End of training
Browse files- README.md +2 -0
- all_results.json +16 -16
- eval_results.json +8 -8
- predict_results.json +4 -4
- predict_results.txt +55 -55
- runs/Jun03_09-57-46_a358b85c7679/events.out.tfevents.1717409561.a358b85c7679.18986.1 +3 -0
- train_results.json +4 -4
- trainer_state.json +203 -203
README.md
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
| 2 |
license: mit
|
| 3 |
base_model: indolem/indobert-base-uncased
|
| 4 |
tags:
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- id
|
| 4 |
license: mit
|
| 5 |
base_model: indolem/indobert-base-uncased
|
| 6 |
tags:
|
all_results.json
CHANGED
|
@@ -1,21 +1,21 @@
|
|
| 1 |
{
|
| 2 |
-
"accuracy": 0.
|
| 3 |
"epoch": 20.0,
|
| 4 |
-
"eval_accuracy": 0.
|
| 5 |
-
"eval_f1": 0.
|
| 6 |
-
"eval_loss": 0.
|
| 7 |
-
"eval_precision": 0.
|
| 8 |
-
"eval_recall": 0.
|
| 9 |
-
"eval_runtime":
|
| 10 |
"eval_samples": 399,
|
| 11 |
-
"eval_samples_per_second":
|
| 12 |
-
"eval_steps_per_second":
|
| 13 |
-
"f1": 0.
|
| 14 |
-
"precision": 0.
|
| 15 |
-
"recall": 0.
|
| 16 |
-
"train_loss": 0.
|
| 17 |
-
"train_runtime":
|
| 18 |
"train_samples": 3638,
|
| 19 |
-
"train_samples_per_second":
|
| 20 |
-
"train_steps_per_second":
|
| 21 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"accuracy": 0.9119683481701286,
|
| 3 |
"epoch": 20.0,
|
| 4 |
+
"eval_accuracy": 0.9022556390977443,
|
| 5 |
+
"eval_f1": 0.8799463033398397,
|
| 6 |
+
"eval_loss": 0.790817379951477,
|
| 7 |
+
"eval_precision": 0.8874803397294746,
|
| 8 |
+
"eval_recall": 0.8733406073831607,
|
| 9 |
+
"eval_runtime": 1.6569,
|
| 10 |
"eval_samples": 399,
|
| 11 |
+
"eval_samples_per_second": 240.805,
|
| 12 |
+
"eval_steps_per_second": 30.176,
|
| 13 |
+
"f1": 0.8952398693685564,
|
| 14 |
+
"precision": 0.8913160733549084,
|
| 15 |
+
"recall": 0.8995006447847737,
|
| 16 |
+
"train_loss": 0.0588726386183598,
|
| 17 |
+
"train_runtime": 864.0501,
|
| 18 |
"train_samples": 3638,
|
| 19 |
+
"train_samples_per_second": 84.208,
|
| 20 |
+
"train_steps_per_second": 2.824
|
| 21 |
}
|
eval_results.json
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
{
|
| 2 |
"epoch": 20.0,
|
| 3 |
-
"eval_accuracy": 0.
|
| 4 |
-
"eval_f1": 0.
|
| 5 |
-
"eval_loss": 0.
|
| 6 |
-
"eval_precision": 0.
|
| 7 |
-
"eval_recall": 0.
|
| 8 |
-
"eval_runtime":
|
| 9 |
"eval_samples": 399,
|
| 10 |
-
"eval_samples_per_second":
|
| 11 |
-
"eval_steps_per_second":
|
| 12 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"epoch": 20.0,
|
| 3 |
+
"eval_accuracy": 0.9022556390977443,
|
| 4 |
+
"eval_f1": 0.8799463033398397,
|
| 5 |
+
"eval_loss": 0.790817379951477,
|
| 6 |
+
"eval_precision": 0.8874803397294746,
|
| 7 |
+
"eval_recall": 0.8733406073831607,
|
| 8 |
+
"eval_runtime": 1.6569,
|
| 9 |
"eval_samples": 399,
|
| 10 |
+
"eval_samples_per_second": 240.805,
|
| 11 |
+
"eval_steps_per_second": 30.176
|
| 12 |
}
|
predict_results.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
{
|
| 2 |
-
"accuracy": 0.
|
| 3 |
-
"f1": 0.
|
| 4 |
-
"precision": 0.
|
| 5 |
-
"recall": 0.
|
| 6 |
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"accuracy": 0.9119683481701286,
|
| 3 |
+
"f1": 0.8952398693685564,
|
| 4 |
+
"precision": 0.8913160733549084,
|
| 5 |
+
"recall": 0.8995006447847737
|
| 6 |
}
|
predict_results.txt
CHANGED
|
@@ -3,7 +3,7 @@ index prediction
|
|
| 3 |
1 1
|
| 4 |
2 1
|
| 5 |
3 1
|
| 6 |
-
4
|
| 7 |
5 0
|
| 8 |
6 1
|
| 9 |
7 1
|
|
@@ -20,12 +20,12 @@ index prediction
|
|
| 20 |
18 1
|
| 21 |
19 1
|
| 22 |
20 1
|
| 23 |
-
21
|
| 24 |
-
22
|
| 25 |
23 1
|
| 26 |
24 1
|
| 27 |
-
25
|
| 28 |
-
26
|
| 29 |
27 1
|
| 30 |
28 1
|
| 31 |
29 1
|
|
@@ -35,7 +35,7 @@ index prediction
|
|
| 35 |
33 1
|
| 36 |
34 1
|
| 37 |
35 1
|
| 38 |
-
36
|
| 39 |
37 1
|
| 40 |
38 1
|
| 41 |
39 1
|
|
@@ -50,13 +50,13 @@ index prediction
|
|
| 50 |
48 1
|
| 51 |
49 1
|
| 52 |
50 1
|
| 53 |
-
51
|
| 54 |
52 1
|
| 55 |
53 1
|
| 56 |
54 0
|
| 57 |
55 1
|
| 58 |
56 1
|
| 59 |
-
57
|
| 60 |
58 1
|
| 61 |
59 1
|
| 62 |
60 0
|
|
@@ -66,7 +66,7 @@ index prediction
|
|
| 66 |
64 1
|
| 67 |
65 1
|
| 68 |
66 1
|
| 69 |
-
67
|
| 70 |
68 0
|
| 71 |
69 1
|
| 72 |
70 1
|
|
@@ -86,7 +86,7 @@ index prediction
|
|
| 86 |
84 1
|
| 87 |
85 1
|
| 88 |
86 1
|
| 89 |
-
87
|
| 90 |
88 1
|
| 91 |
89 1
|
| 92 |
90 0
|
|
@@ -109,17 +109,17 @@ index prediction
|
|
| 109 |
107 1
|
| 110 |
108 1
|
| 111 |
109 1
|
| 112 |
-
110
|
| 113 |
111 1
|
| 114 |
112 1
|
| 115 |
113 1
|
| 116 |
114 1
|
| 117 |
-
115
|
| 118 |
116 1
|
| 119 |
117 1
|
| 120 |
118 1
|
| 121 |
119 1
|
| 122 |
-
120
|
| 123 |
121 0
|
| 124 |
122 1
|
| 125 |
123 1
|
|
@@ -130,7 +130,7 @@ index prediction
|
|
| 130 |
128 1
|
| 131 |
129 1
|
| 132 |
130 0
|
| 133 |
-
131
|
| 134 |
132 1
|
| 135 |
133 1
|
| 136 |
134 1
|
|
@@ -148,9 +148,9 @@ index prediction
|
|
| 148 |
146 1
|
| 149 |
147 1
|
| 150 |
148 1
|
| 151 |
-
149
|
| 152 |
150 1
|
| 153 |
-
151
|
| 154 |
152 1
|
| 155 |
153 1
|
| 156 |
154 1
|
|
@@ -180,7 +180,7 @@ index prediction
|
|
| 180 |
178 1
|
| 181 |
179 1
|
| 182 |
180 1
|
| 183 |
-
181
|
| 184 |
182 1
|
| 185 |
183 1
|
| 186 |
184 1
|
|
@@ -239,7 +239,7 @@ index prediction
|
|
| 239 |
237 0
|
| 240 |
238 1
|
| 241 |
239 1
|
| 242 |
-
240
|
| 243 |
241 1
|
| 244 |
242 1
|
| 245 |
243 1
|
|
@@ -253,16 +253,16 @@ index prediction
|
|
| 253 |
251 1
|
| 254 |
252 1
|
| 255 |
253 1
|
| 256 |
-
254
|
| 257 |
255 1
|
| 258 |
-
256
|
| 259 |
-
257
|
| 260 |
-
258
|
| 261 |
259 1
|
| 262 |
-
260
|
| 263 |
261 1
|
| 264 |
262 1
|
| 265 |
-
263
|
| 266 |
264 1
|
| 267 |
265 1
|
| 268 |
266 1
|
|
@@ -285,10 +285,10 @@ index prediction
|
|
| 285 |
283 1
|
| 286 |
284 1
|
| 287 |
285 1
|
| 288 |
-
286
|
| 289 |
287 1
|
| 290 |
288 1
|
| 291 |
-
289
|
| 292 |
290 1
|
| 293 |
291 1
|
| 294 |
292 1
|
|
@@ -322,7 +322,7 @@ index prediction
|
|
| 322 |
320 0
|
| 323 |
321 0
|
| 324 |
322 0
|
| 325 |
-
323
|
| 326 |
324 0
|
| 327 |
325 0
|
| 328 |
326 0
|
|
@@ -339,9 +339,9 @@ index prediction
|
|
| 339 |
337 0
|
| 340 |
338 1
|
| 341 |
339 0
|
| 342 |
-
340
|
| 343 |
341 0
|
| 344 |
-
342
|
| 345 |
343 0
|
| 346 |
344 0
|
| 347 |
345 0
|
|
@@ -368,7 +368,7 @@ index prediction
|
|
| 368 |
366 0
|
| 369 |
367 0
|
| 370 |
368 0
|
| 371 |
-
369
|
| 372 |
370 0
|
| 373 |
371 0
|
| 374 |
372 0
|
|
@@ -434,7 +434,7 @@ index prediction
|
|
| 434 |
432 0
|
| 435 |
433 0
|
| 436 |
434 1
|
| 437 |
-
435
|
| 438 |
436 0
|
| 439 |
437 0
|
| 440 |
438 0
|
|
@@ -456,7 +456,7 @@ index prediction
|
|
| 456 |
454 0
|
| 457 |
455 1
|
| 458 |
456 0
|
| 459 |
-
457
|
| 460 |
458 0
|
| 461 |
459 0
|
| 462 |
460 0
|
|
@@ -486,7 +486,7 @@ index prediction
|
|
| 486 |
484 0
|
| 487 |
485 0
|
| 488 |
486 0
|
| 489 |
-
487
|
| 490 |
488 0
|
| 491 |
489 0
|
| 492 |
490 0
|
|
@@ -497,7 +497,7 @@ index prediction
|
|
| 497 |
495 0
|
| 498 |
496 0
|
| 499 |
497 0
|
| 500 |
-
498
|
| 501 |
499 0
|
| 502 |
500 0
|
| 503 |
501 0
|
|
@@ -508,7 +508,7 @@ index prediction
|
|
| 508 |
506 0
|
| 509 |
507 0
|
| 510 |
508 1
|
| 511 |
-
509
|
| 512 |
510 0
|
| 513 |
511 0
|
| 514 |
512 0
|
|
@@ -521,8 +521,8 @@ index prediction
|
|
| 521 |
519 0
|
| 522 |
520 0
|
| 523 |
521 0
|
| 524 |
-
522
|
| 525 |
-
523
|
| 526 |
524 0
|
| 527 |
525 0
|
| 528 |
526 0
|
|
@@ -580,7 +580,7 @@ index prediction
|
|
| 580 |
578 0
|
| 581 |
579 1
|
| 582 |
580 0
|
| 583 |
-
581
|
| 584 |
582 1
|
| 585 |
583 0
|
| 586 |
584 0
|
|
@@ -590,7 +590,7 @@ index prediction
|
|
| 590 |
588 1
|
| 591 |
589 0
|
| 592 |
590 0
|
| 593 |
-
591
|
| 594 |
592 0
|
| 595 |
593 0
|
| 596 |
594 0
|
|
@@ -605,7 +605,7 @@ index prediction
|
|
| 605 |
603 0
|
| 606 |
604 1
|
| 607 |
605 0
|
| 608 |
-
606
|
| 609 |
607 0
|
| 610 |
608 0
|
| 611 |
609 0
|
|
@@ -664,7 +664,7 @@ index prediction
|
|
| 664 |
662 0
|
| 665 |
663 0
|
| 666 |
664 0
|
| 667 |
-
665
|
| 668 |
666 0
|
| 669 |
667 1
|
| 670 |
668 0
|
|
@@ -709,7 +709,7 @@ index prediction
|
|
| 709 |
707 0
|
| 710 |
708 0
|
| 711 |
709 0
|
| 712 |
-
710
|
| 713 |
711 0
|
| 714 |
712 1
|
| 715 |
713 0
|
|
@@ -723,7 +723,7 @@ index prediction
|
|
| 723 |
721 0
|
| 724 |
722 0
|
| 725 |
723 0
|
| 726 |
-
724
|
| 727 |
725 0
|
| 728 |
726 0
|
| 729 |
727 0
|
|
@@ -736,7 +736,7 @@ index prediction
|
|
| 736 |
734 1
|
| 737 |
735 0
|
| 738 |
736 0
|
| 739 |
-
737
|
| 740 |
738 0
|
| 741 |
739 0
|
| 742 |
740 0
|
|
@@ -812,7 +812,7 @@ index prediction
|
|
| 812 |
810 0
|
| 813 |
811 0
|
| 814 |
812 1
|
| 815 |
-
813
|
| 816 |
814 0
|
| 817 |
815 0
|
| 818 |
816 0
|
|
@@ -838,19 +838,19 @@ index prediction
|
|
| 838 |
836 0
|
| 839 |
837 0
|
| 840 |
838 0
|
| 841 |
-
839
|
| 842 |
840 0
|
| 843 |
841 0
|
| 844 |
842 0
|
| 845 |
843 0
|
| 846 |
844 0
|
| 847 |
845 0
|
| 848 |
-
846
|
| 849 |
847 0
|
| 850 |
848 0
|
| 851 |
849 0
|
| 852 |
-
850
|
| 853 |
-
851
|
| 854 |
852 1
|
| 855 |
853 0
|
| 856 |
854 1
|
|
@@ -862,7 +862,7 @@ index prediction
|
|
| 862 |
860 0
|
| 863 |
861 0
|
| 864 |
862 0
|
| 865 |
-
863
|
| 866 |
864 0
|
| 867 |
865 1
|
| 868 |
866 0
|
|
@@ -892,13 +892,13 @@ index prediction
|
|
| 892 |
890 0
|
| 893 |
891 0
|
| 894 |
892 0
|
| 895 |
-
893
|
| 896 |
894 0
|
| 897 |
895 0
|
| 898 |
896 1
|
| 899 |
897 0
|
| 900 |
898 0
|
| 901 |
-
899
|
| 902 |
900 0
|
| 903 |
901 0
|
| 904 |
902 0
|
|
@@ -916,7 +916,7 @@ index prediction
|
|
| 916 |
914 0
|
| 917 |
915 0
|
| 918 |
916 0
|
| 919 |
-
917
|
| 920 |
918 0
|
| 921 |
919 0
|
| 922 |
920 0
|
|
@@ -953,7 +953,7 @@ index prediction
|
|
| 953 |
951 0
|
| 954 |
952 0
|
| 955 |
953 0
|
| 956 |
-
954
|
| 957 |
955 0
|
| 958 |
956 0
|
| 959 |
957 0
|
|
@@ -981,7 +981,7 @@ index prediction
|
|
| 981 |
979 0
|
| 982 |
980 0
|
| 983 |
981 0
|
| 984 |
-
982
|
| 985 |
983 0
|
| 986 |
984 0
|
| 987 |
985 0
|
|
|
|
| 3 |
1 1
|
| 4 |
2 1
|
| 5 |
3 1
|
| 6 |
+
4 0
|
| 7 |
5 0
|
| 8 |
6 1
|
| 9 |
7 1
|
|
|
|
| 20 |
18 1
|
| 21 |
19 1
|
| 22 |
20 1
|
| 23 |
+
21 1
|
| 24 |
+
22 0
|
| 25 |
23 1
|
| 26 |
24 1
|
| 27 |
+
25 1
|
| 28 |
+
26 1
|
| 29 |
27 1
|
| 30 |
28 1
|
| 31 |
29 1
|
|
|
|
| 35 |
33 1
|
| 36 |
34 1
|
| 37 |
35 1
|
| 38 |
+
36 1
|
| 39 |
37 1
|
| 40 |
38 1
|
| 41 |
39 1
|
|
|
|
| 50 |
48 1
|
| 51 |
49 1
|
| 52 |
50 1
|
| 53 |
+
51 0
|
| 54 |
52 1
|
| 55 |
53 1
|
| 56 |
54 0
|
| 57 |
55 1
|
| 58 |
56 1
|
| 59 |
+
57 0
|
| 60 |
58 1
|
| 61 |
59 1
|
| 62 |
60 0
|
|
|
|
| 66 |
64 1
|
| 67 |
65 1
|
| 68 |
66 1
|
| 69 |
+
67 1
|
| 70 |
68 0
|
| 71 |
69 1
|
| 72 |
70 1
|
|
|
|
| 86 |
84 1
|
| 87 |
85 1
|
| 88 |
86 1
|
| 89 |
+
87 1
|
| 90 |
88 1
|
| 91 |
89 1
|
| 92 |
90 0
|
|
|
|
| 109 |
107 1
|
| 110 |
108 1
|
| 111 |
109 1
|
| 112 |
+
110 0
|
| 113 |
111 1
|
| 114 |
112 1
|
| 115 |
113 1
|
| 116 |
114 1
|
| 117 |
+
115 1
|
| 118 |
116 1
|
| 119 |
117 1
|
| 120 |
118 1
|
| 121 |
119 1
|
| 122 |
+
120 1
|
| 123 |
121 0
|
| 124 |
122 1
|
| 125 |
123 1
|
|
|
|
| 130 |
128 1
|
| 131 |
129 1
|
| 132 |
130 0
|
| 133 |
+
131 0
|
| 134 |
132 1
|
| 135 |
133 1
|
| 136 |
134 1
|
|
|
|
| 148 |
146 1
|
| 149 |
147 1
|
| 150 |
148 1
|
| 151 |
+
149 0
|
| 152 |
150 1
|
| 153 |
+
151 1
|
| 154 |
152 1
|
| 155 |
153 1
|
| 156 |
154 1
|
|
|
|
| 180 |
178 1
|
| 181 |
179 1
|
| 182 |
180 1
|
| 183 |
+
181 0
|
| 184 |
182 1
|
| 185 |
183 1
|
| 186 |
184 1
|
|
|
|
| 239 |
237 0
|
| 240 |
238 1
|
| 241 |
239 1
|
| 242 |
+
240 1
|
| 243 |
241 1
|
| 244 |
242 1
|
| 245 |
243 1
|
|
|
|
| 253 |
251 1
|
| 254 |
252 1
|
| 255 |
253 1
|
| 256 |
+
254 1
|
| 257 |
255 1
|
| 258 |
+
256 0
|
| 259 |
+
257 1
|
| 260 |
+
258 0
|
| 261 |
259 1
|
| 262 |
+
260 0
|
| 263 |
261 1
|
| 264 |
262 1
|
| 265 |
+
263 1
|
| 266 |
264 1
|
| 267 |
265 1
|
| 268 |
266 1
|
|
|
|
| 285 |
283 1
|
| 286 |
284 1
|
| 287 |
285 1
|
| 288 |
+
286 0
|
| 289 |
287 1
|
| 290 |
288 1
|
| 291 |
+
289 0
|
| 292 |
290 1
|
| 293 |
291 1
|
| 294 |
292 1
|
|
|
|
| 322 |
320 0
|
| 323 |
321 0
|
| 324 |
322 0
|
| 325 |
+
323 1
|
| 326 |
324 0
|
| 327 |
325 0
|
| 328 |
326 0
|
|
|
|
| 339 |
337 0
|
| 340 |
338 1
|
| 341 |
339 0
|
| 342 |
+
340 1
|
| 343 |
341 0
|
| 344 |
+
342 0
|
| 345 |
343 0
|
| 346 |
344 0
|
| 347 |
345 0
|
|
|
|
| 368 |
366 0
|
| 369 |
367 0
|
| 370 |
368 0
|
| 371 |
+
369 1
|
| 372 |
370 0
|
| 373 |
371 0
|
| 374 |
372 0
|
|
|
|
| 434 |
432 0
|
| 435 |
433 0
|
| 436 |
434 1
|
| 437 |
+
435 0
|
| 438 |
436 0
|
| 439 |
437 0
|
| 440 |
438 0
|
|
|
|
| 456 |
454 0
|
| 457 |
455 1
|
| 458 |
456 0
|
| 459 |
+
457 1
|
| 460 |
458 0
|
| 461 |
459 0
|
| 462 |
460 0
|
|
|
|
| 486 |
484 0
|
| 487 |
485 0
|
| 488 |
486 0
|
| 489 |
+
487 1
|
| 490 |
488 0
|
| 491 |
489 0
|
| 492 |
490 0
|
|
|
|
| 497 |
495 0
|
| 498 |
496 0
|
| 499 |
497 0
|
| 500 |
+
498 1
|
| 501 |
499 0
|
| 502 |
500 0
|
| 503 |
501 0
|
|
|
|
| 508 |
506 0
|
| 509 |
507 0
|
| 510 |
508 1
|
| 511 |
+
509 1
|
| 512 |
510 0
|
| 513 |
511 0
|
| 514 |
512 0
|
|
|
|
| 521 |
519 0
|
| 522 |
520 0
|
| 523 |
521 0
|
| 524 |
+
522 1
|
| 525 |
+
523 0
|
| 526 |
524 0
|
| 527 |
525 0
|
| 528 |
526 0
|
|
|
|
| 580 |
578 0
|
| 581 |
579 1
|
| 582 |
580 0
|
| 583 |
+
581 0
|
| 584 |
582 1
|
| 585 |
583 0
|
| 586 |
584 0
|
|
|
|
| 590 |
588 1
|
| 591 |
589 0
|
| 592 |
590 0
|
| 593 |
+
591 0
|
| 594 |
592 0
|
| 595 |
593 0
|
| 596 |
594 0
|
|
|
|
| 605 |
603 0
|
| 606 |
604 1
|
| 607 |
605 0
|
| 608 |
+
606 0
|
| 609 |
607 0
|
| 610 |
608 0
|
| 611 |
609 0
|
|
|
|
| 664 |
662 0
|
| 665 |
663 0
|
| 666 |
664 0
|
| 667 |
+
665 0
|
| 668 |
666 0
|
| 669 |
667 1
|
| 670 |
668 0
|
|
|
|
| 709 |
707 0
|
| 710 |
708 0
|
| 711 |
709 0
|
| 712 |
+
710 1
|
| 713 |
711 0
|
| 714 |
712 1
|
| 715 |
713 0
|
|
|
|
| 723 |
721 0
|
| 724 |
722 0
|
| 725 |
723 0
|
| 726 |
+
724 0
|
| 727 |
725 0
|
| 728 |
726 0
|
| 729 |
727 0
|
|
|
|
| 736 |
734 1
|
| 737 |
735 0
|
| 738 |
736 0
|
| 739 |
+
737 1
|
| 740 |
738 0
|
| 741 |
739 0
|
| 742 |
740 0
|
|
|
|
| 812 |
810 0
|
| 813 |
811 0
|
| 814 |
812 1
|
| 815 |
+
813 0
|
| 816 |
814 0
|
| 817 |
815 0
|
| 818 |
816 0
|
|
|
|
| 838 |
836 0
|
| 839 |
837 0
|
| 840 |
838 0
|
| 841 |
+
839 0
|
| 842 |
840 0
|
| 843 |
841 0
|
| 844 |
842 0
|
| 845 |
843 0
|
| 846 |
844 0
|
| 847 |
845 0
|
| 848 |
+
846 1
|
| 849 |
847 0
|
| 850 |
848 0
|
| 851 |
849 0
|
| 852 |
+
850 1
|
| 853 |
+
851 1
|
| 854 |
852 1
|
| 855 |
853 0
|
| 856 |
854 1
|
|
|
|
| 862 |
860 0
|
| 863 |
861 0
|
| 864 |
862 0
|
| 865 |
+
863 0
|
| 866 |
864 0
|
| 867 |
865 1
|
| 868 |
866 0
|
|
|
|
| 892 |
890 0
|
| 893 |
891 0
|
| 894 |
892 0
|
| 895 |
+
893 1
|
| 896 |
894 0
|
| 897 |
895 0
|
| 898 |
896 1
|
| 899 |
897 0
|
| 900 |
898 0
|
| 901 |
+
899 0
|
| 902 |
900 0
|
| 903 |
901 0
|
| 904 |
902 0
|
|
|
|
| 916 |
914 0
|
| 917 |
915 0
|
| 918 |
916 0
|
| 919 |
+
917 0
|
| 920 |
918 0
|
| 921 |
919 0
|
| 922 |
920 0
|
|
|
|
| 953 |
951 0
|
| 954 |
952 0
|
| 955 |
953 0
|
| 956 |
+
954 0
|
| 957 |
955 0
|
| 958 |
956 0
|
| 959 |
957 0
|
|
|
|
| 981 |
979 0
|
| 982 |
980 0
|
| 983 |
981 0
|
| 984 |
+
982 0
|
| 985 |
983 0
|
| 986 |
984 0
|
| 987 |
985 0
|
runs/Jun03_09-57-46_a358b85c7679/events.out.tfevents.1717409561.a358b85c7679.18986.1
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d48601fe52b0be1678a007861adb9d43e2e9a7da888092d086e7a47c15375e71
|
| 3 |
+
size 560
|
train_results.json
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
{
|
| 2 |
"epoch": 20.0,
|
| 3 |
-
"train_loss": 0.
|
| 4 |
-
"train_runtime":
|
| 5 |
"train_samples": 3638,
|
| 6 |
-
"train_samples_per_second":
|
| 7 |
-
"train_steps_per_second":
|
| 8 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"epoch": 20.0,
|
| 3 |
+
"train_loss": 0.0588726386183598,
|
| 4 |
+
"train_runtime": 864.0501,
|
| 5 |
"train_samples": 3638,
|
| 6 |
+
"train_samples_per_second": 84.208,
|
| 7 |
+
"train_steps_per_second": 2.824
|
| 8 |
}
|
trainer_state.json
CHANGED
|
@@ -10,392 +10,392 @@
|
|
| 10 |
"log_history": [
|
| 11 |
{
|
| 12 |
"epoch": 1.0,
|
| 13 |
-
"grad_norm":
|
| 14 |
"learning_rate": 4.75e-05,
|
| 15 |
-
"loss": 0.
|
| 16 |
"step": 122
|
| 17 |
},
|
| 18 |
{
|
| 19 |
"epoch": 1.0,
|
| 20 |
-
"eval_accuracy": 0.
|
| 21 |
-
"eval_f1": 0.
|
| 22 |
-
"eval_loss": 0.
|
| 23 |
-
"eval_precision": 0.
|
| 24 |
-
"eval_recall": 0.
|
| 25 |
-
"eval_runtime":
|
| 26 |
-
"eval_samples_per_second":
|
| 27 |
-
"eval_steps_per_second":
|
| 28 |
"step": 122
|
| 29 |
},
|
| 30 |
{
|
| 31 |
"epoch": 2.0,
|
| 32 |
-
"grad_norm":
|
| 33 |
"learning_rate": 4.5e-05,
|
| 34 |
-
"loss": 0.
|
| 35 |
"step": 244
|
| 36 |
},
|
| 37 |
{
|
| 38 |
"epoch": 2.0,
|
| 39 |
-
"eval_accuracy": 0.
|
| 40 |
-
"eval_f1": 0.
|
| 41 |
-
"eval_loss": 0.
|
| 42 |
-
"eval_precision": 0.
|
| 43 |
-
"eval_recall": 0.
|
| 44 |
-
"eval_runtime":
|
| 45 |
-
"eval_samples_per_second":
|
| 46 |
-
"eval_steps_per_second":
|
| 47 |
"step": 244
|
| 48 |
},
|
| 49 |
{
|
| 50 |
"epoch": 3.0,
|
| 51 |
-
"grad_norm":
|
| 52 |
"learning_rate": 4.25e-05,
|
| 53 |
-
"loss": 0.
|
| 54 |
"step": 366
|
| 55 |
},
|
| 56 |
{
|
| 57 |
"epoch": 3.0,
|
| 58 |
-
"eval_accuracy": 0.
|
| 59 |
-
"eval_f1": 0.
|
| 60 |
-
"eval_loss": 0.
|
| 61 |
-
"eval_precision": 0.
|
| 62 |
-
"eval_recall": 0.
|
| 63 |
-
"eval_runtime":
|
| 64 |
-
"eval_samples_per_second":
|
| 65 |
-
"eval_steps_per_second":
|
| 66 |
"step": 366
|
| 67 |
},
|
| 68 |
{
|
| 69 |
"epoch": 4.0,
|
| 70 |
-
"grad_norm":
|
| 71 |
"learning_rate": 4e-05,
|
| 72 |
-
"loss": 0.
|
| 73 |
"step": 488
|
| 74 |
},
|
| 75 |
{
|
| 76 |
"epoch": 4.0,
|
| 77 |
-
"eval_accuracy": 0.
|
| 78 |
-
"eval_f1": 0.
|
| 79 |
-
"eval_loss": 0.
|
| 80 |
-
"eval_precision": 0.
|
| 81 |
-
"eval_recall": 0.
|
| 82 |
-
"eval_runtime":
|
| 83 |
-
"eval_samples_per_second":
|
| 84 |
-
"eval_steps_per_second":
|
| 85 |
"step": 488
|
| 86 |
},
|
| 87 |
{
|
| 88 |
"epoch": 5.0,
|
| 89 |
-
"grad_norm":
|
| 90 |
"learning_rate": 3.7500000000000003e-05,
|
| 91 |
-
"loss": 0.
|
| 92 |
"step": 610
|
| 93 |
},
|
| 94 |
{
|
| 95 |
"epoch": 5.0,
|
| 96 |
-
"eval_accuracy": 0.
|
| 97 |
-
"eval_f1": 0.
|
| 98 |
-
"eval_loss": 0.
|
| 99 |
-
"eval_precision": 0.
|
| 100 |
-
"eval_recall": 0.
|
| 101 |
-
"eval_runtime":
|
| 102 |
-
"eval_samples_per_second":
|
| 103 |
-
"eval_steps_per_second":
|
| 104 |
"step": 610
|
| 105 |
},
|
| 106 |
{
|
| 107 |
"epoch": 6.0,
|
| 108 |
-
"grad_norm":
|
| 109 |
"learning_rate": 3.5e-05,
|
| 110 |
-
"loss": 0.
|
| 111 |
"step": 732
|
| 112 |
},
|
| 113 |
{
|
| 114 |
"epoch": 6.0,
|
| 115 |
-
"eval_accuracy": 0.
|
| 116 |
-
"eval_f1": 0.
|
| 117 |
-
"eval_loss": 0.
|
| 118 |
-
"eval_precision": 0.
|
| 119 |
-
"eval_recall": 0.
|
| 120 |
-
"eval_runtime":
|
| 121 |
-
"eval_samples_per_second":
|
| 122 |
-
"eval_steps_per_second":
|
| 123 |
"step": 732
|
| 124 |
},
|
| 125 |
{
|
| 126 |
"epoch": 7.0,
|
| 127 |
-
"grad_norm": 0.
|
| 128 |
"learning_rate": 3.2500000000000004e-05,
|
| 129 |
-
"loss": 0.
|
| 130 |
"step": 854
|
| 131 |
},
|
| 132 |
{
|
| 133 |
"epoch": 7.0,
|
| 134 |
"eval_accuracy": 0.8972431077694235,
|
| 135 |
-
"eval_f1": 0.
|
| 136 |
-
"eval_loss": 0.
|
| 137 |
-
"eval_precision": 0.
|
| 138 |
-
"eval_recall": 0.
|
| 139 |
-
"eval_runtime":
|
| 140 |
-
"eval_samples_per_second":
|
| 141 |
-
"eval_steps_per_second":
|
| 142 |
"step": 854
|
| 143 |
},
|
| 144 |
{
|
| 145 |
"epoch": 8.0,
|
| 146 |
-
"grad_norm": 0.
|
| 147 |
"learning_rate": 3e-05,
|
| 148 |
-
"loss": 0.
|
| 149 |
"step": 976
|
| 150 |
},
|
| 151 |
{
|
| 152 |
"epoch": 8.0,
|
| 153 |
-
"eval_accuracy": 0.
|
| 154 |
-
"eval_f1": 0.
|
| 155 |
-
"eval_loss": 0.
|
| 156 |
-
"eval_precision": 0.
|
| 157 |
-
"eval_recall": 0.
|
| 158 |
-
"eval_runtime":
|
| 159 |
-
"eval_samples_per_second":
|
| 160 |
-
"eval_steps_per_second":
|
| 161 |
"step": 976
|
| 162 |
},
|
| 163 |
{
|
| 164 |
"epoch": 9.0,
|
| 165 |
-
"grad_norm": 0.
|
| 166 |
"learning_rate": 2.7500000000000004e-05,
|
| 167 |
-
"loss": 0.
|
| 168 |
"step": 1098
|
| 169 |
},
|
| 170 |
{
|
| 171 |
"epoch": 9.0,
|
| 172 |
-
"eval_accuracy": 0.
|
| 173 |
-
"eval_f1": 0.
|
| 174 |
-
"eval_loss": 0.
|
| 175 |
-
"eval_precision": 0.
|
| 176 |
-
"eval_recall": 0.
|
| 177 |
-
"eval_runtime":
|
| 178 |
-
"eval_samples_per_second":
|
| 179 |
-
"eval_steps_per_second":
|
| 180 |
"step": 1098
|
| 181 |
},
|
| 182 |
{
|
| 183 |
"epoch": 10.0,
|
| 184 |
-
"grad_norm": 0.
|
| 185 |
"learning_rate": 2.5e-05,
|
| 186 |
-
"loss": 0.
|
| 187 |
"step": 1220
|
| 188 |
},
|
| 189 |
{
|
| 190 |
"epoch": 10.0,
|
| 191 |
-
"eval_accuracy": 0.
|
| 192 |
-
"eval_f1": 0.
|
| 193 |
-
"eval_loss": 0.
|
| 194 |
-
"eval_precision": 0.
|
| 195 |
-
"eval_recall": 0.
|
| 196 |
-
"eval_runtime":
|
| 197 |
-
"eval_samples_per_second":
|
| 198 |
-
"eval_steps_per_second":
|
| 199 |
"step": 1220
|
| 200 |
},
|
| 201 |
{
|
| 202 |
"epoch": 11.0,
|
| 203 |
-
"grad_norm": 0.
|
| 204 |
"learning_rate": 2.25e-05,
|
| 205 |
-
"loss": 0.
|
| 206 |
"step": 1342
|
| 207 |
},
|
| 208 |
{
|
| 209 |
"epoch": 11.0,
|
| 210 |
-
"eval_accuracy": 0.
|
| 211 |
-
"eval_f1": 0.
|
| 212 |
-
"eval_loss": 0.
|
| 213 |
-
"eval_precision": 0.
|
| 214 |
-
"eval_recall": 0.
|
| 215 |
-
"eval_runtime":
|
| 216 |
-
"eval_samples_per_second":
|
| 217 |
-
"eval_steps_per_second":
|
| 218 |
"step": 1342
|
| 219 |
},
|
| 220 |
{
|
| 221 |
"epoch": 12.0,
|
| 222 |
-
"grad_norm": 0.
|
| 223 |
"learning_rate": 2e-05,
|
| 224 |
-
"loss": 0.
|
| 225 |
"step": 1464
|
| 226 |
},
|
| 227 |
{
|
| 228 |
"epoch": 12.0,
|
| 229 |
-
"eval_accuracy": 0.
|
| 230 |
-
"eval_f1": 0.
|
| 231 |
-
"eval_loss": 0.
|
| 232 |
-
"eval_precision": 0.
|
| 233 |
-
"eval_recall": 0.
|
| 234 |
-
"eval_runtime":
|
| 235 |
-
"eval_samples_per_second":
|
| 236 |
-
"eval_steps_per_second":
|
| 237 |
"step": 1464
|
| 238 |
},
|
| 239 |
{
|
| 240 |
"epoch": 13.0,
|
| 241 |
-
"grad_norm": 0.
|
| 242 |
"learning_rate": 1.75e-05,
|
| 243 |
-
"loss": 0.
|
| 244 |
"step": 1586
|
| 245 |
},
|
| 246 |
{
|
| 247 |
"epoch": 13.0,
|
| 248 |
-
"eval_accuracy": 0.
|
| 249 |
-
"eval_f1": 0.
|
| 250 |
-
"eval_loss": 0.
|
| 251 |
-
"eval_precision": 0.
|
| 252 |
-
"eval_recall": 0.
|
| 253 |
-
"eval_runtime":
|
| 254 |
-
"eval_samples_per_second":
|
| 255 |
-
"eval_steps_per_second":
|
| 256 |
"step": 1586
|
| 257 |
},
|
| 258 |
{
|
| 259 |
"epoch": 14.0,
|
| 260 |
-
"grad_norm": 0.
|
| 261 |
"learning_rate": 1.5e-05,
|
| 262 |
-
"loss": 0.
|
| 263 |
"step": 1708
|
| 264 |
},
|
| 265 |
{
|
| 266 |
"epoch": 14.0,
|
| 267 |
-
"eval_accuracy": 0.
|
| 268 |
-
"eval_f1": 0.
|
| 269 |
-
"eval_loss": 0.
|
| 270 |
-
"eval_precision": 0.
|
| 271 |
-
"eval_recall": 0.
|
| 272 |
-
"eval_runtime":
|
| 273 |
-
"eval_samples_per_second":
|
| 274 |
-
"eval_steps_per_second":
|
| 275 |
"step": 1708
|
| 276 |
},
|
| 277 |
{
|
| 278 |
"epoch": 15.0,
|
| 279 |
-
"grad_norm": 0.
|
| 280 |
"learning_rate": 1.25e-05,
|
| 281 |
-
"loss": 0.
|
| 282 |
"step": 1830
|
| 283 |
},
|
| 284 |
{
|
| 285 |
"epoch": 15.0,
|
| 286 |
-
"eval_accuracy": 0.
|
| 287 |
-
"eval_f1": 0.
|
| 288 |
-
"eval_loss": 0.
|
| 289 |
-
"eval_precision": 0.
|
| 290 |
-
"eval_recall": 0.
|
| 291 |
-
"eval_runtime":
|
| 292 |
-
"eval_samples_per_second":
|
| 293 |
-
"eval_steps_per_second":
|
| 294 |
"step": 1830
|
| 295 |
},
|
| 296 |
{
|
| 297 |
"epoch": 16.0,
|
| 298 |
-
"grad_norm": 0.
|
| 299 |
"learning_rate": 1e-05,
|
| 300 |
-
"loss": 0.
|
| 301 |
"step": 1952
|
| 302 |
},
|
| 303 |
{
|
| 304 |
"epoch": 16.0,
|
| 305 |
-
"eval_accuracy": 0.
|
| 306 |
-
"eval_f1": 0.
|
| 307 |
-
"eval_loss": 0.
|
| 308 |
-
"eval_precision": 0.
|
| 309 |
-
"eval_recall": 0.
|
| 310 |
-
"eval_runtime":
|
| 311 |
-
"eval_samples_per_second":
|
| 312 |
-
"eval_steps_per_second":
|
| 313 |
"step": 1952
|
| 314 |
},
|
| 315 |
{
|
| 316 |
"epoch": 17.0,
|
| 317 |
-
"grad_norm": 0.
|
| 318 |
"learning_rate": 7.5e-06,
|
| 319 |
-
"loss": 0.
|
| 320 |
"step": 2074
|
| 321 |
},
|
| 322 |
{
|
| 323 |
"epoch": 17.0,
|
| 324 |
-
"eval_accuracy": 0.
|
| 325 |
-
"eval_f1": 0.
|
| 326 |
-
"eval_loss": 0.
|
| 327 |
-
"eval_precision": 0.
|
| 328 |
-
"eval_recall": 0.
|
| 329 |
-
"eval_runtime":
|
| 330 |
-
"eval_samples_per_second":
|
| 331 |
-
"eval_steps_per_second":
|
| 332 |
"step": 2074
|
| 333 |
},
|
| 334 |
{
|
| 335 |
"epoch": 18.0,
|
| 336 |
-
"grad_norm": 0.
|
| 337 |
"learning_rate": 5e-06,
|
| 338 |
-
"loss": 0.
|
| 339 |
"step": 2196
|
| 340 |
},
|
| 341 |
{
|
| 342 |
"epoch": 18.0,
|
| 343 |
-
"eval_accuracy": 0.
|
| 344 |
-
"eval_f1": 0.
|
| 345 |
-
"eval_loss": 0.
|
| 346 |
-
"eval_precision": 0.
|
| 347 |
-
"eval_recall": 0.
|
| 348 |
-
"eval_runtime":
|
| 349 |
-
"eval_samples_per_second":
|
| 350 |
-
"eval_steps_per_second":
|
| 351 |
"step": 2196
|
| 352 |
},
|
| 353 |
{
|
| 354 |
"epoch": 19.0,
|
| 355 |
-
"grad_norm": 0.
|
| 356 |
"learning_rate": 2.5e-06,
|
| 357 |
-
"loss": 0.
|
| 358 |
"step": 2318
|
| 359 |
},
|
| 360 |
{
|
| 361 |
"epoch": 19.0,
|
| 362 |
-
"eval_accuracy": 0.
|
| 363 |
-
"eval_f1": 0.
|
| 364 |
-
"eval_loss": 0.
|
| 365 |
-
"eval_precision": 0.
|
| 366 |
-
"eval_recall": 0.
|
| 367 |
-
"eval_runtime":
|
| 368 |
-
"eval_samples_per_second":
|
| 369 |
-
"eval_steps_per_second":
|
| 370 |
"step": 2318
|
| 371 |
},
|
| 372 |
{
|
| 373 |
"epoch": 20.0,
|
| 374 |
-
"grad_norm": 0.
|
| 375 |
"learning_rate": 0.0,
|
| 376 |
-
"loss": 0.
|
| 377 |
"step": 2440
|
| 378 |
},
|
| 379 |
{
|
| 380 |
"epoch": 20.0,
|
| 381 |
-
"eval_accuracy": 0.
|
| 382 |
-
"eval_f1": 0.
|
| 383 |
-
"eval_loss": 0.
|
| 384 |
-
"eval_precision": 0.
|
| 385 |
-
"eval_recall": 0.
|
| 386 |
-
"eval_runtime":
|
| 387 |
-
"eval_samples_per_second":
|
| 388 |
-
"eval_steps_per_second":
|
| 389 |
"step": 2440
|
| 390 |
},
|
| 391 |
{
|
| 392 |
"epoch": 20.0,
|
| 393 |
"step": 2440,
|
| 394 |
"total_flos": 7584162436176000.0,
|
| 395 |
-
"train_loss": 0.
|
| 396 |
-
"train_runtime":
|
| 397 |
-
"train_samples_per_second":
|
| 398 |
-
"train_steps_per_second":
|
| 399 |
}
|
| 400 |
],
|
| 401 |
"logging_steps": 500,
|
|
|
|
| 10 |
"log_history": [
|
| 11 |
{
|
| 12 |
"epoch": 1.0,
|
| 13 |
+
"grad_norm": 20.136756896972656,
|
| 14 |
"learning_rate": 4.75e-05,
|
| 15 |
+
"loss": 0.3889,
|
| 16 |
"step": 122
|
| 17 |
},
|
| 18 |
{
|
| 19 |
"epoch": 1.0,
|
| 20 |
+
"eval_accuracy": 0.8045112781954887,
|
| 21 |
+
"eval_f1": 0.7109554944646705,
|
| 22 |
+
"eval_loss": 0.4199941158294678,
|
| 23 |
+
"eval_precision": 0.8255285412262157,
|
| 24 |
+
"eval_recall": 0.6866703036915802,
|
| 25 |
+
"eval_runtime": 1.6394,
|
| 26 |
+
"eval_samples_per_second": 243.375,
|
| 27 |
+
"eval_steps_per_second": 30.498,
|
| 28 |
"step": 122
|
| 29 |
},
|
| 30 |
{
|
| 31 |
"epoch": 2.0,
|
| 32 |
+
"grad_norm": 24.683944702148438,
|
| 33 |
"learning_rate": 4.5e-05,
|
| 34 |
+
"loss": 0.2335,
|
| 35 |
"step": 244
|
| 36 |
},
|
| 37 |
{
|
| 38 |
"epoch": 2.0,
|
| 39 |
+
"eval_accuracy": 0.8922305764411027,
|
| 40 |
+
"eval_f1": 0.8739355018846853,
|
| 41 |
+
"eval_loss": 0.3136064410209656,
|
| 42 |
+
"eval_precision": 0.864426651415499,
|
| 43 |
+
"eval_recall": 0.886252045826514,
|
| 44 |
+
"eval_runtime": 1.6497,
|
| 45 |
+
"eval_samples_per_second": 241.866,
|
| 46 |
+
"eval_steps_per_second": 30.309,
|
| 47 |
"step": 244
|
| 48 |
},
|
| 49 |
{
|
| 50 |
"epoch": 3.0,
|
| 51 |
+
"grad_norm": 66.46725463867188,
|
| 52 |
"learning_rate": 4.25e-05,
|
| 53 |
+
"loss": 0.1411,
|
| 54 |
"step": 366
|
| 55 |
},
|
| 56 |
{
|
| 57 |
"epoch": 3.0,
|
| 58 |
+
"eval_accuracy": 0.8972431077694235,
|
| 59 |
+
"eval_f1": 0.8751002084335417,
|
| 60 |
+
"eval_loss": 0.35689812898635864,
|
| 61 |
+
"eval_precision": 0.8780701754385964,
|
| 62 |
+
"eval_recall": 0.8722949627204946,
|
| 63 |
+
"eval_runtime": 1.6606,
|
| 64 |
+
"eval_samples_per_second": 240.275,
|
| 65 |
+
"eval_steps_per_second": 30.11,
|
| 66 |
"step": 366
|
| 67 |
},
|
| 68 |
{
|
| 69 |
"epoch": 4.0,
|
| 70 |
+
"grad_norm": 42.06414031982422,
|
| 71 |
"learning_rate": 4e-05,
|
| 72 |
+
"loss": 0.1078,
|
| 73 |
"step": 488
|
| 74 |
},
|
| 75 |
{
|
| 76 |
"epoch": 4.0,
|
| 77 |
+
"eval_accuracy": 0.9147869674185464,
|
| 78 |
+
"eval_f1": 0.8991765265473572,
|
| 79 |
+
"eval_loss": 0.35370269417762756,
|
| 80 |
+
"eval_precision": 0.8922773722627737,
|
| 81 |
+
"eval_recall": 0.9072104018912529,
|
| 82 |
+
"eval_runtime": 1.653,
|
| 83 |
+
"eval_samples_per_second": 241.378,
|
| 84 |
+
"eval_steps_per_second": 30.248,
|
| 85 |
"step": 488
|
| 86 |
},
|
| 87 |
{
|
| 88 |
"epoch": 5.0,
|
| 89 |
+
"grad_norm": 88.54315185546875,
|
| 90 |
"learning_rate": 3.7500000000000003e-05,
|
| 91 |
+
"loss": 0.0822,
|
| 92 |
"step": 610
|
| 93 |
},
|
| 94 |
{
|
| 95 |
"epoch": 5.0,
|
| 96 |
+
"eval_accuracy": 0.8796992481203008,
|
| 97 |
+
"eval_f1": 0.8439374185136896,
|
| 98 |
+
"eval_loss": 0.5069139003753662,
|
| 99 |
+
"eval_precision": 0.8794955044955045,
|
| 100 |
+
"eval_recall": 0.822376795781051,
|
| 101 |
+
"eval_runtime": 1.6524,
|
| 102 |
+
"eval_samples_per_second": 241.466,
|
| 103 |
+
"eval_steps_per_second": 30.259,
|
| 104 |
"step": 610
|
| 105 |
},
|
| 106 |
{
|
| 107 |
"epoch": 6.0,
|
| 108 |
+
"grad_norm": 114.8245849609375,
|
| 109 |
"learning_rate": 3.5e-05,
|
| 110 |
+
"loss": 0.0529,
|
| 111 |
"step": 732
|
| 112 |
},
|
| 113 |
{
|
| 114 |
"epoch": 6.0,
|
| 115 |
+
"eval_accuracy": 0.9072681704260651,
|
| 116 |
+
"eval_f1": 0.888964101175568,
|
| 117 |
+
"eval_loss": 0.42624175548553467,
|
| 118 |
+
"eval_precision": 0.8862007168458781,
|
| 119 |
+
"eval_recall": 0.8918894344426259,
|
| 120 |
+
"eval_runtime": 1.6561,
|
| 121 |
+
"eval_samples_per_second": 240.934,
|
| 122 |
+
"eval_steps_per_second": 30.192,
|
| 123 |
"step": 732
|
| 124 |
},
|
| 125 |
{
|
| 126 |
"epoch": 7.0,
|
| 127 |
+
"grad_norm": 0.022069375962018967,
|
| 128 |
"learning_rate": 3.2500000000000004e-05,
|
| 129 |
+
"loss": 0.0365,
|
| 130 |
"step": 854
|
| 131 |
},
|
| 132 |
{
|
| 133 |
"epoch": 7.0,
|
| 134 |
"eval_accuracy": 0.8972431077694235,
|
| 135 |
+
"eval_f1": 0.8769602202215754,
|
| 136 |
+
"eval_loss": 0.5586097836494446,
|
| 137 |
+
"eval_precision": 0.8742831541218639,
|
| 138 |
+
"eval_recall": 0.8797963266048372,
|
| 139 |
+
"eval_runtime": 1.6532,
|
| 140 |
+
"eval_samples_per_second": 241.352,
|
| 141 |
+
"eval_steps_per_second": 30.245,
|
| 142 |
"step": 854
|
| 143 |
},
|
| 144 |
{
|
| 145 |
"epoch": 8.0,
|
| 146 |
+
"grad_norm": 0.0406961552798748,
|
| 147 |
"learning_rate": 3e-05,
|
| 148 |
+
"loss": 0.033,
|
| 149 |
"step": 976
|
| 150 |
},
|
| 151 |
{
|
| 152 |
"epoch": 8.0,
|
| 153 |
+
"eval_accuracy": 0.8947368421052632,
|
| 154 |
+
"eval_f1": 0.8674628282189181,
|
| 155 |
+
"eval_loss": 0.5012311935424805,
|
| 156 |
+
"eval_precision": 0.8869858462356303,
|
| 157 |
+
"eval_recall": 0.8530187306783051,
|
| 158 |
+
"eval_runtime": 1.6551,
|
| 159 |
+
"eval_samples_per_second": 241.075,
|
| 160 |
+
"eval_steps_per_second": 30.21,
|
| 161 |
"step": 976
|
| 162 |
},
|
| 163 |
{
|
| 164 |
"epoch": 9.0,
|
| 165 |
+
"grad_norm": 0.6461573243141174,
|
| 166 |
"learning_rate": 2.7500000000000004e-05,
|
| 167 |
+
"loss": 0.0248,
|
| 168 |
"step": 1098
|
| 169 |
},
|
| 170 |
{
|
| 171 |
"epoch": 9.0,
|
| 172 |
+
"eval_accuracy": 0.8922305764411027,
|
| 173 |
+
"eval_f1": 0.8631217838765008,
|
| 174 |
+
"eval_loss": 0.583283007144928,
|
| 175 |
+
"eval_precision": 0.8872804935927859,
|
| 176 |
+
"eval_recall": 0.8462447717766868,
|
| 177 |
+
"eval_runtime": 1.6572,
|
| 178 |
+
"eval_samples_per_second": 240.772,
|
| 179 |
+
"eval_steps_per_second": 30.172,
|
| 180 |
"step": 1098
|
| 181 |
},
|
| 182 |
{
|
| 183 |
"epoch": 10.0,
|
| 184 |
+
"grad_norm": 0.12847253680229187,
|
| 185 |
"learning_rate": 2.5e-05,
|
| 186 |
+
"loss": 0.0123,
|
| 187 |
"step": 1220
|
| 188 |
},
|
| 189 |
{
|
| 190 |
"epoch": 10.0,
|
| 191 |
+
"eval_accuracy": 0.9022556390977443,
|
| 192 |
+
"eval_f1": 0.8805765113084321,
|
| 193 |
+
"eval_loss": 0.6610547304153442,
|
| 194 |
+
"eval_precision": 0.8857796167247387,
|
| 195 |
+
"eval_recall": 0.8758410620112748,
|
| 196 |
+
"eval_runtime": 1.6505,
|
| 197 |
+
"eval_samples_per_second": 241.744,
|
| 198 |
+
"eval_steps_per_second": 30.294,
|
| 199 |
"step": 1220
|
| 200 |
},
|
| 201 |
{
|
| 202 |
"epoch": 11.0,
|
| 203 |
+
"grad_norm": 0.003805552376434207,
|
| 204 |
"learning_rate": 2.25e-05,
|
| 205 |
+
"loss": 0.0088,
|
| 206 |
"step": 1342
|
| 207 |
},
|
| 208 |
{
|
| 209 |
"epoch": 11.0,
|
| 210 |
+
"eval_accuracy": 0.8947368421052632,
|
| 211 |
+
"eval_f1": 0.8682132746146587,
|
| 212 |
+
"eval_loss": 0.6935672760009766,
|
| 213 |
+
"eval_precision": 0.884741537654159,
|
| 214 |
+
"eval_recall": 0.8555191853064193,
|
| 215 |
+
"eval_runtime": 1.6547,
|
| 216 |
+
"eval_samples_per_second": 241.138,
|
| 217 |
+
"eval_steps_per_second": 30.218,
|
| 218 |
"step": 1342
|
| 219 |
},
|
| 220 |
{
|
| 221 |
"epoch": 12.0,
|
| 222 |
+
"grad_norm": 0.0037182692904025316,
|
| 223 |
"learning_rate": 2e-05,
|
| 224 |
+
"loss": 0.0074,
|
| 225 |
"step": 1464
|
| 226 |
},
|
| 227 |
{
|
| 228 |
"epoch": 12.0,
|
| 229 |
+
"eval_accuracy": 0.9022556390977443,
|
| 230 |
+
"eval_f1": 0.8805765113084321,
|
| 231 |
+
"eval_loss": 0.6789939403533936,
|
| 232 |
+
"eval_precision": 0.8857796167247387,
|
| 233 |
+
"eval_recall": 0.8758410620112748,
|
| 234 |
+
"eval_runtime": 1.6567,
|
| 235 |
+
"eval_samples_per_second": 240.838,
|
| 236 |
+
"eval_steps_per_second": 30.18,
|
| 237 |
"step": 1464
|
| 238 |
},
|
| 239 |
{
|
| 240 |
"epoch": 13.0,
|
| 241 |
+
"grad_norm": 0.0025616472121328115,
|
| 242 |
"learning_rate": 1.75e-05,
|
| 243 |
+
"loss": 0.0141,
|
| 244 |
"step": 1586
|
| 245 |
},
|
| 246 |
{
|
| 247 |
"epoch": 13.0,
|
| 248 |
+
"eval_accuracy": 0.8972431077694235,
|
| 249 |
+
"eval_f1": 0.8731122745782431,
|
| 250 |
+
"eval_loss": 0.6981470584869385,
|
| 251 |
+
"eval_precision": 0.8829705994654449,
|
| 252 |
+
"eval_recall": 0.864793598836152,
|
| 253 |
+
"eval_runtime": 1.6639,
|
| 254 |
+
"eval_samples_per_second": 239.794,
|
| 255 |
+
"eval_steps_per_second": 30.049,
|
| 256 |
"step": 1586
|
| 257 |
},
|
| 258 |
{
|
| 259 |
"epoch": 14.0,
|
| 260 |
+
"grad_norm": 0.006673410069197416,
|
| 261 |
"learning_rate": 1.5e-05,
|
| 262 |
+
"loss": 0.0034,
|
| 263 |
"step": 1708
|
| 264 |
},
|
| 265 |
{
|
| 266 |
"epoch": 14.0,
|
| 267 |
+
"eval_accuracy": 0.8972431077694235,
|
| 268 |
+
"eval_f1": 0.8751002084335417,
|
| 269 |
+
"eval_loss": 0.7144644856452942,
|
| 270 |
+
"eval_precision": 0.8780701754385964,
|
| 271 |
+
"eval_recall": 0.8722949627204946,
|
| 272 |
+
"eval_runtime": 1.6531,
|
| 273 |
+
"eval_samples_per_second": 241.366,
|
| 274 |
+
"eval_steps_per_second": 30.246,
|
| 275 |
"step": 1708
|
| 276 |
},
|
| 277 |
{
|
| 278 |
"epoch": 15.0,
|
| 279 |
+
"grad_norm": 0.0030696168541908264,
|
| 280 |
"learning_rate": 1.25e-05,
|
| 281 |
+
"loss": 0.0059,
|
| 282 |
"step": 1830
|
| 283 |
},
|
| 284 |
{
|
| 285 |
"epoch": 15.0,
|
| 286 |
+
"eval_accuracy": 0.899749373433584,
|
| 287 |
+
"eval_f1": 0.8758710801393728,
|
| 288 |
+
"eval_loss": 0.7303631901741028,
|
| 289 |
+
"eval_precision": 0.8870983228779925,
|
| 290 |
+
"eval_recall": 0.8665666484815421,
|
| 291 |
+
"eval_runtime": 1.6541,
|
| 292 |
+
"eval_samples_per_second": 241.215,
|
| 293 |
+
"eval_steps_per_second": 30.227,
|
| 294 |
"step": 1830
|
| 295 |
},
|
| 296 |
{
|
| 297 |
"epoch": 16.0,
|
| 298 |
+
"grad_norm": 0.0017388605047017336,
|
| 299 |
"learning_rate": 1e-05,
|
| 300 |
+
"loss": 0.0056,
|
| 301 |
"step": 1952
|
| 302 |
},
|
| 303 |
{
|
| 304 |
"epoch": 16.0,
|
| 305 |
+
"eval_accuracy": 0.899749373433584,
|
| 306 |
+
"eval_f1": 0.879667048676036,
|
| 307 |
+
"eval_loss": 0.7517656683921814,
|
| 308 |
+
"eval_precision": 0.8778361344537815,
|
| 309 |
+
"eval_recall": 0.8815693762502272,
|
| 310 |
+
"eval_runtime": 1.6536,
|
| 311 |
+
"eval_samples_per_second": 241.288,
|
| 312 |
+
"eval_steps_per_second": 30.237,
|
| 313 |
"step": 1952
|
| 314 |
},
|
| 315 |
{
|
| 316 |
"epoch": 17.0,
|
| 317 |
+
"grad_norm": 0.002333118114620447,
|
| 318 |
"learning_rate": 7.5e-06,
|
| 319 |
+
"loss": 0.0039,
|
| 320 |
"step": 2074
|
| 321 |
},
|
| 322 |
{
|
| 323 |
"epoch": 17.0,
|
| 324 |
+
"eval_accuracy": 0.9022556390977443,
|
| 325 |
+
"eval_f1": 0.8793019197207679,
|
| 326 |
+
"eval_loss": 0.7390431761741638,
|
| 327 |
+
"eval_precision": 0.8893184421534936,
|
| 328 |
+
"eval_recall": 0.8708401527550463,
|
| 329 |
+
"eval_runtime": 1.655,
|
| 330 |
+
"eval_samples_per_second": 241.08,
|
| 331 |
+
"eval_steps_per_second": 30.211,
|
| 332 |
"step": 2074
|
| 333 |
},
|
| 334 |
{
|
| 335 |
"epoch": 18.0,
|
| 336 |
+
"grad_norm": 0.0018157872837036848,
|
| 337 |
"learning_rate": 5e-06,
|
| 338 |
+
"loss": 0.004,
|
| 339 |
"step": 2196
|
| 340 |
},
|
| 341 |
{
|
| 342 |
"epoch": 18.0,
|
| 343 |
+
"eval_accuracy": 0.9022556390977443,
|
| 344 |
+
"eval_f1": 0.8799463033398397,
|
| 345 |
+
"eval_loss": 0.764133095741272,
|
| 346 |
+
"eval_precision": 0.8874803397294746,
|
| 347 |
+
"eval_recall": 0.8733406073831607,
|
| 348 |
+
"eval_runtime": 1.6667,
|
| 349 |
+
"eval_samples_per_second": 239.389,
|
| 350 |
+
"eval_steps_per_second": 29.999,
|
| 351 |
"step": 2196
|
| 352 |
},
|
| 353 |
{
|
| 354 |
"epoch": 19.0,
|
| 355 |
+
"grad_norm": 0.0015570241957902908,
|
| 356 |
"learning_rate": 2.5e-06,
|
| 357 |
+
"loss": 0.007,
|
| 358 |
"step": 2318
|
| 359 |
},
|
| 360 |
{
|
| 361 |
"epoch": 19.0,
|
| 362 |
+
"eval_accuracy": 0.9022556390977443,
|
| 363 |
+
"eval_f1": 0.8799463033398397,
|
| 364 |
+
"eval_loss": 0.7847548723220825,
|
| 365 |
+
"eval_precision": 0.8874803397294746,
|
| 366 |
+
"eval_recall": 0.8733406073831607,
|
| 367 |
+
"eval_runtime": 1.664,
|
| 368 |
+
"eval_samples_per_second": 239.788,
|
| 369 |
+
"eval_steps_per_second": 30.049,
|
| 370 |
"step": 2318
|
| 371 |
},
|
| 372 |
{
|
| 373 |
"epoch": 20.0,
|
| 374 |
+
"grad_norm": 0.002853752113878727,
|
| 375 |
"learning_rate": 0.0,
|
| 376 |
+
"loss": 0.0042,
|
| 377 |
"step": 2440
|
| 378 |
},
|
| 379 |
{
|
| 380 |
"epoch": 20.0,
|
| 381 |
+
"eval_accuracy": 0.9022556390977443,
|
| 382 |
+
"eval_f1": 0.8799463033398397,
|
| 383 |
+
"eval_loss": 0.790817379951477,
|
| 384 |
+
"eval_precision": 0.8874803397294746,
|
| 385 |
+
"eval_recall": 0.8733406073831607,
|
| 386 |
+
"eval_runtime": 1.6678,
|
| 387 |
+
"eval_samples_per_second": 239.236,
|
| 388 |
+
"eval_steps_per_second": 29.979,
|
| 389 |
"step": 2440
|
| 390 |
},
|
| 391 |
{
|
| 392 |
"epoch": 20.0,
|
| 393 |
"step": 2440,
|
| 394 |
"total_flos": 7584162436176000.0,
|
| 395 |
+
"train_loss": 0.0588726386183598,
|
| 396 |
+
"train_runtime": 864.0501,
|
| 397 |
+
"train_samples_per_second": 84.208,
|
| 398 |
+
"train_steps_per_second": 2.824
|
| 399 |
}
|
| 400 |
],
|
| 401 |
"logging_steps": 500,
|