Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +536 -0
- config.json +24 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +65 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,536 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
tags:
|
| 6 |
+
- sentence-transformers
|
| 7 |
+
- sentence-similarity
|
| 8 |
+
- feature-extraction
|
| 9 |
+
- generated_from_trainer
|
| 10 |
+
- dataset_size:557850
|
| 11 |
+
- loss:MultipleNegativesRankingLoss
|
| 12 |
+
base_model: microsoft/mpnet-base
|
| 13 |
+
widget:
|
| 14 |
+
- source_sentence: A man is jumping unto his filthy bed.
|
| 15 |
+
sentences:
|
| 16 |
+
- A young male is looking at a newspaper while 2 females walks past him.
|
| 17 |
+
- The bed is dirty.
|
| 18 |
+
- The man is on the moon.
|
| 19 |
+
- source_sentence: A carefully balanced male stands on one foot near a clean ocean
|
| 20 |
+
beach area.
|
| 21 |
+
sentences:
|
| 22 |
+
- A man is ouside near the beach.
|
| 23 |
+
- Three policemen patrol the streets on bikes
|
| 24 |
+
- A man is sitting on his couch.
|
| 25 |
+
- source_sentence: The man is wearing a blue shirt.
|
| 26 |
+
sentences:
|
| 27 |
+
- Near the trashcan the man stood and smoked
|
| 28 |
+
- A man in a blue shirt leans on a wall beside a road with a blue van and red car
|
| 29 |
+
with water in the background.
|
| 30 |
+
- A man in a black shirt is playing a guitar.
|
| 31 |
+
- source_sentence: The girls are outdoors.
|
| 32 |
+
sentences:
|
| 33 |
+
- Two girls riding on an amusement part ride.
|
| 34 |
+
- a guy laughs while doing laundry
|
| 35 |
+
- Three girls are standing together in a room, one is listening, one is writing
|
| 36 |
+
on a wall and the third is talking to them.
|
| 37 |
+
- source_sentence: A construction worker peeking out of a manhole while his coworker
|
| 38 |
+
sits on the sidewalk smiling.
|
| 39 |
+
sentences:
|
| 40 |
+
- A worker is looking out of a manhole.
|
| 41 |
+
- A man is giving a presentation.
|
| 42 |
+
- The workers are both inside the manhole.
|
| 43 |
+
datasets:
|
| 44 |
+
- sentence-transformers/all-nli
|
| 45 |
+
pipeline_tag: sentence-similarity
|
| 46 |
+
library_name: sentence-transformers
|
| 47 |
+
metrics:
|
| 48 |
+
- cosine_accuracy
|
| 49 |
+
- dot_accuracy
|
| 50 |
+
- manhattan_accuracy
|
| 51 |
+
- euclidean_accuracy
|
| 52 |
+
- max_accuracy
|
| 53 |
+
model-index:
|
| 54 |
+
- name: MPNet base trained on AllNLI triplets
|
| 55 |
+
results:
|
| 56 |
+
- task:
|
| 57 |
+
type: triplet
|
| 58 |
+
name: Triplet
|
| 59 |
+
dataset:
|
| 60 |
+
name: all nli dev
|
| 61 |
+
type: all-nli-dev
|
| 62 |
+
metrics:
|
| 63 |
+
- type: cosine_accuracy
|
| 64 |
+
value: 0.9155528554070473
|
| 65 |
+
name: Cosine Accuracy
|
| 66 |
+
- type: dot_accuracy
|
| 67 |
+
value: 0.08475091130012151
|
| 68 |
+
name: Dot Accuracy
|
| 69 |
+
- type: manhattan_accuracy
|
| 70 |
+
value: 0.912363304981774
|
| 71 |
+
name: Manhattan Accuracy
|
| 72 |
+
- type: euclidean_accuracy
|
| 73 |
+
value: 0.9113001215066828
|
| 74 |
+
name: Euclidean Accuracy
|
| 75 |
+
- type: max_accuracy
|
| 76 |
+
value: 0.9155528554070473
|
| 77 |
+
name: Max Accuracy
|
| 78 |
+
- task:
|
| 79 |
+
type: triplet
|
| 80 |
+
name: Triplet
|
| 81 |
+
dataset:
|
| 82 |
+
name: all nli test
|
| 83 |
+
type: all-nli-test
|
| 84 |
+
metrics:
|
| 85 |
+
- type: cosine_accuracy
|
| 86 |
+
value: 0.9261612952035103
|
| 87 |
+
name: Cosine Accuracy
|
| 88 |
+
- type: dot_accuracy
|
| 89 |
+
value: 0.07262823422605538
|
| 90 |
+
name: Dot Accuracy
|
| 91 |
+
- type: manhattan_accuracy
|
| 92 |
+
value: 0.9196550158874263
|
| 93 |
+
name: Manhattan Accuracy
|
| 94 |
+
- type: euclidean_accuracy
|
| 95 |
+
value: 0.9201089423513391
|
| 96 |
+
name: Euclidean Accuracy
|
| 97 |
+
- type: max_accuracy
|
| 98 |
+
value: 0.9261612952035103
|
| 99 |
+
name: Max Accuracy
|
| 100 |
+
---
|
| 101 |
+
|
| 102 |
+
# MPNet base trained on AllNLI triplets
|
| 103 |
+
|
| 104 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 105 |
+
|
| 106 |
+
## Model Details
|
| 107 |
+
|
| 108 |
+
### Model Description
|
| 109 |
+
- **Model Type:** Sentence Transformer
|
| 110 |
+
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
|
| 111 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 112 |
+
- **Output Dimensionality:** 768 tokens
|
| 113 |
+
- **Similarity Function:** Cosine Similarity
|
| 114 |
+
- **Training Dataset:**
|
| 115 |
+
- [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
|
| 116 |
+
- **Language:** en
|
| 117 |
+
- **License:** apache-2.0
|
| 118 |
+
|
| 119 |
+
### Model Sources
|
| 120 |
+
|
| 121 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 122 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 123 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 124 |
+
|
| 125 |
+
### Full Model Architecture
|
| 126 |
+
|
| 127 |
+
```
|
| 128 |
+
SentenceTransformer(
|
| 129 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
|
| 130 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 131 |
+
)
|
| 132 |
+
```
|
| 133 |
+
|
| 134 |
+
## Usage
|
| 135 |
+
|
| 136 |
+
### Direct Usage (Sentence Transformers)
|
| 137 |
+
|
| 138 |
+
First install the Sentence Transformers library:
|
| 139 |
+
|
| 140 |
+
```bash
|
| 141 |
+
pip install -U sentence-transformers
|
| 142 |
+
```
|
| 143 |
+
|
| 144 |
+
Then you can load this model and run inference.
|
| 145 |
+
```python
|
| 146 |
+
from sentence_transformers import SentenceTransformer
|
| 147 |
+
|
| 148 |
+
# Download from the 🤗 Hub
|
| 149 |
+
model = SentenceTransformer("bingcheng9/mpnet-base-all-nli-triplet")
|
| 150 |
+
# Run inference
|
| 151 |
+
sentences = [
|
| 152 |
+
'A construction worker peeking out of a manhole while his coworker sits on the sidewalk smiling.',
|
| 153 |
+
'A worker is looking out of a manhole.',
|
| 154 |
+
'The workers are both inside the manhole.',
|
| 155 |
+
]
|
| 156 |
+
embeddings = model.encode(sentences)
|
| 157 |
+
print(embeddings.shape)
|
| 158 |
+
# [3, 768]
|
| 159 |
+
|
| 160 |
+
# Get the similarity scores for the embeddings
|
| 161 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 162 |
+
print(similarities.shape)
|
| 163 |
+
# [3, 3]
|
| 164 |
+
```
|
| 165 |
+
|
| 166 |
+
<!--
|
| 167 |
+
### Direct Usage (Transformers)
|
| 168 |
+
|
| 169 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 170 |
+
|
| 171 |
+
</details>
|
| 172 |
+
-->
|
| 173 |
+
|
| 174 |
+
<!--
|
| 175 |
+
### Downstream Usage (Sentence Transformers)
|
| 176 |
+
|
| 177 |
+
You can finetune this model on your own dataset.
|
| 178 |
+
|
| 179 |
+
<details><summary>Click to expand</summary>
|
| 180 |
+
|
| 181 |
+
</details>
|
| 182 |
+
-->
|
| 183 |
+
|
| 184 |
+
<!--
|
| 185 |
+
### Out-of-Scope Use
|
| 186 |
+
|
| 187 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 188 |
+
-->
|
| 189 |
+
|
| 190 |
+
## Evaluation
|
| 191 |
+
|
| 192 |
+
### Metrics
|
| 193 |
+
|
| 194 |
+
#### Triplet
|
| 195 |
+
* Dataset: `all-nli-dev`
|
| 196 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
| 197 |
+
|
| 198 |
+
| Metric | Value |
|
| 199 |
+
|:-------------------|:-----------|
|
| 200 |
+
| cosine_accuracy | 0.9156 |
|
| 201 |
+
| dot_accuracy | 0.0848 |
|
| 202 |
+
| manhattan_accuracy | 0.9124 |
|
| 203 |
+
| euclidean_accuracy | 0.9113 |
|
| 204 |
+
| **max_accuracy** | **0.9156** |
|
| 205 |
+
|
| 206 |
+
#### Triplet
|
| 207 |
+
* Dataset: `all-nli-test`
|
| 208 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
| 209 |
+
|
| 210 |
+
| Metric | Value |
|
| 211 |
+
|:-------------------|:-----------|
|
| 212 |
+
| cosine_accuracy | 0.9262 |
|
| 213 |
+
| dot_accuracy | 0.0726 |
|
| 214 |
+
| manhattan_accuracy | 0.9197 |
|
| 215 |
+
| euclidean_accuracy | 0.9201 |
|
| 216 |
+
| **max_accuracy** | **0.9262** |
|
| 217 |
+
|
| 218 |
+
<!--
|
| 219 |
+
## Bias, Risks and Limitations
|
| 220 |
+
|
| 221 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 222 |
+
-->
|
| 223 |
+
|
| 224 |
+
<!--
|
| 225 |
+
### Recommendations
|
| 226 |
+
|
| 227 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 228 |
+
-->
|
| 229 |
+
|
| 230 |
+
## Training Details
|
| 231 |
+
|
| 232 |
+
### Training Dataset
|
| 233 |
+
|
| 234 |
+
#### all-nli
|
| 235 |
+
|
| 236 |
+
* Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
| 237 |
+
* Size: 557,850 training samples
|
| 238 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
| 239 |
+
* Approximate statistics based on the first 1000 samples:
|
| 240 |
+
| | anchor | positive | negative |
|
| 241 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
|
| 242 |
+
| type | string | string | string |
|
| 243 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 10.46 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.81 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
|
| 244 |
+
* Samples:
|
| 245 |
+
| anchor | positive | negative |
|
| 246 |
+
|:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
|
| 247 |
+
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
|
| 248 |
+
| <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
|
| 249 |
+
| <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
|
| 250 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 251 |
+
```json
|
| 252 |
+
{
|
| 253 |
+
"scale": 20.0,
|
| 254 |
+
"similarity_fct": "cos_sim"
|
| 255 |
+
}
|
| 256 |
+
```
|
| 257 |
+
|
| 258 |
+
### Evaluation Dataset
|
| 259 |
+
|
| 260 |
+
#### all-nli
|
| 261 |
+
|
| 262 |
+
* Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
|
| 263 |
+
* Size: 6,584 evaluation samples
|
| 264 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
| 265 |
+
* Approximate statistics based on the first 1000 samples:
|
| 266 |
+
| | anchor | positive | negative |
|
| 267 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 268 |
+
| type | string | string | string |
|
| 269 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 17.95 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.78 tokens</li><li>max: 29 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.35 tokens</li><li>max: 29 tokens</li></ul> |
|
| 270 |
+
* Samples:
|
| 271 |
+
| anchor | positive | negative |
|
| 272 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|:--------------------------------------------------------|
|
| 273 |
+
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>The men are fighting outside a deli.</code> |
|
| 274 |
+
| <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> | <code>Two kids in jackets walk to school.</code> |
|
| 275 |
+
| <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> | <code>A woman drinks her coffee in a small cafe.</code> |
|
| 276 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 277 |
+
```json
|
| 278 |
+
{
|
| 279 |
+
"scale": 20.0,
|
| 280 |
+
"similarity_fct": "cos_sim"
|
| 281 |
+
}
|
| 282 |
+
```
|
| 283 |
+
|
| 284 |
+
### Training Hyperparameters
|
| 285 |
+
#### Non-Default Hyperparameters
|
| 286 |
+
|
| 287 |
+
- `eval_strategy`: steps
|
| 288 |
+
- `per_device_train_batch_size`: 16
|
| 289 |
+
- `per_device_eval_batch_size`: 16
|
| 290 |
+
- `learning_rate`: 2e-05
|
| 291 |
+
- `num_train_epochs`: 1
|
| 292 |
+
- `warmup_ratio`: 0.1
|
| 293 |
+
- `batch_sampler`: no_duplicates
|
| 294 |
+
|
| 295 |
+
#### All Hyperparameters
|
| 296 |
+
<details><summary>Click to expand</summary>
|
| 297 |
+
|
| 298 |
+
- `overwrite_output_dir`: False
|
| 299 |
+
- `do_predict`: False
|
| 300 |
+
- `eval_strategy`: steps
|
| 301 |
+
- `prediction_loss_only`: True
|
| 302 |
+
- `per_device_train_batch_size`: 16
|
| 303 |
+
- `per_device_eval_batch_size`: 16
|
| 304 |
+
- `per_gpu_train_batch_size`: None
|
| 305 |
+
- `per_gpu_eval_batch_size`: None
|
| 306 |
+
- `gradient_accumulation_steps`: 1
|
| 307 |
+
- `eval_accumulation_steps`: None
|
| 308 |
+
- `torch_empty_cache_steps`: None
|
| 309 |
+
- `learning_rate`: 2e-05
|
| 310 |
+
- `weight_decay`: 0.0
|
| 311 |
+
- `adam_beta1`: 0.9
|
| 312 |
+
- `adam_beta2`: 0.999
|
| 313 |
+
- `adam_epsilon`: 1e-08
|
| 314 |
+
- `max_grad_norm`: 1.0
|
| 315 |
+
- `num_train_epochs`: 1
|
| 316 |
+
- `max_steps`: -1
|
| 317 |
+
- `lr_scheduler_type`: linear
|
| 318 |
+
- `lr_scheduler_kwargs`: {}
|
| 319 |
+
- `warmup_ratio`: 0.1
|
| 320 |
+
- `warmup_steps`: 0
|
| 321 |
+
- `log_level`: passive
|
| 322 |
+
- `log_level_replica`: warning
|
| 323 |
+
- `log_on_each_node`: True
|
| 324 |
+
- `logging_nan_inf_filter`: True
|
| 325 |
+
- `save_safetensors`: True
|
| 326 |
+
- `save_on_each_node`: False
|
| 327 |
+
- `save_only_model`: False
|
| 328 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 329 |
+
- `no_cuda`: False
|
| 330 |
+
- `use_cpu`: False
|
| 331 |
+
- `use_mps_device`: False
|
| 332 |
+
- `seed`: 42
|
| 333 |
+
- `data_seed`: None
|
| 334 |
+
- `jit_mode_eval`: False
|
| 335 |
+
- `use_ipex`: False
|
| 336 |
+
- `bf16`: False
|
| 337 |
+
- `fp16`: False
|
| 338 |
+
- `fp16_opt_level`: O1
|
| 339 |
+
- `half_precision_backend`: auto
|
| 340 |
+
- `bf16_full_eval`: False
|
| 341 |
+
- `fp16_full_eval`: False
|
| 342 |
+
- `tf32`: None
|
| 343 |
+
- `local_rank`: 0
|
| 344 |
+
- `ddp_backend`: None
|
| 345 |
+
- `tpu_num_cores`: None
|
| 346 |
+
- `tpu_metrics_debug`: False
|
| 347 |
+
- `debug`: []
|
| 348 |
+
- `dataloader_drop_last`: False
|
| 349 |
+
- `dataloader_num_workers`: 0
|
| 350 |
+
- `dataloader_prefetch_factor`: None
|
| 351 |
+
- `past_index`: -1
|
| 352 |
+
- `disable_tqdm`: False
|
| 353 |
+
- `remove_unused_columns`: True
|
| 354 |
+
- `label_names`: None
|
| 355 |
+
- `load_best_model_at_end`: False
|
| 356 |
+
- `ignore_data_skip`: False
|
| 357 |
+
- `fsdp`: []
|
| 358 |
+
- `fsdp_min_num_params`: 0
|
| 359 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 360 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 361 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 362 |
+
- `deepspeed`: None
|
| 363 |
+
- `label_smoothing_factor`: 0.0
|
| 364 |
+
- `optim`: adamw_torch
|
| 365 |
+
- `optim_args`: None
|
| 366 |
+
- `adafactor`: False
|
| 367 |
+
- `group_by_length`: False
|
| 368 |
+
- `length_column_name`: length
|
| 369 |
+
- `ddp_find_unused_parameters`: None
|
| 370 |
+
- `ddp_bucket_cap_mb`: None
|
| 371 |
+
- `ddp_broadcast_buffers`: False
|
| 372 |
+
- `dataloader_pin_memory`: True
|
| 373 |
+
- `dataloader_persistent_workers`: False
|
| 374 |
+
- `skip_memory_metrics`: True
|
| 375 |
+
- `use_legacy_prediction_loop`: False
|
| 376 |
+
- `push_to_hub`: False
|
| 377 |
+
- `resume_from_checkpoint`: None
|
| 378 |
+
- `hub_model_id`: None
|
| 379 |
+
- `hub_strategy`: every_save
|
| 380 |
+
- `hub_private_repo`: False
|
| 381 |
+
- `hub_always_push`: False
|
| 382 |
+
- `gradient_checkpointing`: False
|
| 383 |
+
- `gradient_checkpointing_kwargs`: None
|
| 384 |
+
- `include_inputs_for_metrics`: False
|
| 385 |
+
- `eval_do_concat_batches`: True
|
| 386 |
+
- `fp16_backend`: auto
|
| 387 |
+
- `push_to_hub_model_id`: None
|
| 388 |
+
- `push_to_hub_organization`: None
|
| 389 |
+
- `mp_parameters`:
|
| 390 |
+
- `auto_find_batch_size`: False
|
| 391 |
+
- `full_determinism`: False
|
| 392 |
+
- `torchdynamo`: None
|
| 393 |
+
- `ray_scope`: last
|
| 394 |
+
- `ddp_timeout`: 1800
|
| 395 |
+
- `torch_compile`: False
|
| 396 |
+
- `torch_compile_backend`: None
|
| 397 |
+
- `torch_compile_mode`: None
|
| 398 |
+
- `dispatch_batches`: None
|
| 399 |
+
- `split_batches`: None
|
| 400 |
+
- `include_tokens_per_second`: False
|
| 401 |
+
- `include_num_input_tokens_seen`: False
|
| 402 |
+
- `neftune_noise_alpha`: None
|
| 403 |
+
- `optim_target_modules`: None
|
| 404 |
+
- `batch_eval_metrics`: False
|
| 405 |
+
- `eval_on_start`: False
|
| 406 |
+
- `use_liger_kernel`: False
|
| 407 |
+
- `eval_use_gather_object`: False
|
| 408 |
+
- `batch_sampler`: no_duplicates
|
| 409 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 410 |
+
|
| 411 |
+
</details>
|
| 412 |
+
|
| 413 |
+
### Training Logs
|
| 414 |
+
| Epoch | Step | Training Loss | loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
|
| 415 |
+
|:-----:|:----:|:-------------:|:------:|:------------------------:|:-------------------------:|
|
| 416 |
+
| 0 | 0 | - | - | 0.6832 | - |
|
| 417 |
+
| 0.016 | 100 | 3.0282 | 1.5784 | 0.7751 | - |
|
| 418 |
+
| 0.032 | 200 | 1.2537 | 0.9115 | 0.7983 | - |
|
| 419 |
+
| 0.048 | 300 | 1.435 | 0.7883 | 0.8095 | - |
|
| 420 |
+
| 0.064 | 400 | 0.8952 | 0.7637 | 0.8112 | - |
|
| 421 |
+
| 0.08 | 500 | 0.8482 | 0.8154 | 0.8086 | - |
|
| 422 |
+
| 0.096 | 600 | 1.056 | 0.8993 | 0.8033 | - |
|
| 423 |
+
| 0.112 | 700 | 0.967 | 0.8740 | 0.8007 | - |
|
| 424 |
+
| 0.128 | 800 | 1.1139 | 1.0261 | 0.7930 | - |
|
| 425 |
+
| 0.144 | 900 | 1.1765 | 0.9142 | 0.8127 | - |
|
| 426 |
+
| 0.16 | 1000 | 1.1022 | 0.8580 | 0.7980 | - |
|
| 427 |
+
| 0.176 | 1100 | 1.1095 | 1.0273 | 0.7889 | - |
|
| 428 |
+
| 0.192 | 1200 | 1.0725 | 0.9443 | 0.7998 | - |
|
| 429 |
+
| 0.208 | 1300 | 0.9075 | 0.8191 | 0.8070 | - |
|
| 430 |
+
| 0.224 | 1400 | 0.7504 | 0.8069 | 0.8104 | - |
|
| 431 |
+
| 0.24 | 1500 | 0.815 | 0.7824 | 0.8193 | - |
|
| 432 |
+
| 0.256 | 1600 | 0.6089 | 0.8256 | 0.8168 | - |
|
| 433 |
+
| 0.272 | 1700 | 0.8689 | 0.8470 | 0.8079 | - |
|
| 434 |
+
| 0.288 | 1800 | 0.8359 | 0.8588 | 0.8103 | - |
|
| 435 |
+
| 0.304 | 1900 | 0.8157 | 0.7955 | 0.8129 | - |
|
| 436 |
+
| 0.32 | 2000 | 0.7511 | 0.7027 | 0.8467 | - |
|
| 437 |
+
| 0.336 | 2100 | 0.603 | 0.7624 | 0.8467 | - |
|
| 438 |
+
| 0.352 | 2200 | 0.6005 | 0.7071 | 0.8686 | - |
|
| 439 |
+
| 0.368 | 2300 | 0.8079 | 0.7497 | 0.8492 | - |
|
| 440 |
+
| 0.384 | 2400 | 0.7237 | 0.6801 | 0.8586 | - |
|
| 441 |
+
| 0.4 | 2500 | 0.669 | 0.6595 | 0.8694 | - |
|
| 442 |
+
| 0.416 | 2600 | 0.6013 | 0.6700 | 0.8587 | - |
|
| 443 |
+
| 0.432 | 2700 | 0.8929 | 0.7217 | 0.8645 | - |
|
| 444 |
+
| 0.448 | 2800 | 0.8627 | 0.6720 | 0.8521 | - |
|
| 445 |
+
| 0.464 | 2900 | 0.8279 | 0.6561 | 0.8698 | - |
|
| 446 |
+
| 0.48 | 3000 | 0.6893 | 0.6243 | 0.8692 | - |
|
| 447 |
+
| 0.496 | 3100 | 0.7609 | 0.6052 | 0.8711 | - |
|
| 448 |
+
| 0.512 | 3200 | 0.5704 | 0.6042 | 0.8677 | - |
|
| 449 |
+
| 0.528 | 3300 | 0.6117 | 0.5398 | 0.8827 | - |
|
| 450 |
+
| 0.544 | 3400 | 0.5231 | 0.5743 | 0.8797 | - |
|
| 451 |
+
| 0.56 | 3500 | 0.5231 | 0.5817 | 0.8923 | - |
|
| 452 |
+
| 0.576 | 3600 | 0.4825 | 0.5309 | 0.8911 | - |
|
| 453 |
+
| 0.592 | 3700 | 0.5464 | 0.5261 | 0.8961 | - |
|
| 454 |
+
| 0.608 | 3800 | 0.4846 | 0.5017 | 0.8979 | - |
|
| 455 |
+
| 0.624 | 3900 | 0.4896 | 0.5280 | 0.8947 | - |
|
| 456 |
+
| 0.64 | 4000 | 0.7499 | 0.5435 | 0.9061 | - |
|
| 457 |
+
| 0.656 | 4100 | 0.916 | 0.5268 | 0.9060 | - |
|
| 458 |
+
| 0.672 | 4200 | 0.8733 | 0.4855 | 0.9074 | - |
|
| 459 |
+
| 0.688 | 4300 | 0.6963 | 0.4717 | 0.9105 | - |
|
| 460 |
+
| 0.704 | 4400 | 0.5907 | 0.4567 | 0.9142 | - |
|
| 461 |
+
| 0.72 | 4500 | 0.5768 | 0.4702 | 0.9111 | - |
|
| 462 |
+
| 0.736 | 4600 | 0.6173 | 0.4491 | 0.9151 | - |
|
| 463 |
+
| 0.752 | 4700 | 0.6802 | 0.4680 | 0.9124 | - |
|
| 464 |
+
| 0.768 | 4800 | 0.6099 | 0.4372 | 0.9130 | - |
|
| 465 |
+
| 0.784 | 4900 | 0.5689 | 0.4480 | 0.9066 | - |
|
| 466 |
+
| 0.8 | 5000 | 0.6554 | 0.4603 | 0.9118 | - |
|
| 467 |
+
| 0.816 | 5100 | 0.511 | 0.4356 | 0.9116 | - |
|
| 468 |
+
| 0.832 | 5200 | 0.5725 | 0.4246 | 0.9092 | - |
|
| 469 |
+
| 0.848 | 5300 | 0.5196 | 0.4359 | 0.9107 | - |
|
| 470 |
+
| 0.864 | 5400 | 0.6112 | 0.4403 | 0.9104 | - |
|
| 471 |
+
| 0.88 | 5500 | 0.5233 | 0.4236 | 0.9115 | - |
|
| 472 |
+
| 0.896 | 5600 | 0.5467 | 0.4217 | 0.9127 | - |
|
| 473 |
+
| 0.912 | 5700 | 0.6109 | 0.4199 | 0.9156 | - |
|
| 474 |
+
| 0.928 | 5800 | 0.54 | 0.4077 | 0.9148 | - |
|
| 475 |
+
| 0.944 | 5900 | 0.6739 | 0.4111 | 0.9145 | - |
|
| 476 |
+
| 0.96 | 6000 | 0.723 | 0.4170 | 0.9154 | - |
|
| 477 |
+
| 0.976 | 6100 | 0.6753 | 0.4162 | 0.9154 | - |
|
| 478 |
+
| 0.992 | 6200 | 0.0591 | 0.4157 | 0.9156 | - |
|
| 479 |
+
| 1.0 | 6250 | - | - | - | 0.9262 |
|
| 480 |
+
|
| 481 |
+
|
| 482 |
+
### Framework Versions
|
| 483 |
+
- Python: 3.12.4
|
| 484 |
+
- Sentence Transformers: 3.1.1
|
| 485 |
+
- Transformers: 4.45.2
|
| 486 |
+
- PyTorch: 2.2.2
|
| 487 |
+
- Accelerate: 0.26.0
|
| 488 |
+
- Datasets: 3.0.2
|
| 489 |
+
- Tokenizers: 0.20.1
|
| 490 |
+
|
| 491 |
+
## Citation
|
| 492 |
+
|
| 493 |
+
### BibTeX
|
| 494 |
+
|
| 495 |
+
#### Sentence Transformers
|
| 496 |
+
```bibtex
|
| 497 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 498 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 499 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 500 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 501 |
+
month = "11",
|
| 502 |
+
year = "2019",
|
| 503 |
+
publisher = "Association for Computational Linguistics",
|
| 504 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 505 |
+
}
|
| 506 |
+
```
|
| 507 |
+
|
| 508 |
+
#### MultipleNegativesRankingLoss
|
| 509 |
+
```bibtex
|
| 510 |
+
@misc{henderson2017efficient,
|
| 511 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
| 512 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
| 513 |
+
year={2017},
|
| 514 |
+
eprint={1705.00652},
|
| 515 |
+
archivePrefix={arXiv},
|
| 516 |
+
primaryClass={cs.CL}
|
| 517 |
+
}
|
| 518 |
+
```
|
| 519 |
+
|
| 520 |
+
<!--
|
| 521 |
+
## Glossary
|
| 522 |
+
|
| 523 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 524 |
+
-->
|
| 525 |
+
|
| 526 |
+
<!--
|
| 527 |
+
## Model Card Authors
|
| 528 |
+
|
| 529 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 530 |
+
-->
|
| 531 |
+
|
| 532 |
+
<!--
|
| 533 |
+
## Model Card Contact
|
| 534 |
+
|
| 535 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 536 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "microsoft/mpnet-base",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"MPNetModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"eos_token_id": 2,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 3072,
|
| 14 |
+
"layer_norm_eps": 1e-05,
|
| 15 |
+
"max_position_embeddings": 514,
|
| 16 |
+
"model_type": "mpnet",
|
| 17 |
+
"num_attention_heads": 12,
|
| 18 |
+
"num_hidden_layers": 12,
|
| 19 |
+
"pad_token_id": 1,
|
| 20 |
+
"relative_attention_num_buckets": 32,
|
| 21 |
+
"torch_dtype": "float32",
|
| 22 |
+
"transformers_version": "4.45.2",
|
| 23 |
+
"vocab_size": 30527
|
| 24 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.1.1",
|
| 4 |
+
"transformers": "4.45.2",
|
| 5 |
+
"pytorch": "2.2.2"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": null
|
| 10 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:70dc3108507d11e3b0a847e7409fae2fa5944e3b488e6af013ba4fa37118e19b
|
| 3 |
+
size 437967672
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": true,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": true,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "[UNK]",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": true,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"104": {
|
| 36 |
+
"content": "[UNK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"30526": {
|
| 44 |
+
"content": "<mask>",
|
| 45 |
+
"lstrip": true,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
}
|
| 51 |
+
},
|
| 52 |
+
"bos_token": "<s>",
|
| 53 |
+
"clean_up_tokenization_spaces": false,
|
| 54 |
+
"cls_token": "<s>",
|
| 55 |
+
"do_lower_case": true,
|
| 56 |
+
"eos_token": "</s>",
|
| 57 |
+
"mask_token": "<mask>",
|
| 58 |
+
"model_max_length": 512,
|
| 59 |
+
"pad_token": "<pad>",
|
| 60 |
+
"sep_token": "</s>",
|
| 61 |
+
"strip_accents": null,
|
| 62 |
+
"tokenize_chinese_chars": true,
|
| 63 |
+
"tokenizer_class": "MPNetTokenizer",
|
| 64 |
+
"unk_token": "[UNK]"
|
| 65 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|