Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- image-classification
|
| 4 |
+
- timm
|
| 5 |
+
- MobileNetV4
|
| 6 |
+
license: apache-2.0
|
| 7 |
+
datasets:
|
| 8 |
+
- imagenet-1k
|
| 9 |
+
pipeline_tag: image-classification
|
| 10 |
+
---
|
| 11 |
+
# Model card for MobileNetV4_Conv_Large_TFLite_256
|
| 12 |
+
|
| 13 |
+
A MobileNet-V4 image classification model. Trained on ImageNet-1k by Ross Wightman.
|
| 14 |
+
|
| 15 |
+
Converted to TFLite Float32 & Float16 formats by Youssef Boulaouane.
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
## Model Details
|
| 19 |
+
- **Pytorch Weights:** https://huggingface.co/timm/mobilenetv4_conv_large.e500_r256_in1k
|
| 20 |
+
- **Model Type:** Image classification
|
| 21 |
+
- **Model Stats:**
|
| 22 |
+
- Params (M): 32.6
|
| 23 |
+
- GMACs: 2.9
|
| 24 |
+
- Activations (M): 12.1
|
| 25 |
+
- Input Shape (1, 256, 256, 3)
|
| 26 |
+
- **Dataset:** ImageNet-1k
|
| 27 |
+
- **Papers:**
|
| 28 |
+
- MobileNetV4 -- Universal Models for the Mobile Ecosystem: https://arxiv.org/abs/2404.10518
|
| 29 |
+
- PyTorch Image Models: https://github.com/huggingface/pytorch-image-models
|
| 30 |
+
- **Original:** https://github.com/tensorflow/models/tree/master/official/vision
|
| 31 |
+
|
| 32 |
+
## Model Usage
|
| 33 |
+
### Image Classification in Python
|
| 34 |
+
```python
|
| 35 |
+
import numpy as np
|
| 36 |
+
import tensorflow as tf
|
| 37 |
+
from PIL import Image
|
| 38 |
+
|
| 39 |
+
# Load label file
|
| 40 |
+
with open('imagenet_classes.txt', 'r') as file:
|
| 41 |
+
lines = file.readlines()
|
| 42 |
+
|
| 43 |
+
index_to_label = {index: line.strip() for index, line in enumerate(lines)}
|
| 44 |
+
|
| 45 |
+
# Initialize interpreter and IO details
|
| 46 |
+
tfl_model = tf.lite.Interpreter(model_path=tf_model_path)
|
| 47 |
+
tfl_model.allocate_tensors()
|
| 48 |
+
input_details = tfl_model.get_input_details()
|
| 49 |
+
output_details = tfl_model.get_output_details()
|
| 50 |
+
|
| 51 |
+
# Load and preprocess the image
|
| 52 |
+
image = Image.open(image_path).resize((256, 256), Image.BICUBIC)
|
| 53 |
+
|
| 54 |
+
image = np.array(image, dtype=np.float32)
|
| 55 |
+
mean = np.array([0.485, 0.456, 0.406], dtype=np.float32)
|
| 56 |
+
std = np.array([0.229, 0.224, 0.225], dtype=np.float32)
|
| 57 |
+
image = (image / 255.0 - mean) / std
|
| 58 |
+
|
| 59 |
+
image = np.expand_dims(image, axis=-1)
|
| 60 |
+
image = np.rollaxis(image, 3)
|
| 61 |
+
|
| 62 |
+
# Inference and postprocessing
|
| 63 |
+
input = input_details[0]
|
| 64 |
+
tfl_model.set_tensor(input["index"], image)
|
| 65 |
+
tfl_model.invoke()
|
| 66 |
+
|
| 67 |
+
tfl_output = tfl_model.get_tensor(output_details[0]["index"])
|
| 68 |
+
tfl_output_tensor = tf.convert_to_tensor(tfl_output)
|
| 69 |
+
tfl_softmax_output = tf.nn.softmax(tfl_output_tensor, axis=1)
|
| 70 |
+
|
| 71 |
+
tfl_top5_probs, tfl_top5_indices = tf.math.top_k(tfl_softmax_output, k=5)
|
| 72 |
+
|
| 73 |
+
# Get the top5 class labels and probabilities
|
| 74 |
+
tfl_probs_list = tfl_top5_probs[0].numpy().tolist()
|
| 75 |
+
tfl_index_list = tfl_top5_indices[0].numpy().tolist()
|
| 76 |
+
|
| 77 |
+
for index, prob in zip(tfl_index_list, tfl_probs_list):
|
| 78 |
+
print(f"{index_to_label[index]}: {round(prob*100, 2)}%")
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
### Deployment on Mobile
|
| 82 |
+
Refer to guides available here: https://ai.google.dev/edge/lite/inference
|
| 83 |
+
|
| 84 |
+
## Citation
|
| 85 |
+
```bibtex
|
| 86 |
+
@article{qin2024mobilenetv4,
|
| 87 |
+
title={MobileNetV4-Universal Models for the Mobile Ecosystem},
|
| 88 |
+
author={Qin, Danfeng and Leichner, Chas and Delakis, Manolis and Fornoni, Marco and Luo, Shixin and Yang, Fan and Wang, Weijun and Banbury, Colby and Ye, Chengxi and Akin, Berkin and others},
|
| 89 |
+
journal={arXiv preprint arXiv:2404.10518},
|
| 90 |
+
year={2024}
|
| 91 |
+
}
|
| 92 |
+
```
|
| 93 |
+
```bibtex
|
| 94 |
+
@misc{rw2019timm,
|
| 95 |
+
author = {Ross Wightman},
|
| 96 |
+
title = {PyTorch Image Models},
|
| 97 |
+
year = {2019},
|
| 98 |
+
publisher = {GitHub},
|
| 99 |
+
journal = {GitHub repository},
|
| 100 |
+
doi = {10.5281/zenodo.4414861},
|
| 101 |
+
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
|
| 102 |
+
}
|
| 103 |
+
```
|