--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.6694444444444444 --- # vit-base-patch16-224-in21k-finetuned-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.8131 - Accuracy: 0.6694 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.8 | 2 | 3.0840 | 0.2347 | | No log | 2.0 | 5 | 3.0057 | 0.4417 | | No log | 2.8 | 7 | 2.9600 | 0.5167 | | 2.9996 | 4.0 | 10 | 2.9047 | 0.5861 | | 2.9996 | 4.8 | 12 | 2.8741 | 0.6111 | | 2.9996 | 6.0 | 15 | 2.8391 | 0.6403 | | 2.9996 | 6.8 | 17 | 2.8236 | 0.6597 | | 2.8231 | 8.0 | 20 | 2.8131 | 0.6694 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.20.1