Push model using huggingface_hub.
Browse files- README.md +3 -3
- model.safetensors +1 -1
README.md
CHANGED
|
@@ -25,7 +25,7 @@ You can then generate text as follows:
|
|
| 25 |
```python
|
| 26 |
from transformers import pipeline
|
| 27 |
|
| 28 |
-
generator = pipeline("text-generation", model="bnurpek//tmp/
|
| 29 |
outputs = generator("Hello, my llama is cute")
|
| 30 |
```
|
| 31 |
|
|
@@ -35,8 +35,8 @@ If you want to use the model for training or to obtain the outputs from the valu
|
|
| 35 |
from transformers import AutoTokenizer
|
| 36 |
from trl import AutoModelForCausalLMWithValueHead
|
| 37 |
|
| 38 |
-
tokenizer = AutoTokenizer.from_pretrained("bnurpek//tmp/
|
| 39 |
-
model = AutoModelForCausalLMWithValueHead.from_pretrained("bnurpek//tmp/
|
| 40 |
|
| 41 |
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
|
| 42 |
outputs = model(**inputs, labels=inputs["input_ids"])
|
|
|
|
| 25 |
```python
|
| 26 |
from transformers import pipeline
|
| 27 |
|
| 28 |
+
generator = pipeline("text-generation", model="bnurpek//tmp/tmp760_t4fi/bnurpek/gpt2-256T-neg-5")
|
| 29 |
outputs = generator("Hello, my llama is cute")
|
| 30 |
```
|
| 31 |
|
|
|
|
| 35 |
from transformers import AutoTokenizer
|
| 36 |
from trl import AutoModelForCausalLMWithValueHead
|
| 37 |
|
| 38 |
+
tokenizer = AutoTokenizer.from_pretrained("bnurpek//tmp/tmp760_t4fi/bnurpek/gpt2-256T-neg-5")
|
| 39 |
+
model = AutoModelForCausalLMWithValueHead.from_pretrained("bnurpek//tmp/tmp760_t4fi/bnurpek/gpt2-256T-neg-5")
|
| 40 |
|
| 41 |
inputs = tokenizer("Hello, my llama is cute", return_tensors="pt")
|
| 42 |
outputs = model(**inputs, labels=inputs["input_ids"])
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 497777468
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e4e562dfde89d3a9ed6113c9c9bd84ca4fb57d0188e11924f7ba647f9d610490
|
| 3 |
size 497777468
|