artur-muratov commited on
Commit
8ae0b91
·
verified ·
1 Parent(s): 35b31e9

Upload train.log with huggingface_hub

Browse files
Files changed (1) hide show
  1. train.log +81 -0
train.log ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 2025-11-19 19:06:05 - Iter[001000], Epoch[000001], learning rate : 0.000050000, Train Loss: 0.180695186, Train MRAE: 112.112262971, Train RMSE: 0.180695186, Val MRAE: 36.371013641, Val RMSE: 0.086820811, Val PSNR: 8.606987000
2
+ 2025-11-19 19:18:27 - Iter[002000], Epoch[000002], learning rate : 0.000050000, Train Loss: 0.156536596, Train MRAE: 104.703036655, Train RMSE: 0.156536596, Val MRAE: 36.507652283, Val RMSE: 0.085468888, Val PSNR: 8.733690262
3
+ 2025-11-19 19:31:15 - Iter[003000], Epoch[000003], learning rate : 0.000049999, Train Loss: 0.145830280, Train MRAE: 97.748075169, Train RMSE: 0.145830280, Val MRAE: 43.088771820, Val RMSE: 0.086939469, Val PSNR: 8.212904930
4
+ 2025-11-19 19:43:46 - Iter[004000], Epoch[000004], learning rate : 0.000049999, Train Loss: 0.139933262, Train MRAE: 101.848126730, Train RMSE: 0.139933262, Val MRAE: 50.856048584, Val RMSE: 0.074104011, Val PSNR: 8.256501198
5
+ 2025-11-19 19:56:27 - Iter[005000], Epoch[000005], learning rate : 0.000049998, Train Loss: 0.134764801, Train MRAE: 100.616313799, Train RMSE: 0.134764801, Val MRAE: 43.542808533, Val RMSE: 0.070966296, Val PSNR: 8.470021248
6
+ 2025-11-19 20:09:00 - Iter[006000], Epoch[000006], learning rate : 0.000049997, Train Loss: 0.130698375, Train MRAE: 95.094966686, Train RMSE: 0.130698375, Val MRAE: 55.132270813, Val RMSE: 0.064631835, Val PSNR: 8.145382881
7
+ 2025-11-19 20:21:30 - Iter[007000], Epoch[000007], learning rate : 0.000049996, Train Loss: 0.127336448, Train MRAE: 98.735839325, Train RMSE: 0.127336448, Val MRAE: 54.316108704, Val RMSE: 0.064155556, Val PSNR: 8.362157822
8
+ 2025-11-19 20:34:11 - Iter[008000], Epoch[000008], learning rate : 0.000049995, Train Loss: 0.124472223, Train MRAE: 93.017912207, Train RMSE: 0.124472223, Val MRAE: 48.826038361, Val RMSE: 0.086995475, Val PSNR: 8.345022202
9
+ 2025-11-19 20:46:42 - Iter[009000], Epoch[000009], learning rate : 0.000049993, Train Loss: 0.122235736, Train MRAE: 91.967831678, Train RMSE: 0.122235736, Val MRAE: 49.950126648, Val RMSE: 0.065831587, Val PSNR: 8.216302872
10
+ 2025-11-19 20:59:19 - Iter[010000], Epoch[000010], learning rate : 0.000049992, Train Loss: 0.120491360, Train MRAE: 92.697665461, Train RMSE: 0.120491360, Val MRAE: 50.875568390, Val RMSE: 0.062860608, Val PSNR: 8.195124626
11
+ 2025-11-19 21:11:54 - Iter[011000], Epoch[000011], learning rate : 0.000049990, Train Loss: 0.118656964, Train MRAE: 90.704715943, Train RMSE: 0.118656964, Val MRAE: 40.234077454, Val RMSE: 0.057884775, Val PSNR: 8.235014915
12
+ 2025-11-19 21:24:29 - Iter[012000], Epoch[000012], learning rate : 0.000049988, Train Loss: 0.116778395, Train MRAE: 89.367504438, Train RMSE: 0.116778395, Val MRAE: 49.737350464, Val RMSE: 0.061693247, Val PSNR: 8.277407646
13
+ 2025-11-19 21:37:08 - Iter[013000], Epoch[000013], learning rate : 0.000049986, Train Loss: 0.115253861, Train MRAE: 88.563316732, Train RMSE: 0.115253861, Val MRAE: 36.789108276, Val RMSE: 0.061584238, Val PSNR: 8.308481216
14
+ 2025-11-19 21:49:30 - Iter[014000], Epoch[000014], learning rate : 0.000049984, Train Loss: 0.113902843, Train MRAE: 88.786048885, Train RMSE: 0.113902843, Val MRAE: 39.351131439, Val RMSE: 0.057573605, Val PSNR: 8.320852280
15
+ 2025-11-19 22:02:07 - Iter[015000], Epoch[000015], learning rate : 0.000049981, Train Loss: 0.112684912, Train MRAE: 86.815761157, Train RMSE: 0.112684912, Val MRAE: 39.292011261, Val RMSE: 0.054201655, Val PSNR: 8.428940773
16
+ 2025-11-19 22:14:36 - Iter[016000], Epoch[000016], learning rate : 0.000049979, Train Loss: 0.111491918, Train MRAE: 85.122860081, Train RMSE: 0.111491918, Val MRAE: 40.617904663, Val RMSE: 0.057788543, Val PSNR: 8.470445633
17
+ 2025-11-19 22:27:20 - Iter[017000], Epoch[000017], learning rate : 0.000049976, Train Loss: 0.110587579, Train MRAE: 84.873428179, Train RMSE: 0.110587579, Val MRAE: 39.410171509, Val RMSE: 0.055802405, Val PSNR: 8.277696609
18
+ 2025-11-19 22:42:45 - Iter[018000], Epoch[000018], learning rate : 0.000049973, Train Loss: 0.109574510, Train MRAE: 83.555942875, Train RMSE: 0.109574510, Val MRAE: 36.429279327, Val RMSE: 0.057088405, Val PSNR: 8.407172203
19
+ 2025-11-19 23:02:27 - Iter[019000], Epoch[000019], learning rate : 0.000049970, Train Loss: 0.108734561, Train MRAE: 81.758137473, Train RMSE: 0.108734561, Val MRAE: 30.943607330, Val RMSE: 0.085345604, Val PSNR: 8.485958099
20
+ 2025-11-19 23:22:22 - Iter[020000], Epoch[000020], learning rate : 0.000049966, Train Loss: 0.107993320, Train MRAE: 81.291258218, Train RMSE: 0.107993320, Val MRAE: 23.643156052, Val RMSE: 0.055975527, Val PSNR: 8.369342804
21
+ 2025-11-19 23:41:10 - Iter[021000], Epoch[000021], learning rate : 0.000049963, Train Loss: 0.107285716, Train MRAE: 80.550809301, Train RMSE: 0.107285716, Val MRAE: 27.196977615, Val RMSE: 0.059090927, Val PSNR: 8.210031509
22
+ 2025-11-20 00:01:11 - Iter[022000], Epoch[000022], learning rate : 0.000049959, Train Loss: 0.106587886, Train MRAE: 80.018559322, Train RMSE: 0.106587886, Val MRAE: 30.869855881, Val RMSE: 0.065005623, Val PSNR: 8.623372078
23
+ 2025-11-20 00:19:51 - Iter[023000], Epoch[000023], learning rate : 0.000049956, Train Loss: 0.105993091, Train MRAE: 78.706697694, Train RMSE: 0.105993091, Val MRAE: 41.672344208, Val RMSE: 0.074359253, Val PSNR: 8.554999352
24
+ 2025-11-20 00:40:00 - Iter[024000], Epoch[000024], learning rate : 0.000049952, Train Loss: 0.105384161, Train MRAE: 78.230893569, Train RMSE: 0.105384161, Val MRAE: 20.526948929, Val RMSE: 0.061505724, Val PSNR: 8.412714958
25
+ 2025-11-20 00:59:15 - Iter[025000], Epoch[000025], learning rate : 0.000049948, Train Loss: 0.104857895, Train MRAE: 77.138890700, Train RMSE: 0.104857895, Val MRAE: 29.523380280, Val RMSE: 0.053700011, Val PSNR: 8.234563828
26
+ 2025-11-20 01:18:24 - Iter[026000], Epoch[000026], learning rate : 0.000049943, Train Loss: 0.104196031, Train MRAE: 75.842350706, Train RMSE: 0.104196031, Val MRAE: 26.410699844, Val RMSE: 0.055764113, Val PSNR: 8.377598763
27
+ 2025-11-20 01:37:43 - Iter[027000], Epoch[000027], learning rate : 0.000049939, Train Loss: 0.103614573, Train MRAE: 74.947578253, Train RMSE: 0.103614573, Val MRAE: 19.138626099, Val RMSE: 0.051856916, Val PSNR: 8.312213898
28
+ 2025-11-20 01:56:13 - Iter[028000], Epoch[000028], learning rate : 0.000049934, Train Loss: 0.103146345, Train MRAE: 74.168211106, Train RMSE: 0.103146345, Val MRAE: 19.559114456, Val RMSE: 0.052862067, Val PSNR: 8.349158287
29
+ 2025-11-20 02:15:31 - Iter[029000], Epoch[000029], learning rate : 0.000049929, Train Loss: 0.102645976, Train MRAE: 73.219864784, Train RMSE: 0.102645976, Val MRAE: 25.368375778, Val RMSE: 0.054332107, Val PSNR: 8.371571541
30
+ 2025-11-20 02:33:40 - Iter[030000], Epoch[000030], learning rate : 0.000049924, Train Loss: 0.102179230, Train MRAE: 71.902276804, Train RMSE: 0.102179230, Val MRAE: 19.568971634, Val RMSE: 0.051892396, Val PSNR: 8.297616005
31
+ 2025-11-20 02:52:35 - Iter[031000], Epoch[000031], learning rate : 0.000049919, Train Loss: 0.101768555, Train MRAE: 71.100165943, Train RMSE: 0.101768555, Val MRAE: 22.556247711, Val RMSE: 0.062257838, Val PSNR: 8.359059334
32
+ 2025-11-20 03:11:14 - Iter[032000], Epoch[000032], learning rate : 0.000049914, Train Loss: 0.101360226, Train MRAE: 70.358671508, Train RMSE: 0.101360226, Val MRAE: 18.348628998, Val RMSE: 0.056675311, Val PSNR: 8.396764755
33
+ 2025-11-20 03:30:22 - Iter[033000], Epoch[000033], learning rate : 0.000049909, Train Loss: 0.101017111, Train MRAE: 69.704464762, Train RMSE: 0.101017111, Val MRAE: 19.645090103, Val RMSE: 0.052274015, Val PSNR: 8.277524948
34
+ 2025-11-20 03:48:58 - Iter[034000], Epoch[000034], learning rate : 0.000049903, Train Loss: 0.100578345, Train MRAE: 68.315178129, Train RMSE: 0.100578345, Val MRAE: 17.320301056, Val RMSE: 0.051282223, Val PSNR: 8.162985802
35
+ 2025-11-20 04:08:26 - Iter[035000], Epoch[000035], learning rate : 0.000049897, Train Loss: 0.100177037, Train MRAE: 66.993700583, Train RMSE: 0.100177037, Val MRAE: 13.945383072, Val RMSE: 0.072711416, Val PSNR: 8.696494102
36
+ 2025-11-20 04:26:42 - Iter[036000], Epoch[000036], learning rate : 0.000049891, Train Loss: 0.099771963, Train MRAE: 65.943040725, Train RMSE: 0.099771963, Val MRAE: 16.336387634, Val RMSE: 0.056199241, Val PSNR: 8.164811134
37
+ 2025-11-20 04:45:46 - Iter[037000], Epoch[000037], learning rate : 0.000049885, Train Loss: 0.099436780, Train MRAE: 65.580019723, Train RMSE: 0.099436780, Val MRAE: 11.260688782, Val RMSE: 0.057595082, Val PSNR: 8.301649094
38
+ 2025-11-20 05:04:09 - Iter[038000], Epoch[000038], learning rate : 0.000049879, Train Loss: 0.099143026, Train MRAE: 64.455737477, Train RMSE: 0.099143026, Val MRAE: 10.629933357, Val RMSE: 0.060075339, Val PSNR: 8.406671524
39
+ 2025-11-20 05:23:22 - Iter[039000], Epoch[000039], learning rate : 0.000049872, Train Loss: 0.098814669, Train MRAE: 63.795530329, Train RMSE: 0.098814669, Val MRAE: 12.940440178, Val RMSE: 0.056259200, Val PSNR: 8.442536354
40
+ 2025-11-20 05:41:57 - Iter[040000], Epoch[000040], learning rate : 0.000049866, Train Loss: 0.098443689, Train MRAE: 62.937969366, Train RMSE: 0.098443689, Val MRAE: 11.287693024, Val RMSE: 0.066086926, Val PSNR: 8.474769592
41
+ 2025-11-20 06:00:58 - Iter[041000], Epoch[000041], learning rate : 0.000049859, Train Loss: 0.098122887, Train MRAE: 62.028486207, Train RMSE: 0.098122887, Val MRAE: 9.728746414, Val RMSE: 0.051211484, Val PSNR: 8.348893166
42
+ 2025-11-20 06:19:34 - Iter[042000], Epoch[000042], learning rate : 0.000049852, Train Loss: 0.097831849, Train MRAE: 61.271010564, Train RMSE: 0.097831849, Val MRAE: 12.904620171, Val RMSE: 0.058971461, Val PSNR: 8.339464188
43
+ 2025-11-20 06:38:34 - Iter[043000], Epoch[000043], learning rate : 0.000049845, Train Loss: 0.097562910, Train MRAE: 60.771562467, Train RMSE: 0.097562910, Val MRAE: 9.767960548, Val RMSE: 0.054079220, Val PSNR: 8.211791992
44
+ 2025-11-20 06:57:28 - Iter[044000], Epoch[000044], learning rate : 0.000049838, Train Loss: 0.097247591, Train MRAE: 59.945331279, Train RMSE: 0.097247591, Val MRAE: 11.773271561, Val RMSE: 0.053726204, Val PSNR: 8.262595177
45
+ 2025-11-20 07:16:34 - Iter[045000], Epoch[000045], learning rate : 0.000049830, Train Loss: 0.096953708, Train MRAE: 59.403636464, Train RMSE: 0.096953708, Val MRAE: 8.435455322, Val RMSE: 0.063315339, Val PSNR: 8.449825287
46
+ 2025-11-20 07:35:00 - Iter[046000], Epoch[000046], learning rate : 0.000049823, Train Loss: 0.096603082, Train MRAE: 58.693315780, Train RMSE: 0.096603082, Val MRAE: 10.341916084, Val RMSE: 0.059143528, Val PSNR: 8.487915993
47
+ 2025-11-20 07:54:18 - Iter[047000], Epoch[000047], learning rate : 0.000049815, Train Loss: 0.096299827, Train MRAE: 57.890319581, Train RMSE: 0.096299827, Val MRAE: 8.079034805, Val RMSE: 0.052131798, Val PSNR: 8.290032387
48
+ 2025-11-20 08:12:26 - Iter[048000], Epoch[000048], learning rate : 0.000049807, Train Loss: 0.096023350, Train MRAE: 57.237825361, Train RMSE: 0.096023350, Val MRAE: 11.020400047, Val RMSE: 0.062274713, Val PSNR: 8.417703629
49
+ 2025-11-20 08:31:18 - Iter[049000], Epoch[000049], learning rate : 0.000049799, Train Loss: 0.095805863, Train MRAE: 56.711412730, Train RMSE: 0.095805863, Val MRAE: 10.604846954, Val RMSE: 0.054704670, Val PSNR: 8.352171898
50
+ 2025-11-20 08:49:55 - Iter[050000], Epoch[000050], learning rate : 0.000049790, Train Loss: 0.095530078, Train MRAE: 56.079770457, Train RMSE: 0.095530078, Val MRAE: 10.947558403, Val RMSE: 0.050034817, Val PSNR: 8.290889740
51
+ 2025-11-20 09:08:56 - Iter[051000], Epoch[000051], learning rate : 0.000049782, Train Loss: 0.095276107, Train MRAE: 55.546961650, Train RMSE: 0.095276107, Val MRAE: 8.525220871, Val RMSE: 0.055117305, Val PSNR: 8.379120827
52
+ 2025-11-20 09:27:42 - Iter[052000], Epoch[000052], learning rate : 0.000049773, Train Loss: 0.095032553, Train MRAE: 55.030023931, Train RMSE: 0.095032553, Val MRAE: 7.656830788, Val RMSE: 0.055257622, Val PSNR: 8.393841743
53
+ 2025-11-20 09:46:57 - Iter[053000], Epoch[000053], learning rate : 0.000049765, Train Loss: 0.094810515, Train MRAE: 54.672237405, Train RMSE: 0.094810515, Val MRAE: 8.977380753, Val RMSE: 0.069177791, Val PSNR: 8.544861794
54
+ 2025-11-20 10:05:15 - Iter[054000], Epoch[000054], learning rate : 0.000049756, Train Loss: 0.094623685, Train MRAE: 54.138252399, Train RMSE: 0.094623685, Val MRAE: 10.291295052, Val RMSE: 0.051107123, Val PSNR: 8.345818520
55
+ 2025-11-20 10:24:53 - Iter[055000], Epoch[000055], learning rate : 0.000049746, Train Loss: 0.094404872, Train MRAE: 53.467538008, Train RMSE: 0.094404872, Val MRAE: 8.067127228, Val RMSE: 0.055228528, Val PSNR: 8.447499275
56
+ 2025-11-20 10:44:49 - Iter[056000], Epoch[000056], learning rate : 0.000049737, Train Loss: 0.094156797, Train MRAE: 53.133785948, Train RMSE: 0.094156797, Val MRAE: 7.544735432, Val RMSE: 0.057700679, Val PSNR: 8.436020851
57
+ 2025-11-20 11:08:36 - Iter[057000], Epoch[000057], learning rate : 0.000049728, Train Loss: 0.093906487, Train MRAE: 52.671427230, Train RMSE: 0.093906487, Val MRAE: 9.498893738, Val RMSE: 0.051618233, Val PSNR: 8.254752159
58
+ 2025-11-20 11:28:10 - Iter[058000], Epoch[000058], learning rate : 0.000049718, Train Loss: 0.093704359, Train MRAE: 52.087302929, Train RMSE: 0.093704359, Val MRAE: 8.240296364, Val RMSE: 0.051833242, Val PSNR: 8.233452797
59
+ 2025-11-20 11:47:01 - Iter[059000], Epoch[000059], learning rate : 0.000049708, Train Loss: 0.093474296, Train MRAE: 51.703914066, Train RMSE: 0.093474296, Val MRAE: 7.776670456, Val RMSE: 0.050530225, Val PSNR: 8.197211266
60
+ 2025-11-20 12:05:05 - Iter[060000], Epoch[000060], learning rate : 0.000049698, Train Loss: 0.093251624, Train MRAE: 51.272838951, Train RMSE: 0.093251624, Val MRAE: 6.899377346, Val RMSE: 0.049701400, Val PSNR: 8.372677803
61
+ 2025-11-20 12:24:04 - Iter[061000], Epoch[000061], learning rate : 0.000049688, Train Loss: 0.093071199, Train MRAE: 50.769941590, Train RMSE: 0.093071199, Val MRAE: 7.279490948, Val RMSE: 0.049254250, Val PSNR: 8.268627167
62
+ 2025-11-20 12:41:44 - Iter[062000], Epoch[000062], learning rate : 0.000049678, Train Loss: 0.092844294, Train MRAE: 50.498773697, Train RMSE: 0.092844294, Val MRAE: 9.230086327, Val RMSE: 0.060632024, Val PSNR: 8.541137695
63
+ 2025-11-20 13:01:25 - Iter[063000], Epoch[000063], learning rate : 0.000049668, Train Loss: 0.092632157, Train MRAE: 50.162851127, Train RMSE: 0.092632157, Val MRAE: 7.134203434, Val RMSE: 0.058039721, Val PSNR: 8.255073547
64
+ 2025-11-20 13:20:13 - Iter[064000], Epoch[000064], learning rate : 0.000049657, Train Loss: 0.092409810, Train MRAE: 49.766565187, Train RMSE: 0.092409810, Val MRAE: 8.049765587, Val RMSE: 0.053193636, Val PSNR: 8.375124931
65
+ 2025-11-20 13:38:57 - Iter[065000], Epoch[000065], learning rate : 0.000049646, Train Loss: 0.092188518, Train MRAE: 49.321208560, Train RMSE: 0.092188518, Val MRAE: 7.855102062, Val RMSE: 0.051258724, Val PSNR: 8.337207794
66
+ 2025-11-20 13:57:24 - Iter[066000], Epoch[000066], learning rate : 0.000049635, Train Loss: 0.091989591, Train MRAE: 48.871072713, Train RMSE: 0.091989591, Val MRAE: 8.584248543, Val RMSE: 0.055304859, Val PSNR: 8.180230141
67
+ 2025-11-20 14:14:40 - Iter[067000], Epoch[000067], learning rate : 0.000049624, Train Loss: 0.091831599, Train MRAE: 48.497288467, Train RMSE: 0.091831599, Val MRAE: 8.308046341, Val RMSE: 0.055153865, Val PSNR: 8.303637505
68
+ 2025-11-20 14:30:55 - Iter[068000], Epoch[000068], learning rate : 0.000049613, Train Loss: 0.091627408, Train MRAE: 48.105074820, Train RMSE: 0.091627408, Val MRAE: 10.364796638, Val RMSE: 0.054373205, Val PSNR: 8.102420807
69
+ 2025-11-20 14:51:38 - Iter[069000], Epoch[000069], learning rate : 0.000049601, Train Loss: 0.091450830, Train MRAE: 47.755324965, Train RMSE: 0.091450830, Val MRAE: 8.109223366, Val RMSE: 0.063525595, Val PSNR: 8.533707619
70
+ 2025-11-20 15:11:14 - Iter[070000], Epoch[000070], learning rate : 0.000049590, Train Loss: 0.091255437, Train MRAE: 47.445376790, Train RMSE: 0.091255437, Val MRAE: 8.210206032, Val RMSE: 0.054472301, Val PSNR: 8.414998055
71
+ 2025-11-20 16:53:44 - Iter[075000], Epoch[000075], learning rate : 0.000049529, Train Loss: 0.076082150, Train MRAE: 19.642371914, Train RMSE: 0.076082150, Val MRAE: 8.379750252, Val RMSE: 0.049241528, Val PSNR: 8.386854172
72
+ 2025-11-20 17:13:31 - Iter[076000], Epoch[000076], learning rate : 0.000049517, Train Loss: 0.075911930, Train MRAE: 29.414477932, Train RMSE: 0.075911930, Val MRAE: 8.093729973, Val RMSE: 0.049042854, Val PSNR: 8.291548729
73
+ 2025-11-20 17:31:47 - Iter[077000], Epoch[000077], learning rate : 0.000049504, Train Loss: 0.076271579, Train MRAE: 28.409244641, Train RMSE: 0.076271579, Val MRAE: 8.943691254, Val RMSE: 0.052128572, Val PSNR: 8.269510269
74
+ 2025-11-20 17:51:00 - Iter[078000], Epoch[000078], learning rate : 0.000049491, Train Loss: 0.076267061, Train MRAE: 29.746564098, Train RMSE: 0.076267061, Val MRAE: 7.808029652, Val RMSE: 0.051735014, Val PSNR: 8.265784264
75
+ 2025-11-20 18:09:56 - Iter[079000], Epoch[000079], learning rate : 0.000049478, Train Loss: 0.076360019, Train MRAE: 29.567614749, Train RMSE: 0.076360019, Val MRAE: 8.752616882, Val RMSE: 0.050613198, Val PSNR: 8.305900574
76
+ 2025-11-20 18:29:17 - Iter[080000], Epoch[000080], learning rate : 0.000049465, Train Loss: 0.076146550, Train MRAE: 27.760217129, Train RMSE: 0.076146550, Val MRAE: 9.384051323, Val RMSE: 0.062603801, Val PSNR: 8.125295639
77
+ 2025-11-20 18:48:51 - Iter[081000], Epoch[000081], learning rate : 0.000049451, Train Loss: 0.076165354, Train MRAE: 26.271928994, Train RMSE: 0.076165354, Val MRAE: 7.122869968, Val RMSE: 0.050049361, Val PSNR: 8.250439644
78
+ 2025-11-20 19:08:21 - Iter[082000], Epoch[000082], learning rate : 0.000049438, Train Loss: 0.076446381, Train MRAE: 25.655504536, Train RMSE: 0.076446381, Val MRAE: 10.242134094, Val RMSE: 0.050421998, Val PSNR: 8.254061699
79
+ 2025-11-20 19:27:19 - Iter[083000], Epoch[000083], learning rate : 0.000049424, Train Loss: 0.076493634, Train MRAE: 24.214732059, Train RMSE: 0.076493634, Val MRAE: 7.054434776, Val RMSE: 0.051818732, Val PSNR: 8.302661896
80
+ 2025-11-20 19:52:08 - Iter[084000], Epoch[000084], learning rate : 0.000049410, Train Loss: 0.076469950, Train MRAE: 23.988051618, Train RMSE: 0.076469950, Val MRAE: 8.218210220, Val RMSE: 0.056812432, Val PSNR: 8.139543533
81
+ 2025-11-20 20:13:15 - Iter[085000], Epoch[000085], learning rate : 0.000049396, Train Loss: 0.076332758, Train MRAE: 24.002984848, Train RMSE: 0.076332758, Val MRAE: 8.488446236, Val RMSE: 0.050698075, Val PSNR: 8.309579849