conplag2_codeberta_ep30_bs16_lr2e-05_l512_s42_ppy_loss
This model is a fine-tuned version of huggingface/CodeBERTa-small-v1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4380
- Accuracy: 0.8029
- Recall: 0.7368
- Precision: 0.6222
- F1: 0.6747
- F Beta Score: 0.6973
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 30
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | F1 | F Beta Score |
|---|---|---|---|---|---|---|---|---|
| 0.6137 | 1.0 | 40 | 0.6144 | 0.4453 | 0.9737 | 0.3304 | 0.4933 | 0.6089 |
| 0.5278 | 2.0 | 80 | 0.4380 | 0.8029 | 0.7368 | 0.6222 | 0.6747 | 0.6973 |
| 0.4019 | 3.0 | 120 | 0.4430 | 0.8613 | 0.5789 | 0.88 | 0.6984 | 0.6471 |
| 0.2223 | 4.0 | 160 | 0.6176 | 0.8686 | 0.5789 | 0.9167 | 0.7097 | 0.6530 |
| 0.216 | 5.0 | 200 | 0.8874 | 0.8686 | 0.5526 | 0.9545 | 0.7 | 0.6349 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.8.0+cu128
- Datasets 3.1.0
- Tokenizers 0.21.4
- Downloads last month
- 11
Model tree for buelfhood/conplag2_codeberta_ep30_bs16_lr2e-05_l512_s42_ppy_loss
Base model
huggingface/CodeBERTa-small-v1