--- language: - en library_name: transformers pipeline_tag: text-generation tags: - shining-valiant - shining-valiant-3 - valiant - valiant-labs - qwen - qwen-3 - qwen-3-8b - 8b - reasoning - code - code-reasoning - science - science-reasoning - physics - biology - chemistry - earth-science - astronomy - machine-learning - artificial-intelligence - compsci - computer-science - information-theory - ML-Ops - math - cuda - deep-learning - transformers - agentic - LLM - neuromorphic - self-improvement - complex-systems - cognition - linguistics - philosophy - logic - epistemology - simulation - game-theory - knowledge-management - creativity - problem-solving - architect - engineer - developer - creative - analytical - expert - rationality - conversational - chat - instruct - mlx - mlx-my-repo base_model: ValiantLabs/Qwen3-8B-ShiningValiant3 datasets: - sequelbox/Celestia3-DeepSeek-R1-0528 - sequelbox/Mitakihara-DeepSeek-R1-0528 - sequelbox/Raiden-DeepSeek-R1 license: apache-2.0 --- # arogister/Qwen3-8B-ShiningValiant3-mlx-4Bit The Model [arogister/Qwen3-8B-ShiningValiant3-mlx-4Bit](https://huggingface.co/arogister/Qwen3-8B-ShiningValiant3-mlx-4Bit) was converted to MLX format from [ValiantLabs/Qwen3-8B-ShiningValiant3](https://huggingface.co/ValiantLabs/Qwen3-8B-ShiningValiant3) using mlx-lm version **0.26.4**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("arogister/Qwen3-8B-ShiningValiant3-mlx-4Bit") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```