Initial upload
Browse files- README.md +188 -0
- avg_model.pt +3 -0
- config.yaml +84 -0
README.md
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- speaker-verification
|
| 5 |
+
- speaker-embedding
|
| 6 |
+
- cross-lingual
|
| 7 |
+
- multilingual
|
| 8 |
+
- wespeaker
|
| 9 |
+
- resnet
|
| 10 |
+
- pytorch
|
| 11 |
+
datasets:
|
| 12 |
+
- voxblink2
|
| 13 |
+
- voxceleb2
|
| 14 |
+
- tidyvoicex
|
| 15 |
+
metrics:
|
| 16 |
+
- eer
|
| 17 |
+
- mindcf
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
# TidyVoice2026 Baseline: SimAM-ResNet34 Speaker Verification Model
|
| 21 |
+
|
| 22 |
+
## Model Description
|
| 23 |
+
|
| 24 |
+
This is the baseline model for the **TidyVoice Challenge: Cross-Lingual Speaker Verification** at Interspeech 2026. The model addresses the critical problem of speaker verification under language mismatch, where system performance degrades significantly when speakers use different languages.
|
| 25 |
+
|
| 26 |
+
### Architecture
|
| 27 |
+
|
| 28 |
+
- **Model**: SimAM-ResNet34 with Attentive Statistical Pooling (ASP)
|
| 29 |
+
- **Embedding Dimension**: 256
|
| 30 |
+
- **Input**: 80-dimensional log Mel-filterbank features
|
| 31 |
+
- **Sample Rate**: 16 kHz
|
| 32 |
+
|
| 33 |
+
### Training
|
| 34 |
+
|
| 35 |
+
The model is:
|
| 36 |
+
1. **Pretrained** on VoxBlink2 and VoxCeleb2 datasets
|
| 37 |
+
2. **Fine-tuned** on the TidyVoiceX training set using large-margin training
|
| 38 |
+
|
| 39 |
+
### Performance
|
| 40 |
+
|
| 41 |
+
The baseline achieves the following performance on the TidyVoice development set:
|
| 42 |
+
|
| 43 |
+
| Architecture | Pretraining Data | Fine-tuning Data | EER (%) | MinDCF |
|
| 44 |
+
|:-------------|:----------------|:----------------|:-------:|:------:|
|
| 45 |
+
| SimAM-ResNet34 | VoxBlink2 + VoxCeleb2 | TidyVoiceX Train | 3.07 | 0.82 |
|
| 46 |
+
|
| 47 |
+
## Usage
|
| 48 |
+
|
| 49 |
+
> **For TidyVoice2026 Challenge**: If you are using this model for the TidyVoice2026 Challenge, please follow the detailed instructions in the [GitHub repository README](https://github.com/areffarhadi/wespeaker/blob/master/examples/tidyvocie/README.md) for complete setup, data preparation, training, and evaluation procedures.
|
| 50 |
+
|
| 51 |
+
### Installation
|
| 52 |
+
|
| 53 |
+
First, install WeSpeaker:
|
| 54 |
+
|
| 55 |
+
```bash
|
| 56 |
+
pip install git+https://github.com/wenet-e2e/wespeaker.git
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
Or clone the repository:
|
| 60 |
+
|
| 61 |
+
```bash
|
| 62 |
+
git clone https://github.com/wenet-e2e/wespeaker.git
|
| 63 |
+
cd wespeaker
|
| 64 |
+
pip install -e .
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
### Quick Start
|
| 68 |
+
|
| 69 |
+
#### Using WeSpeaker Python API
|
| 70 |
+
|
| 71 |
+
```python
|
| 72 |
+
import wespeaker
|
| 73 |
+
import torch
|
| 74 |
+
|
| 75 |
+
# Load the model from Hugging Face
|
| 76 |
+
# Download the model files (avg_model.pt and config.yaml) to a directory
|
| 77 |
+
model_dir = "path/to/downloaded/model"
|
| 78 |
+
|
| 79 |
+
# Initialize the model
|
| 80 |
+
model = wespeaker.load_model(model_dir)
|
| 81 |
+
model.set_device('cuda:0') # or 'cpu'
|
| 82 |
+
|
| 83 |
+
# Extract speaker embedding from a single audio file
|
| 84 |
+
embedding = model.extract_embedding('audio.wav')
|
| 85 |
+
print(f"Embedding shape: {embedding.shape}")
|
| 86 |
+
|
| 87 |
+
# Compute similarity between two audio files
|
| 88 |
+
similarity = model.compute_similarity('audio1.wav', 'audio2.wav')
|
| 89 |
+
print(f"Similarity score: {similarity}")
|
| 90 |
+
|
| 91 |
+
# Extract embeddings from multiple files (Kaldi format)
|
| 92 |
+
utt_names, embeddings = model.extract_embedding_list('wav.scp')
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
#### Using Command Line
|
| 96 |
+
|
| 97 |
+
```bash
|
| 98 |
+
# Extract embedding from a single audio file
|
| 99 |
+
wespeaker --task embedding \
|
| 100 |
+
--audio_file audio.wav \
|
| 101 |
+
--output_file embedding.txt \
|
| 102 |
+
--pretrain path/to/model/directory
|
| 103 |
+
|
| 104 |
+
# Extract embeddings from wav.scp (Kaldi format)
|
| 105 |
+
wespeaker --task embedding_kaldi \
|
| 106 |
+
--wav_scp wav.scp \
|
| 107 |
+
--output_file embeddings.ark \
|
| 108 |
+
--pretrain path/to/model/directory
|
| 109 |
+
|
| 110 |
+
# Compute similarity between two audio files
|
| 111 |
+
wespeaker --task similarity \
|
| 112 |
+
--audio_file audio1.wav \
|
| 113 |
+
--audio_file2 audio2.wav \
|
| 114 |
+
--pretrain path/to/model/directory
|
| 115 |
+
```
|
| 116 |
+
|
| 117 |
+
#### Using WeSpeaker Training Scripts
|
| 118 |
+
|
| 119 |
+
If you're using the WeSpeaker training framework, you can load the model checkpoint directly:
|
| 120 |
+
|
| 121 |
+
```python
|
| 122 |
+
from wespeaker.utils.checkpoint import load_checkpoint
|
| 123 |
+
from wespeaker.models.speaker_model import get_speaker_model
|
| 124 |
+
import yaml
|
| 125 |
+
|
| 126 |
+
# Load config
|
| 127 |
+
with open('config.yaml', 'r') as f:
|
| 128 |
+
configs = yaml.safe_load(f)
|
| 129 |
+
|
| 130 |
+
# Initialize model
|
| 131 |
+
model = get_speaker_model(configs['model'])(**configs['model_args'])
|
| 132 |
+
|
| 133 |
+
# Load checkpoint
|
| 134 |
+
load_checkpoint(model, 'avg_model.pt')
|
| 135 |
+
|
| 136 |
+
# Set to evaluation mode
|
| 137 |
+
model.eval()
|
| 138 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 139 |
+
model.to(device)
|
| 140 |
+
|
| 141 |
+
# Extract embeddings (see examples/tidyvocie/README.md for full pipeline)
|
| 142 |
+
```
|
| 143 |
+
|
| 144 |
+
### Model Files
|
| 145 |
+
|
| 146 |
+
The model repository should contain:
|
| 147 |
+
- `avg_model.pt`: The averaged model checkpoint (PyTorch format)
|
| 148 |
+
- `config.yaml`: Model configuration file
|
| 149 |
+
|
| 150 |
+
**Note**: When using WeSpeaker's `load_model()` function, ensure the model directory contains both `avg_model.pt` and `config.yaml` files.
|
| 151 |
+
|
| 152 |
+
## Dataset
|
| 153 |
+
|
| 154 |
+
This model is trained and evaluated on:
|
| 155 |
+
- **TidyVoiceX**: A large-scale, multilingual corpus derived from Mozilla Common Voice
|
| 156 |
+
- Over 4,474 speakers across 40 languages
|
| 157 |
+
- Approximately 321,711 utterances totaling 457 hours
|
| 158 |
+
- Designed to isolate the effect of language switching
|
| 159 |
+
|
| 160 |
+
For more information about the dataset and challenge, visit: [https://tidyvoice2026.github.io](https://tidyvoice2026.github.io)
|
| 161 |
+
|
| 162 |
+
## Citation
|
| 163 |
+
|
| 164 |
+
If you use this model in your research, please cite:
|
| 165 |
+
|
| 166 |
+
```bibtex
|
| 167 |
+
@inproceedings{tidyvoice2026,
|
| 168 |
+
title={TidyVoice Challenge: Cross-Lingual Speaker Verification},
|
| 169 |
+
author={...},
|
| 170 |
+
booktitle={Interspeech},
|
| 171 |
+
year={2026}
|
| 172 |
+
}
|
| 173 |
+
```
|
| 174 |
+
|
| 175 |
+
## Additional Resources
|
| 176 |
+
|
| 177 |
+
- **TidyVoice2026 Challenge README**: [Complete setup and usage guide](https://github.com/areffarhadi/wespeaker/blob/master/examples/tidyvocie/README.md) - Follow this for detailed instructions on using this model for the TidyVoice2026 Challenge
|
| 178 |
+
- **GitHub Repository**: [WeSpeaker TidyVoice Baseline](https://github.com/wenet-e2e/wespeaker/tree/master/examples/tidyvocie)
|
| 179 |
+
- **Challenge Website**: [https://tidyvoice2026.github.io](https://tidyvoice2026.github.io)
|
| 180 |
+
- **WeSpeaker Documentation**: [https://github.com/wenet-e2e/wespeaker](https://github.com/wenet-e2e/wespeaker)
|
| 181 |
+
|
| 182 |
+
## Contact
|
| 183 |
+
|
| 184 |
+
For questions about the challenge or this baseline:
|
| 185 |
+
- **Aref Farhadipour**: [email protected]
|
| 186 |
+
- **Challenge Website**: [https://tidyvoice2026.github.io](https://tidyvoice2026.github.io)
|
| 187 |
+
|
| 188 |
+
|
avg_model.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c8fdfd9a657489ad467d3a403c617a9ddfb028204e77c39e1303c79782f13f3a
|
| 3 |
+
size 104756586
|
config.yaml
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
data_type: shard
|
| 2 |
+
dataloader_args:
|
| 3 |
+
batch_size: 24
|
| 4 |
+
drop_last: true
|
| 5 |
+
num_workers: 16
|
| 6 |
+
pin_memory: false
|
| 7 |
+
prefetch_factor: 8
|
| 8 |
+
dataset_args:
|
| 9 |
+
aug_prob: 0.3
|
| 10 |
+
fbank_args:
|
| 11 |
+
dither: 1.0
|
| 12 |
+
frame_length: 25
|
| 13 |
+
frame_shift: 10
|
| 14 |
+
num_mel_bins: 80
|
| 15 |
+
filter: true
|
| 16 |
+
filter_args:
|
| 17 |
+
max_num_frames: 800
|
| 18 |
+
min_num_frames: 200
|
| 19 |
+
num_frms: 600
|
| 20 |
+
resample_rate: 16000
|
| 21 |
+
sample_num_per_epoch: 0
|
| 22 |
+
shuffle: true
|
| 23 |
+
shuffle_args:
|
| 24 |
+
shuffle_size: 2500
|
| 25 |
+
spec_aug: false
|
| 26 |
+
spec_aug_args:
|
| 27 |
+
max_f: 8
|
| 28 |
+
max_t: 10
|
| 29 |
+
num_f_mask: 1
|
| 30 |
+
num_t_mask: 1
|
| 31 |
+
prob: 0.6
|
| 32 |
+
speed_perturb: false
|
| 33 |
+
do_lm: true
|
| 34 |
+
enable_amp: false
|
| 35 |
+
exp_dir: exp/samresnet34_voxblink_ft_tidy
|
| 36 |
+
gpus:
|
| 37 |
+
- 4
|
| 38 |
+
- 5
|
| 39 |
+
log_batch_interval: 100
|
| 40 |
+
loss: CrossEntropyLoss
|
| 41 |
+
loss_args: {}
|
| 42 |
+
margin_scheduler: MarginScheduler
|
| 43 |
+
margin_update:
|
| 44 |
+
epoch_iter: 5463
|
| 45 |
+
final_margin: 0.3
|
| 46 |
+
fix_start_epoch: 3
|
| 47 |
+
increase_start_epoch: 0
|
| 48 |
+
increase_type: linear
|
| 49 |
+
initial_margin: 0.0
|
| 50 |
+
update_margin: true
|
| 51 |
+
model: SimAM_ResNet34_ASP
|
| 52 |
+
model_args:
|
| 53 |
+
embed_dim: 256
|
| 54 |
+
model_init: tidy/avg_model.pt
|
| 55 |
+
noise_data: data/musan/lmdb
|
| 56 |
+
num_avg: 1
|
| 57 |
+
num_epochs: 7
|
| 58 |
+
optimizer: SGD
|
| 59 |
+
optimizer_args:
|
| 60 |
+
lr: 5.0e-05
|
| 61 |
+
momentum: 0.9
|
| 62 |
+
nesterov: true
|
| 63 |
+
weight_decay: 0.0001
|
| 64 |
+
projection_args:
|
| 65 |
+
do_lm: true
|
| 66 |
+
easy_margin: false
|
| 67 |
+
embed_dim: 256
|
| 68 |
+
num_class: 3666
|
| 69 |
+
project_type: arc_margin
|
| 70 |
+
scale: 32.0
|
| 71 |
+
reverb_data: data/rirs/lmdb
|
| 72 |
+
save_epoch_interval: 1
|
| 73 |
+
scheduler: ExponentialDecrease
|
| 74 |
+
scheduler_args:
|
| 75 |
+
epoch_iter: 5463
|
| 76 |
+
final_lr: 1.0e-05
|
| 77 |
+
initial_lr: 5.0e-05
|
| 78 |
+
num_epochs: 7
|
| 79 |
+
scale_ratio: 0.75
|
| 80 |
+
warm_from_zero: false
|
| 81 |
+
warm_up_epoch: 0
|
| 82 |
+
seed: 42
|
| 83 |
+
train_data: /local/scratch/arfarh/wespeaker/wespeaker/examples/voxceleb/v2/data/vox2_dev/shard.list
|
| 84 |
+
train_label: /local/scratch/arfarh/wespeaker/wespeaker/examples/voxceleb/v2/data/vox2_dev/utt2spk
|