": {
|
| 1422 |
+
"content": "</table>",
|
| 1423 |
+
"lstrip": false,
|
| 1424 |
+
"normalized": false,
|
| 1425 |
+
"rstrip": false,
|
| 1426 |
+
"single_word": false,
|
| 1427 |
+
"special": false
|
| 1428 |
+
},
|
| 1429 |
+
"178": {
|
| 1430 |
+
"content": "</caption>",
|
| 1431 |
+
"lstrip": false,
|
| 1432 |
+
"normalized": false,
|
| 1433 |
+
"rstrip": false,
|
| 1434 |
+
"single_word": false,
|
| 1435 |
+
"special": false
|
| 1436 |
+
},
|
| 1437 |
+
"179": {
|
| 1438 |
+
"content": "</thead>",
|
| 1439 |
+
"lstrip": false,
|
| 1440 |
+
"normalized": false,
|
| 1441 |
+
"rstrip": false,
|
| 1442 |
+
"single_word": false,
|
| 1443 |
+
"special": false
|
| 1444 |
+
},
|
| 1445 |
+
"180": {
|
| 1446 |
+
"content": "</tbody>",
|
| 1447 |
+
"lstrip": false,
|
| 1448 |
+
"normalized": false,
|
| 1449 |
+
"rstrip": false,
|
| 1450 |
+
"single_word": false,
|
| 1451 |
+
"special": false
|
| 1452 |
+
},
|
| 1453 |
+
"181": {
|
| 1454 |
+
"content": "</tfoot>",
|
| 1455 |
+
"lstrip": false,
|
| 1456 |
+
"normalized": false,
|
| 1457 |
+
"rstrip": false,
|
| 1458 |
+
"single_word": false,
|
| 1459 |
+
"special": false
|
| 1460 |
+
},
|
| 1461 |
+
"182": {
|
| 1462 |
+
"content": "</tr>",
|
| 1463 |
+
"lstrip": false,
|
| 1464 |
+
"normalized": false,
|
| 1465 |
+
"rstrip": false,
|
| 1466 |
+
"single_word": false,
|
| 1467 |
+
"special": false
|
| 1468 |
+
},
|
| 1469 |
+
"183": {
|
| 1470 |
+
"content": "</th>",
|
| 1471 |
+
"lstrip": false,
|
| 1472 |
+
"normalized": false,
|
| 1473 |
+
"rstrip": false,
|
| 1474 |
+
"single_word": false,
|
| 1475 |
+
"special": false
|
| 1476 |
+
},
|
| 1477 |
+
"184": {
|
| 1478 |
+
"content": "</td>",
|
| 1479 |
+
"lstrip": false,
|
| 1480 |
+
"normalized": false,
|
| 1481 |
+
"rstrip": false,
|
| 1482 |
+
"single_word": false,
|
| 1483 |
+
"special": false
|
| 1484 |
+
},
|
| 1485 |
+
"185": {
|
| 1486 |
+
"content": "<h1>",
|
| 1487 |
+
"lstrip": false,
|
| 1488 |
+
"normalized": false,
|
| 1489 |
+
"rstrip": false,
|
| 1490 |
+
"single_word": false,
|
| 1491 |
+
"special": false
|
| 1492 |
+
},
|
| 1493 |
+
"186": {
|
| 1494 |
+
"content": "<h2>",
|
| 1495 |
+
"lstrip": false,
|
| 1496 |
+
"normalized": false,
|
| 1497 |
+
"rstrip": false,
|
| 1498 |
+
"single_word": false,
|
| 1499 |
+
"special": false
|
| 1500 |
+
},
|
| 1501 |
+
"187": {
|
| 1502 |
+
"content": "<h3>",
|
| 1503 |
+
"lstrip": false,
|
| 1504 |
+
"normalized": false,
|
| 1505 |
+
"rstrip": false,
|
| 1506 |
+
"single_word": false,
|
| 1507 |
+
"special": false
|
| 1508 |
+
},
|
| 1509 |
+
"188": {
|
| 1510 |
+
"content": "<h4>",
|
| 1511 |
+
"lstrip": false,
|
| 1512 |
+
"normalized": false,
|
| 1513 |
+
"rstrip": false,
|
| 1514 |
+
"single_word": false,
|
| 1515 |
+
"special": false
|
| 1516 |
+
},
|
| 1517 |
+
"189": {
|
| 1518 |
+
"content": "<h5>",
|
| 1519 |
+
"lstrip": false,
|
| 1520 |
+
"normalized": false,
|
| 1521 |
+
"rstrip": false,
|
| 1522 |
+
"single_word": false,
|
| 1523 |
+
"special": false
|
| 1524 |
+
},
|
| 1525 |
+
"190": {
|
| 1526 |
+
"content": "<h6>",
|
| 1527 |
+
"lstrip": false,
|
| 1528 |
+
"normalized": false,
|
| 1529 |
+
"rstrip": false,
|
| 1530 |
+
"single_word": false,
|
| 1531 |
+
"special": false
|
| 1532 |
+
},
|
| 1533 |
+
"191": {
|
| 1534 |
+
"content": "<blockquote>",
|
| 1535 |
+
"lstrip": false,
|
| 1536 |
+
"normalized": false,
|
| 1537 |
+
"rstrip": false,
|
| 1538 |
+
"single_word": false,
|
| 1539 |
+
"special": false
|
| 1540 |
+
},
|
| 1541 |
+
"192": {
|
| 1542 |
+
"content": "</h1>",
|
| 1543 |
+
"lstrip": false,
|
| 1544 |
+
"normalized": false,
|
| 1545 |
+
"rstrip": false,
|
| 1546 |
+
"single_word": false,
|
| 1547 |
+
"special": false
|
| 1548 |
+
},
|
| 1549 |
+
"193": {
|
| 1550 |
+
"content": "</h2>",
|
| 1551 |
+
"lstrip": false,
|
| 1552 |
+
"normalized": false,
|
| 1553 |
+
"rstrip": false,
|
| 1554 |
+
"single_word": false,
|
| 1555 |
+
"special": false
|
| 1556 |
+
},
|
| 1557 |
+
"194": {
|
| 1558 |
+
"content": "</h3>",
|
| 1559 |
+
"lstrip": false,
|
| 1560 |
+
"normalized": false,
|
| 1561 |
+
"rstrip": false,
|
| 1562 |
+
"single_word": false,
|
| 1563 |
+
"special": false
|
| 1564 |
+
},
|
| 1565 |
+
"195": {
|
| 1566 |
+
"content": "</h4>",
|
| 1567 |
+
"lstrip": false,
|
| 1568 |
+
"normalized": false,
|
| 1569 |
+
"rstrip": false,
|
| 1570 |
+
"single_word": false,
|
| 1571 |
+
"special": false
|
| 1572 |
+
},
|
| 1573 |
+
"196": {
|
| 1574 |
+
"content": "</h5>",
|
| 1575 |
+
"lstrip": false,
|
| 1576 |
+
"normalized": false,
|
| 1577 |
+
"rstrip": false,
|
| 1578 |
+
"single_word": false,
|
| 1579 |
+
"special": false
|
| 1580 |
+
},
|
| 1581 |
+
"197": {
|
| 1582 |
+
"content": "</h6>",
|
| 1583 |
+
"lstrip": false,
|
| 1584 |
+
"normalized": false,
|
| 1585 |
+
"rstrip": false,
|
| 1586 |
+
"single_word": false,
|
| 1587 |
+
"special": false
|
| 1588 |
+
},
|
| 1589 |
+
"198": {
|
| 1590 |
+
"content": "</blockquote>",
|
| 1591 |
+
"lstrip": false,
|
| 1592 |
+
"normalized": false,
|
| 1593 |
+
"rstrip": false,
|
| 1594 |
+
"single_word": false,
|
| 1595 |
+
"special": false
|
| 1596 |
+
},
|
| 1597 |
+
"199": {
|
| 1598 |
+
"content": "<strong>",
|
| 1599 |
+
"lstrip": false,
|
| 1600 |
+
"normalized": false,
|
| 1601 |
+
"rstrip": false,
|
| 1602 |
+
"single_word": false,
|
| 1603 |
+
"special": false
|
| 1604 |
+
},
|
| 1605 |
+
"200": {
|
| 1606 |
+
"content": "<em>",
|
| 1607 |
+
"lstrip": false,
|
| 1608 |
+
"normalized": false,
|
| 1609 |
+
"rstrip": false,
|
| 1610 |
+
"single_word": false,
|
| 1611 |
+
"special": false
|
| 1612 |
+
},
|
| 1613 |
+
"201": {
|
| 1614 |
+
"content": "<b>",
|
| 1615 |
+
"lstrip": false,
|
| 1616 |
+
"normalized": false,
|
| 1617 |
+
"rstrip": false,
|
| 1618 |
+
"single_word": false,
|
| 1619 |
+
"special": false
|
| 1620 |
+
},
|
| 1621 |
+
"202": {
|
| 1622 |
+
"content": "<i>",
|
| 1623 |
+
"lstrip": false,
|
| 1624 |
+
"normalized": false,
|
| 1625 |
+
"rstrip": false,
|
| 1626 |
+
"single_word": false,
|
| 1627 |
+
"special": false
|
| 1628 |
+
},
|
| 1629 |
+
"203": {
|
| 1630 |
+
"content": "<u>",
|
| 1631 |
+
"lstrip": false,
|
| 1632 |
+
"normalized": false,
|
| 1633 |
+
"rstrip": false,
|
| 1634 |
+
"single_word": false,
|
| 1635 |
+
"special": false
|
| 1636 |
+
},
|
| 1637 |
+
"204": {
|
| 1638 |
+
"content": "<s>",
|
| 1639 |
+
"lstrip": false,
|
| 1640 |
+
"normalized": false,
|
| 1641 |
+
"rstrip": false,
|
| 1642 |
+
"single_word": false,
|
| 1643 |
+
"special": false
|
| 1644 |
+
},
|
| 1645 |
+
"205": {
|
| 1646 |
+
"content": "<sub>",
|
| 1647 |
+
"lstrip": false,
|
| 1648 |
+
"normalized": false,
|
| 1649 |
+
"rstrip": false,
|
| 1650 |
+
"single_word": false,
|
| 1651 |
+
"special": false
|
| 1652 |
+
},
|
| 1653 |
+
"206": {
|
| 1654 |
+
"content": "<sup>",
|
| 1655 |
+
"lstrip": false,
|
| 1656 |
+
"normalized": false,
|
| 1657 |
+
"rstrip": false,
|
| 1658 |
+
"single_word": false,
|
| 1659 |
+
"special": false
|
| 1660 |
+
},
|
| 1661 |
+
"207": {
|
| 1662 |
+
"content": "<code>",
|
| 1663 |
+
"lstrip": false,
|
| 1664 |
+
"normalized": false,
|
| 1665 |
+
"rstrip": false,
|
| 1666 |
+
"single_word": false,
|
| 1667 |
+
"special": false
|
| 1668 |
+
},
|
| 1669 |
+
"208": {
|
| 1670 |
+
"content": "</strong>",
|
| 1671 |
+
"lstrip": false,
|
| 1672 |
+
"normalized": false,
|
| 1673 |
+
"rstrip": false,
|
| 1674 |
+
"single_word": false,
|
| 1675 |
+
"special": false
|
| 1676 |
+
},
|
| 1677 |
+
"209": {
|
| 1678 |
+
"content": "</em>",
|
| 1679 |
+
"lstrip": false,
|
| 1680 |
+
"normalized": false,
|
| 1681 |
+
"rstrip": false,
|
| 1682 |
+
"single_word": false,
|
| 1683 |
+
"special": false
|
| 1684 |
+
},
|
| 1685 |
+
"210": {
|
| 1686 |
+
"content": "</b>",
|
| 1687 |
+
"lstrip": false,
|
| 1688 |
+
"normalized": false,
|
| 1689 |
+
"rstrip": false,
|
| 1690 |
+
"single_word": false,
|
| 1691 |
+
"special": false
|
| 1692 |
+
},
|
| 1693 |
+
"211": {
|
| 1694 |
+
"content": "</i>",
|
| 1695 |
+
"lstrip": false,
|
| 1696 |
+
"normalized": false,
|
| 1697 |
+
"rstrip": false,
|
| 1698 |
+
"single_word": false,
|
| 1699 |
+
"special": false
|
| 1700 |
+
},
|
| 1701 |
+
"212": {
|
| 1702 |
+
"content": "</u>",
|
| 1703 |
+
"lstrip": false,
|
| 1704 |
+
"normalized": false,
|
| 1705 |
+
"rstrip": false,
|
| 1706 |
+
"single_word": false,
|
| 1707 |
+
"special": false
|
| 1708 |
+
},
|
| 1709 |
+
"213": {
|
| 1710 |
+
"content": "</s>",
|
| 1711 |
+
"lstrip": false,
|
| 1712 |
+
"normalized": false,
|
| 1713 |
+
"rstrip": false,
|
| 1714 |
+
"single_word": false,
|
| 1715 |
+
"special": false
|
| 1716 |
+
},
|
| 1717 |
+
"214": {
|
| 1718 |
+
"content": "</sub>",
|
| 1719 |
+
"lstrip": false,
|
| 1720 |
+
"normalized": false,
|
| 1721 |
+
"rstrip": false,
|
| 1722 |
+
"single_word": false,
|
| 1723 |
+
"special": false
|
| 1724 |
+
},
|
| 1725 |
+
"215": {
|
| 1726 |
+
"content": "</sup>",
|
| 1727 |
+
"lstrip": false,
|
| 1728 |
+
"normalized": false,
|
| 1729 |
+
"rstrip": false,
|
| 1730 |
+
"single_word": false,
|
| 1731 |
+
"special": false
|
| 1732 |
+
},
|
| 1733 |
+
"216": {
|
| 1734 |
+
"content": "</code>",
|
| 1735 |
+
"lstrip": false,
|
| 1736 |
+
"normalized": false,
|
| 1737 |
+
"rstrip": false,
|
| 1738 |
+
"single_word": false,
|
| 1739 |
+
"special": false
|
| 1740 |
+
},
|
| 1741 |
+
"255968": {
|
| 1742 |
+
"content": "[toxicity=0]",
|
| 1743 |
+
"lstrip": false,
|
| 1744 |
+
"normalized": false,
|
| 1745 |
+
"rstrip": false,
|
| 1746 |
+
"single_word": false,
|
| 1747 |
+
"special": false
|
| 1748 |
+
},
|
| 1749 |
+
"255969": {
|
| 1750 |
+
"content": "\t\t",
|
| 1751 |
+
"lstrip": false,
|
| 1752 |
+
"normalized": false,
|
| 1753 |
+
"rstrip": false,
|
| 1754 |
+
"single_word": false,
|
| 1755 |
+
"special": false
|
| 1756 |
+
},
|
| 1757 |
+
"255970": {
|
| 1758 |
+
"content": "\t\t\t",
|
| 1759 |
+
"lstrip": false,
|
| 1760 |
+
"normalized": false,
|
| 1761 |
+
"rstrip": false,
|
| 1762 |
+
"single_word": false,
|
| 1763 |
+
"special": false
|
| 1764 |
+
},
|
| 1765 |
+
"255971": {
|
| 1766 |
+
"content": "\t\t\t\t",
|
| 1767 |
+
"lstrip": false,
|
| 1768 |
+
"normalized": false,
|
| 1769 |
+
"rstrip": false,
|
| 1770 |
+
"single_word": false,
|
| 1771 |
+
"special": false
|
| 1772 |
+
},
|
| 1773 |
+
"255972": {
|
| 1774 |
+
"content": "\t\t\t\t\t",
|
| 1775 |
+
"lstrip": false,
|
| 1776 |
+
"normalized": false,
|
| 1777 |
+
"rstrip": false,
|
| 1778 |
+
"single_word": false,
|
| 1779 |
+
"special": false
|
| 1780 |
+
},
|
| 1781 |
+
"255973": {
|
| 1782 |
+
"content": "\t\t\t\t\t\t",
|
| 1783 |
+
"lstrip": false,
|
| 1784 |
+
"normalized": false,
|
| 1785 |
+
"rstrip": false,
|
| 1786 |
+
"single_word": false,
|
| 1787 |
+
"special": false
|
| 1788 |
+
},
|
| 1789 |
+
"255974": {
|
| 1790 |
+
"content": "\t\t\t\t\t\t\t",
|
| 1791 |
+
"lstrip": false,
|
| 1792 |
+
"normalized": false,
|
| 1793 |
+
"rstrip": false,
|
| 1794 |
+
"single_word": false,
|
| 1795 |
+
"special": false
|
| 1796 |
+
},
|
| 1797 |
+
"255975": {
|
| 1798 |
+
"content": "\t\t\t\t\t\t\t\t",
|
| 1799 |
+
"lstrip": false,
|
| 1800 |
+
"normalized": false,
|
| 1801 |
+
"rstrip": false,
|
| 1802 |
+
"single_word": false,
|
| 1803 |
+
"special": false
|
| 1804 |
+
},
|
| 1805 |
+
"255976": {
|
| 1806 |
+
"content": "\t\t\t\t\t\t\t\t\t",
|
| 1807 |
+
"lstrip": false,
|
| 1808 |
+
"normalized": false,
|
| 1809 |
+
"rstrip": false,
|
| 1810 |
+
"single_word": false,
|
| 1811 |
+
"special": false
|
| 1812 |
+
},
|
| 1813 |
+
"255977": {
|
| 1814 |
+
"content": "\t\t\t\t\t\t\t\t\t\t",
|
| 1815 |
+
"lstrip": false,
|
| 1816 |
+
"normalized": false,
|
| 1817 |
+
"rstrip": false,
|
| 1818 |
+
"single_word": false,
|
| 1819 |
+
"special": false
|
| 1820 |
+
},
|
| 1821 |
+
"255978": {
|
| 1822 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t",
|
| 1823 |
+
"lstrip": false,
|
| 1824 |
+
"normalized": false,
|
| 1825 |
+
"rstrip": false,
|
| 1826 |
+
"single_word": false,
|
| 1827 |
+
"special": false
|
| 1828 |
+
},
|
| 1829 |
+
"255979": {
|
| 1830 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1831 |
+
"lstrip": false,
|
| 1832 |
+
"normalized": false,
|
| 1833 |
+
"rstrip": false,
|
| 1834 |
+
"single_word": false,
|
| 1835 |
+
"special": false
|
| 1836 |
+
},
|
| 1837 |
+
"255980": {
|
| 1838 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1839 |
+
"lstrip": false,
|
| 1840 |
+
"normalized": false,
|
| 1841 |
+
"rstrip": false,
|
| 1842 |
+
"single_word": false,
|
| 1843 |
+
"special": false
|
| 1844 |
+
},
|
| 1845 |
+
"255981": {
|
| 1846 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1847 |
+
"lstrip": false,
|
| 1848 |
+
"normalized": false,
|
| 1849 |
+
"rstrip": false,
|
| 1850 |
+
"single_word": false,
|
| 1851 |
+
"special": false
|
| 1852 |
+
},
|
| 1853 |
+
"255982": {
|
| 1854 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1855 |
+
"lstrip": false,
|
| 1856 |
+
"normalized": false,
|
| 1857 |
+
"rstrip": false,
|
| 1858 |
+
"single_word": false,
|
| 1859 |
+
"special": false
|
| 1860 |
+
},
|
| 1861 |
+
"255983": {
|
| 1862 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1863 |
+
"lstrip": false,
|
| 1864 |
+
"normalized": false,
|
| 1865 |
+
"rstrip": false,
|
| 1866 |
+
"single_word": false,
|
| 1867 |
+
"special": false
|
| 1868 |
+
},
|
| 1869 |
+
"255984": {
|
| 1870 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1871 |
+
"lstrip": false,
|
| 1872 |
+
"normalized": false,
|
| 1873 |
+
"rstrip": false,
|
| 1874 |
+
"single_word": false,
|
| 1875 |
+
"special": false
|
| 1876 |
+
},
|
| 1877 |
+
"255985": {
|
| 1878 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1879 |
+
"lstrip": false,
|
| 1880 |
+
"normalized": false,
|
| 1881 |
+
"rstrip": false,
|
| 1882 |
+
"single_word": false,
|
| 1883 |
+
"special": false
|
| 1884 |
+
},
|
| 1885 |
+
"255986": {
|
| 1886 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1887 |
+
"lstrip": false,
|
| 1888 |
+
"normalized": false,
|
| 1889 |
+
"rstrip": false,
|
| 1890 |
+
"single_word": false,
|
| 1891 |
+
"special": false
|
| 1892 |
+
},
|
| 1893 |
+
"255987": {
|
| 1894 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1895 |
+
"lstrip": false,
|
| 1896 |
+
"normalized": false,
|
| 1897 |
+
"rstrip": false,
|
| 1898 |
+
"single_word": false,
|
| 1899 |
+
"special": false
|
| 1900 |
+
},
|
| 1901 |
+
"255988": {
|
| 1902 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1903 |
+
"lstrip": false,
|
| 1904 |
+
"normalized": false,
|
| 1905 |
+
"rstrip": false,
|
| 1906 |
+
"single_word": false,
|
| 1907 |
+
"special": false
|
| 1908 |
+
},
|
| 1909 |
+
"255989": {
|
| 1910 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1911 |
+
"lstrip": false,
|
| 1912 |
+
"normalized": false,
|
| 1913 |
+
"rstrip": false,
|
| 1914 |
+
"single_word": false,
|
| 1915 |
+
"special": false
|
| 1916 |
+
},
|
| 1917 |
+
"255990": {
|
| 1918 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1919 |
+
"lstrip": false,
|
| 1920 |
+
"normalized": false,
|
| 1921 |
+
"rstrip": false,
|
| 1922 |
+
"single_word": false,
|
| 1923 |
+
"special": false
|
| 1924 |
+
},
|
| 1925 |
+
"255991": {
|
| 1926 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1927 |
+
"lstrip": false,
|
| 1928 |
+
"normalized": false,
|
| 1929 |
+
"rstrip": false,
|
| 1930 |
+
"single_word": false,
|
| 1931 |
+
"special": false
|
| 1932 |
+
},
|
| 1933 |
+
"255992": {
|
| 1934 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1935 |
+
"lstrip": false,
|
| 1936 |
+
"normalized": false,
|
| 1937 |
+
"rstrip": false,
|
| 1938 |
+
"single_word": false,
|
| 1939 |
+
"special": false
|
| 1940 |
+
},
|
| 1941 |
+
"255993": {
|
| 1942 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1943 |
+
"lstrip": false,
|
| 1944 |
+
"normalized": false,
|
| 1945 |
+
"rstrip": false,
|
| 1946 |
+
"single_word": false,
|
| 1947 |
+
"special": false
|
| 1948 |
+
},
|
| 1949 |
+
"255994": {
|
| 1950 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1951 |
+
"lstrip": false,
|
| 1952 |
+
"normalized": false,
|
| 1953 |
+
"rstrip": false,
|
| 1954 |
+
"single_word": false,
|
| 1955 |
+
"special": false
|
| 1956 |
+
},
|
| 1957 |
+
"255995": {
|
| 1958 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1959 |
+
"lstrip": false,
|
| 1960 |
+
"normalized": false,
|
| 1961 |
+
"rstrip": false,
|
| 1962 |
+
"single_word": false,
|
| 1963 |
+
"special": false
|
| 1964 |
+
},
|
| 1965 |
+
"255996": {
|
| 1966 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1967 |
+
"lstrip": false,
|
| 1968 |
+
"normalized": false,
|
| 1969 |
+
"rstrip": false,
|
| 1970 |
+
"single_word": false,
|
| 1971 |
+
"special": false
|
| 1972 |
+
},
|
| 1973 |
+
"255997": {
|
| 1974 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1975 |
+
"lstrip": false,
|
| 1976 |
+
"normalized": false,
|
| 1977 |
+
"rstrip": false,
|
| 1978 |
+
"single_word": false,
|
| 1979 |
+
"special": false
|
| 1980 |
+
},
|
| 1981 |
+
"255998": {
|
| 1982 |
+
"content": "\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t",
|
| 1983 |
+
"lstrip": false,
|
| 1984 |
+
"normalized": false,
|
| 1985 |
+
"rstrip": false,
|
| 1986 |
+
"single_word": false,
|
| 1987 |
+
"special": false
|
| 1988 |
+
},
|
| 1989 |
+
"255999": {
|
| 1990 |
+
"content": "<unused99>",
|
| 1991 |
+
"lstrip": false,
|
| 1992 |
+
"normalized": false,
|
| 1993 |
+
"rstrip": false,
|
| 1994 |
+
"single_word": false,
|
| 1995 |
+
"special": false
|
| 1996 |
+
}
|
| 1997 |
+
},
|
| 1998 |
+
"additional_special_tokens": [
|
| 1999 |
+
"<start_of_turn>",
|
| 2000 |
+
"<end_of_turn>"
|
| 2001 |
+
],
|
| 2002 |
+
"bos_token": "<bos>",
|
| 2003 |
+
"chat_template": "{{ bos_token }}{% if messages[0]['role'] == 'system' %}{{ messages[0]['content'] + '\n' }}{% endif %}{% for message in messages %}{% if (message['role'] == 'user') != ((loop.index0 + 1) % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if (message['role'] == 'assistant') %}{% set role = 'model' %}{% else %}{% set role = message['role'] %}{% endif %}{% if message['role'] != 'system' %}{{ '<start_of_turn>' + role + '\n' + message['content'] | trim + '<end_of_turn>\n' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{'<start_of_turn>model\n'}}{% endif %}",
|
| 2004 |
+
"clean_up_tokenization_spaces": false,
|
| 2005 |
+
"eos_token": "<eos>",
|
| 2006 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 2007 |
+
"pad_token": "<pad>",
|
| 2008 |
+
"sp_model_kwargs": {},
|
| 2009 |
+
"spaces_between_special_tokens": false,
|
| 2010 |
+
"tokenizer_class": "GemmaTokenizer",
|
| 2011 |
+
"unk_token": "<unk>",
|
| 2012 |
+
"use_default_system_prompt": false
|
| 2013 |
+
}
|