File size: 4,535 Bytes
			
			| 1fab766 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | ---
language:
- en
license: llama3
library_name: transformers
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- arcee-ai/EvolKit-20k
model-index:
- name: Llama-3.1-SuperNova-Lite
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 80.17
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 31.57
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 15.48
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 7.49
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 11.67
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 31.97
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=arcee-ai/Llama-3.1-SuperNova-Lite
      name: Open LLM Leaderboard
---
<div align="center">
  <img src="https://i.ibb.co/r072p7j/eopi-ZVu-SQ0-G-Cav78-Byq-Tg.png" alt="Llama-3.1-SuperNova-Lite" style="border-radius: 10px; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19); max-width: 100%; height: auto;">
</div>
## Overview
Llama-3.1-SuperNova-Lite is an 8B parameter model developed by Arcee.ai, based on the Llama-3.1-8B-Instruct architecture. It is a distilled version of the larger Llama-3.1-405B-Instruct model, leveraging offline logits extracted from the 405B parameter variant. This 8B variation of Llama-3.1-SuperNova maintains high performance while offering exceptional instruction-following capabilities and domain-specific adaptability. 
The model was trained using a state-of-the-art distillation pipeline and an instruction dataset generated with [EvolKit](https://github.com/arcee-ai/EvolKit), ensuring accuracy and efficiency across a wide range of tasks. For more information on its training, visit blog.arcee.ai. 
Llama-3.1-SuperNova-Lite excels in both benchmark performance and real-world applications, providing the power of large-scale models in a more compact, efficient form ideal for organizations seeking high performance with reduced resource requirements.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_arcee-ai__Llama-3.1-SuperNova-Lite)
|      Metric       |Value|
|-------------------|----:|
|Avg.               |29.73|
|IFEval (0-Shot)    |80.17|
|BBH (3-Shot)       |31.57|
|MATH Lvl 5 (4-Shot)|15.48|
|GPQA (0-shot)      | 7.49|
|MuSR (0-shot)      |11.67|
|MMLU-PRO (5-shot)  |31.97|
 | 
