bryanzhou008 commited on
Commit
79f5dd2
·
verified ·
1 Parent(s): 7bb7ed1

Model save

Browse files
Files changed (1) hide show
  1. README.md +12 -7
README.md CHANGED
@@ -23,7 +23,7 @@ model-index:
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
- value: 0.2013888888888889
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
33
 
34
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 3.0978
37
- - Accuracy: 0.2014
38
 
39
  ## Model description
40
 
@@ -62,15 +62,20 @@ The following hyperparameters were used during training:
62
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
  - lr_scheduler_type: linear
64
  - lr_scheduler_warmup_ratio: 0.1
65
- - num_epochs: 3
66
 
67
  ### Training results
68
 
69
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
71
- | No log | 0.8 | 2 | 3.1491 | 0.0847 |
72
- | No log | 2.0 | 5 | 3.1030 | 0.1861 |
73
- | No log | 2.4 | 6 | 3.0978 | 0.2014 |
 
 
 
 
 
74
 
75
 
76
  ### Framework versions
 
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
+ value: 0.6694444444444444
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
33
 
34
  This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 2.8131
37
+ - Accuracy: 0.6694
38
 
39
  ## Model description
40
 
 
62
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
63
  - lr_scheduler_type: linear
64
  - lr_scheduler_warmup_ratio: 0.1
65
+ - num_epochs: 10
66
 
67
  ### Training results
68
 
69
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
71
+ | No log | 0.8 | 2 | 3.0840 | 0.2347 |
72
+ | No log | 2.0 | 5 | 3.0057 | 0.4417 |
73
+ | No log | 2.8 | 7 | 2.9600 | 0.5167 |
74
+ | 2.9996 | 4.0 | 10 | 2.9047 | 0.5861 |
75
+ | 2.9996 | 4.8 | 12 | 2.8741 | 0.6111 |
76
+ | 2.9996 | 6.0 | 15 | 2.8391 | 0.6403 |
77
+ | 2.9996 | 6.8 | 17 | 2.8236 | 0.6597 |
78
+ | 2.8231 | 8.0 | 20 | 2.8131 | 0.6694 |
79
 
80
 
81
  ### Framework versions