--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen3-8B-Base tags: - axolotl - generated_from_trainer model-index: - name: 03d10d3d-d0de-4e3a-a192-1749f29583a3 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.10.0.dev0` ```yaml adapter: lora base_model: Qwen/Qwen3-8B-Base bf16: true datasets: - data_files: - 45c346a7c1e52747_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_input: None field_instruction: instruct field_output: output field_system: None format: None no_input_format: None system_format: '{system}' system_prompt: None eval_max_new_tokens: 128 evals_per_epoch: 4 flash_attention: false fp16: false gradient_accumulation_steps: 1 gradient_checkpointing: true group_by_length: true hub_model_id: apriasmoro/03d10d3d-d0de-4e3a-a192-1749f29583a3 learning_rate: 0.0002 load_in_4bit: false logging_steps: 10 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: false lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 14 micro_batch_size: 16 mlflow_experiment_name: /tmp/45c346a7c1e52747_train_data.json output_dir: llama3_lora_output rl: null sample_packing: true save_steps: 6 sequence_len: 2048 tf32: true tokenizer_type: AutoTokenizer train_on_inputs: true trl: null trust_remote_code: true wandb_name: c732d2b4-46df-4ed8-83ee-7525f648965f wandb_project: Gradients-On-Demand wandb_run: llama3_h200_run wandb_runid: c732d2b4-46df-4ed8-83ee-7525f648965f warmup_steps: 100 weight_decay: 0.01 ```

# 03d10d3d-d0de-4e3a-a192-1749f29583a3 This model is a fine-tuned version of [Qwen/Qwen3-8B-Base](https://huggingface.co/Qwen/Qwen3-8B-Base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 14 ### Training results ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.5.1+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1