linjinpeng
commited on
Commit
·
4049887
1
Parent(s):
a19eadb
fix checkpoint, ready to merge to diffusers
Browse files- config.json +0 -7
- controlnet_sd3.py +0 -552
- demo.py +0 -53
- diffusion_pytorch_model.safetensors +2 -2
- pipeline_sd3_controlnet_inpainting.py +0 -1333
config.json
CHANGED
|
@@ -4,13 +4,6 @@
|
|
| 4 |
"_name_or_path": "./model_hub_tmp_0/.",
|
| 5 |
"attention_head_dim": 64,
|
| 6 |
"caption_projection_dim": 1536,
|
| 7 |
-
"conditioning_channels": 3,
|
| 8 |
-
"conditioning_embedding_out_channels": [
|
| 9 |
-
16,
|
| 10 |
-
32,
|
| 11 |
-
96,
|
| 12 |
-
256
|
| 13 |
-
],
|
| 14 |
"in_channels": 16,
|
| 15 |
"joint_attention_dim": 4096,
|
| 16 |
"num_attention_heads": 24,
|
|
|
|
| 4 |
"_name_or_path": "./model_hub_tmp_0/.",
|
| 5 |
"attention_head_dim": 64,
|
| 6 |
"caption_projection_dim": 1536,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
"in_channels": 16,
|
| 8 |
"joint_attention_dim": 4096,
|
| 9 |
"num_attention_heads": 24,
|
controlnet_sd3.py
DELETED
|
@@ -1,552 +0,0 @@
|
|
| 1 |
-
# Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
from dataclasses import dataclass
|
| 17 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 18 |
-
|
| 19 |
-
import torch
|
| 20 |
-
import torch.nn as nn
|
| 21 |
-
|
| 22 |
-
import diffusers
|
| 23 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 24 |
-
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
| 25 |
-
from diffusers.models.attention import JointTransformerBlock
|
| 26 |
-
from diffusers.models.attention_processor import Attention, AttentionProcessor
|
| 27 |
-
from diffusers.models.modeling_utils import ModelMixin
|
| 28 |
-
from diffusers.utils import (
|
| 29 |
-
USE_PEFT_BACKEND,
|
| 30 |
-
is_torch_version,
|
| 31 |
-
logging,
|
| 32 |
-
scale_lora_layers,
|
| 33 |
-
unscale_lora_layers,
|
| 34 |
-
)
|
| 35 |
-
from diffusers.models.controlnet import BaseOutput, zero_module
|
| 36 |
-
from diffusers.models.embeddings import CombinedTimestepTextProjEmbeddings, PatchEmbed
|
| 37 |
-
from diffusers.models.transformers.transformer_2d import Transformer2DModelOutput
|
| 38 |
-
from torch.nn import functional as F
|
| 39 |
-
|
| 40 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 41 |
-
from packaging import version
|
| 42 |
-
|
| 43 |
-
class ControlNetConditioningEmbedding(nn.Module):
|
| 44 |
-
"""
|
| 45 |
-
Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
|
| 46 |
-
[11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
|
| 47 |
-
training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
|
| 48 |
-
convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
|
| 49 |
-
(activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
|
| 50 |
-
model) to encode image-space conditions ... into feature maps ..."
|
| 51 |
-
"""
|
| 52 |
-
|
| 53 |
-
def __init__(
|
| 54 |
-
self,
|
| 55 |
-
conditioning_embedding_channels: int,
|
| 56 |
-
conditioning_channels: int = 3,
|
| 57 |
-
block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
|
| 58 |
-
):
|
| 59 |
-
super().__init__()
|
| 60 |
-
|
| 61 |
-
self.conv_in = nn.Conv2d(
|
| 62 |
-
conditioning_channels, block_out_channels[0], kernel_size=3, padding=1
|
| 63 |
-
)
|
| 64 |
-
|
| 65 |
-
self.blocks = nn.ModuleList([])
|
| 66 |
-
|
| 67 |
-
for i in range(len(block_out_channels) - 1):
|
| 68 |
-
channel_in = block_out_channels[i]
|
| 69 |
-
channel_out = block_out_channels[i + 1]
|
| 70 |
-
self.blocks.append(
|
| 71 |
-
nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)
|
| 72 |
-
)
|
| 73 |
-
self.blocks.append(
|
| 74 |
-
nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)
|
| 75 |
-
)
|
| 76 |
-
|
| 77 |
-
self.conv_out = zero_module(
|
| 78 |
-
nn.Conv2d(
|
| 79 |
-
block_out_channels[-1],
|
| 80 |
-
conditioning_embedding_channels,
|
| 81 |
-
kernel_size=3,
|
| 82 |
-
padding=1,
|
| 83 |
-
)
|
| 84 |
-
)
|
| 85 |
-
|
| 86 |
-
def forward(self, conditioning):
|
| 87 |
-
embedding = self.conv_in(conditioning)
|
| 88 |
-
embedding = F.silu(embedding)
|
| 89 |
-
|
| 90 |
-
for block in self.blocks:
|
| 91 |
-
embedding = block(embedding)
|
| 92 |
-
embedding = F.silu(embedding)
|
| 93 |
-
|
| 94 |
-
embedding = self.conv_out(embedding)
|
| 95 |
-
|
| 96 |
-
return embedding
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
@dataclass
|
| 100 |
-
class SD3ControlNetOutput(BaseOutput):
|
| 101 |
-
controlnet_block_samples: Tuple[torch.Tensor]
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
class SD3ControlNetModel(
|
| 105 |
-
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin
|
| 106 |
-
):
|
| 107 |
-
_supports_gradient_checkpointing = True
|
| 108 |
-
|
| 109 |
-
@register_to_config
|
| 110 |
-
def __init__(
|
| 111 |
-
self,
|
| 112 |
-
sample_size: int = 128,
|
| 113 |
-
patch_size: int = 2,
|
| 114 |
-
in_channels: int = 16,
|
| 115 |
-
num_layers: int = 18,
|
| 116 |
-
attention_head_dim: int = 64,
|
| 117 |
-
num_attention_heads: int = 18,
|
| 118 |
-
joint_attention_dim: int = 4096,
|
| 119 |
-
caption_projection_dim: int = 1152,
|
| 120 |
-
pooled_projection_dim: int = 2048,
|
| 121 |
-
out_channels: int = 16,
|
| 122 |
-
pos_embed_max_size: int = 96,
|
| 123 |
-
conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (
|
| 124 |
-
16,
|
| 125 |
-
32,
|
| 126 |
-
96,
|
| 127 |
-
256,
|
| 128 |
-
),
|
| 129 |
-
conditioning_channels: int = 3,
|
| 130 |
-
):
|
| 131 |
-
"""
|
| 132 |
-
conditioning_channels: condition image pixel space channels
|
| 133 |
-
conditioning_embedding_out_channels: intermediate channels
|
| 134 |
-
|
| 135 |
-
"""
|
| 136 |
-
super().__init__()
|
| 137 |
-
default_out_channels = in_channels
|
| 138 |
-
self.out_channels = (
|
| 139 |
-
out_channels if out_channels is not None else default_out_channels
|
| 140 |
-
)
|
| 141 |
-
self.inner_dim = num_attention_heads * attention_head_dim
|
| 142 |
-
|
| 143 |
-
self.pos_embed = PatchEmbed(
|
| 144 |
-
height=sample_size,
|
| 145 |
-
width=sample_size,
|
| 146 |
-
patch_size=patch_size,
|
| 147 |
-
in_channels=in_channels,
|
| 148 |
-
embed_dim=self.inner_dim,
|
| 149 |
-
pos_embed_max_size=pos_embed_max_size, # hard-code for now.
|
| 150 |
-
)
|
| 151 |
-
self.time_text_embed = CombinedTimestepTextProjEmbeddings(
|
| 152 |
-
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
|
| 153 |
-
)
|
| 154 |
-
self.context_embedder = nn.Linear(joint_attention_dim, caption_projection_dim)
|
| 155 |
-
|
| 156 |
-
# control net conditioning embedding
|
| 157 |
-
# self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
|
| 158 |
-
# conditioning_embedding_channels=default_out_channels,
|
| 159 |
-
# block_out_channels=conditioning_embedding_out_channels,
|
| 160 |
-
# conditioning_channels=conditioning_channels,
|
| 161 |
-
# )
|
| 162 |
-
|
| 163 |
-
# `attention_head_dim` is doubled to account for the mixing.
|
| 164 |
-
# It needs to crafted when we get the actual checkpoints.
|
| 165 |
-
self.transformer_blocks = nn.ModuleList(
|
| 166 |
-
[
|
| 167 |
-
JointTransformerBlock(
|
| 168 |
-
dim=self.inner_dim,
|
| 169 |
-
num_attention_heads=num_attention_heads,
|
| 170 |
-
attention_head_dim=attention_head_dim if version.parse(diffusers.__version__) >= version.parse('0.30.0.dev0') else self.inner_dim,
|
| 171 |
-
context_pre_only=False,
|
| 172 |
-
)
|
| 173 |
-
for _ in range(num_layers)
|
| 174 |
-
]
|
| 175 |
-
)
|
| 176 |
-
|
| 177 |
-
# controlnet_blocks
|
| 178 |
-
self.controlnet_blocks = nn.ModuleList([])
|
| 179 |
-
for _ in range(len(self.transformer_blocks)):
|
| 180 |
-
controlnet_block = zero_module(nn.Linear(self.inner_dim, self.inner_dim))
|
| 181 |
-
self.controlnet_blocks.append(controlnet_block)
|
| 182 |
-
|
| 183 |
-
# control condition embedding
|
| 184 |
-
pos_embed_cond = PatchEmbed(
|
| 185 |
-
height=sample_size,
|
| 186 |
-
width=sample_size,
|
| 187 |
-
patch_size=patch_size,
|
| 188 |
-
in_channels=in_channels + 1,
|
| 189 |
-
embed_dim=self.inner_dim,
|
| 190 |
-
pos_embed_type=None,
|
| 191 |
-
)
|
| 192 |
-
# pos_embed_cond = nn.Linear(in_channels + 1, self.inner_dim)
|
| 193 |
-
self.pos_embed_cond = zero_module(pos_embed_cond)
|
| 194 |
-
|
| 195 |
-
self.gradient_checkpointing = False
|
| 196 |
-
|
| 197 |
-
# Copied from diffusers.models.unets.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
|
| 198 |
-
def enable_forward_chunking(
|
| 199 |
-
self, chunk_size: Optional[int] = None, dim: int = 0
|
| 200 |
-
) -> None:
|
| 201 |
-
"""
|
| 202 |
-
Sets the attention processor to use [feed forward
|
| 203 |
-
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
|
| 204 |
-
|
| 205 |
-
Parameters:
|
| 206 |
-
chunk_size (`int`, *optional*):
|
| 207 |
-
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
|
| 208 |
-
over each tensor of dim=`dim`.
|
| 209 |
-
dim (`int`, *optional*, defaults to `0`):
|
| 210 |
-
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
|
| 211 |
-
or dim=1 (sequence length).
|
| 212 |
-
"""
|
| 213 |
-
if dim not in [0, 1]:
|
| 214 |
-
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
|
| 215 |
-
|
| 216 |
-
# By default chunk size is 1
|
| 217 |
-
chunk_size = chunk_size or 1
|
| 218 |
-
|
| 219 |
-
def fn_recursive_feed_forward(
|
| 220 |
-
module: torch.nn.Module, chunk_size: int, dim: int
|
| 221 |
-
):
|
| 222 |
-
if hasattr(module, "set_chunk_feed_forward"):
|
| 223 |
-
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
| 224 |
-
|
| 225 |
-
for child in module.children():
|
| 226 |
-
fn_recursive_feed_forward(child, chunk_size, dim)
|
| 227 |
-
|
| 228 |
-
for module in self.children():
|
| 229 |
-
fn_recursive_feed_forward(module, chunk_size, dim)
|
| 230 |
-
|
| 231 |
-
@property
|
| 232 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 233 |
-
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 234 |
-
r"""
|
| 235 |
-
Returns:
|
| 236 |
-
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 237 |
-
indexed by its weight name.
|
| 238 |
-
"""
|
| 239 |
-
# set recursively
|
| 240 |
-
processors = {}
|
| 241 |
-
|
| 242 |
-
def fn_recursive_add_processors(
|
| 243 |
-
name: str,
|
| 244 |
-
module: torch.nn.Module,
|
| 245 |
-
processors: Dict[str, AttentionProcessor],
|
| 246 |
-
):
|
| 247 |
-
if hasattr(module, "get_processor"):
|
| 248 |
-
processors[f"{name}.processor"] = module.get_processor(
|
| 249 |
-
return_deprecated_lora=True
|
| 250 |
-
)
|
| 251 |
-
|
| 252 |
-
for sub_name, child in module.named_children():
|
| 253 |
-
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 254 |
-
|
| 255 |
-
return processors
|
| 256 |
-
|
| 257 |
-
for name, module in self.named_children():
|
| 258 |
-
fn_recursive_add_processors(name, module, processors)
|
| 259 |
-
|
| 260 |
-
return processors
|
| 261 |
-
|
| 262 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 263 |
-
def set_attn_processor(
|
| 264 |
-
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]
|
| 265 |
-
):
|
| 266 |
-
r"""
|
| 267 |
-
Sets the attention processor to use to compute attention.
|
| 268 |
-
|
| 269 |
-
Parameters:
|
| 270 |
-
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 271 |
-
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 272 |
-
for **all** `Attention` layers.
|
| 273 |
-
|
| 274 |
-
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 275 |
-
processor. This is strongly recommended when setting trainable attention processors.
|
| 276 |
-
|
| 277 |
-
"""
|
| 278 |
-
count = len(self.attn_processors.keys())
|
| 279 |
-
|
| 280 |
-
if isinstance(processor, dict) and len(processor) != count:
|
| 281 |
-
raise ValueError(
|
| 282 |
-
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 283 |
-
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 284 |
-
)
|
| 285 |
-
|
| 286 |
-
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 287 |
-
if hasattr(module, "set_processor"):
|
| 288 |
-
if not isinstance(processor, dict):
|
| 289 |
-
module.set_processor(processor)
|
| 290 |
-
else:
|
| 291 |
-
module.set_processor(processor.pop(f"{name}.processor"))
|
| 292 |
-
|
| 293 |
-
for sub_name, child in module.named_children():
|
| 294 |
-
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 295 |
-
|
| 296 |
-
for name, module in self.named_children():
|
| 297 |
-
fn_recursive_attn_processor(name, module, processor)
|
| 298 |
-
|
| 299 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections
|
| 300 |
-
def fuse_qkv_projections(self):
|
| 301 |
-
"""
|
| 302 |
-
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
| 303 |
-
are fused. For cross-attention modules, key and value projection matrices are fused.
|
| 304 |
-
|
| 305 |
-
<Tip warning={true}>
|
| 306 |
-
|
| 307 |
-
This API is 🧪 experimental.
|
| 308 |
-
|
| 309 |
-
</Tip>
|
| 310 |
-
"""
|
| 311 |
-
self.original_attn_processors = None
|
| 312 |
-
|
| 313 |
-
for _, attn_processor in self.attn_processors.items():
|
| 314 |
-
if "Added" in str(attn_processor.__class__.__name__):
|
| 315 |
-
raise ValueError(
|
| 316 |
-
"`fuse_qkv_projections()` is not supported for models having added KV projections."
|
| 317 |
-
)
|
| 318 |
-
|
| 319 |
-
self.original_attn_processors = self.attn_processors
|
| 320 |
-
|
| 321 |
-
for module in self.modules():
|
| 322 |
-
if isinstance(module, Attention):
|
| 323 |
-
module.fuse_projections(fuse=True)
|
| 324 |
-
|
| 325 |
-
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections
|
| 326 |
-
def unfuse_qkv_projections(self):
|
| 327 |
-
"""Disables the fused QKV projection if enabled.
|
| 328 |
-
|
| 329 |
-
<Tip warning={true}>
|
| 330 |
-
|
| 331 |
-
This API is 🧪 experimental.
|
| 332 |
-
|
| 333 |
-
</Tip>
|
| 334 |
-
|
| 335 |
-
"""
|
| 336 |
-
if self.original_attn_processors is not None:
|
| 337 |
-
self.set_attn_processor(self.original_attn_processors)
|
| 338 |
-
|
| 339 |
-
def _set_gradient_checkpointing(self, module, value=False):
|
| 340 |
-
if hasattr(module, "gradient_checkpointing"):
|
| 341 |
-
module.gradient_checkpointing = value
|
| 342 |
-
|
| 343 |
-
@classmethod
|
| 344 |
-
def from_transformer(
|
| 345 |
-
cls, transformer, num_layers=None, load_weights_from_transformer=True
|
| 346 |
-
):
|
| 347 |
-
config = transformer.config
|
| 348 |
-
config["num_layers"] = num_layers or config.num_layers
|
| 349 |
-
controlnet = cls(**config)
|
| 350 |
-
|
| 351 |
-
if load_weights_from_transformer:
|
| 352 |
-
controlnet.pos_embed.load_state_dict(
|
| 353 |
-
transformer.pos_embed.state_dict(), strict=False
|
| 354 |
-
)
|
| 355 |
-
controlnet.time_text_embed.load_state_dict(
|
| 356 |
-
transformer.time_text_embed.state_dict(), strict=False
|
| 357 |
-
)
|
| 358 |
-
controlnet.context_embedder.load_state_dict(
|
| 359 |
-
transformer.context_embedder.state_dict(), strict=False
|
| 360 |
-
)
|
| 361 |
-
controlnet.transformer_blocks.load_state_dict(
|
| 362 |
-
transformer.transformer_blocks.state_dict(), strict=False
|
| 363 |
-
)
|
| 364 |
-
|
| 365 |
-
return controlnet
|
| 366 |
-
|
| 367 |
-
def forward(
|
| 368 |
-
self,
|
| 369 |
-
hidden_states: torch.FloatTensor,
|
| 370 |
-
controlnet_cond: torch.Tensor,
|
| 371 |
-
conditioning_scale: float = 1.0,
|
| 372 |
-
encoder_hidden_states: torch.FloatTensor = None,
|
| 373 |
-
pooled_projections: torch.FloatTensor = None,
|
| 374 |
-
timestep: torch.LongTensor = None,
|
| 375 |
-
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 376 |
-
return_dict: bool = True,
|
| 377 |
-
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
| 378 |
-
"""
|
| 379 |
-
The [`SD3Transformer2DModel`] forward method.
|
| 380 |
-
|
| 381 |
-
Args:
|
| 382 |
-
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
| 383 |
-
Input `hidden_states`.
|
| 384 |
-
controlnet_cond (`torch.Tensor`):
|
| 385 |
-
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
| 386 |
-
conditioning_scale (`float`, defaults to `1.0`):
|
| 387 |
-
The scale factor for ControlNet outputs.
|
| 388 |
-
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
| 389 |
-
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
| 390 |
-
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
| 391 |
-
from the embeddings of input conditions.
|
| 392 |
-
timestep ( `torch.LongTensor`):
|
| 393 |
-
Used to indicate denoising step.
|
| 394 |
-
joint_attention_kwargs (`dict`, *optional*):
|
| 395 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 396 |
-
`self.processor` in
|
| 397 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 398 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
| 399 |
-
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 400 |
-
tuple.
|
| 401 |
-
|
| 402 |
-
Returns:
|
| 403 |
-
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 404 |
-
`tuple` where the first element is the sample tensor.
|
| 405 |
-
"""
|
| 406 |
-
if joint_attention_kwargs is not None:
|
| 407 |
-
joint_attention_kwargs = joint_attention_kwargs.copy()
|
| 408 |
-
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
| 409 |
-
else:
|
| 410 |
-
lora_scale = 1.0
|
| 411 |
-
|
| 412 |
-
if USE_PEFT_BACKEND:
|
| 413 |
-
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 414 |
-
scale_lora_layers(self, lora_scale)
|
| 415 |
-
else:
|
| 416 |
-
if (
|
| 417 |
-
joint_attention_kwargs is not None
|
| 418 |
-
and joint_attention_kwargs.get("scale", None) is not None
|
| 419 |
-
):
|
| 420 |
-
logger.warning(
|
| 421 |
-
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
| 422 |
-
)
|
| 423 |
-
|
| 424 |
-
height, width = hidden_states.shape[-2:]
|
| 425 |
-
|
| 426 |
-
hidden_states = self.pos_embed(
|
| 427 |
-
hidden_states
|
| 428 |
-
) # takes care of adding positional embeddings too. b,c,H,W -> b, N, C
|
| 429 |
-
temb = self.time_text_embed(timestep, pooled_projections)
|
| 430 |
-
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
| 431 |
-
|
| 432 |
-
# add condition
|
| 433 |
-
hidden_states = hidden_states + self.pos_embed_cond(controlnet_cond)
|
| 434 |
-
|
| 435 |
-
block_res_samples = ()
|
| 436 |
-
|
| 437 |
-
for block in self.transformer_blocks:
|
| 438 |
-
if self.training and self.gradient_checkpointing:
|
| 439 |
-
|
| 440 |
-
def create_custom_forward(module, return_dict=None):
|
| 441 |
-
def custom_forward(*inputs):
|
| 442 |
-
if return_dict is not None:
|
| 443 |
-
return module(*inputs, return_dict=return_dict)
|
| 444 |
-
else:
|
| 445 |
-
return module(*inputs)
|
| 446 |
-
|
| 447 |
-
return custom_forward
|
| 448 |
-
|
| 449 |
-
ckpt_kwargs: Dict[str, Any] = (
|
| 450 |
-
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 451 |
-
)
|
| 452 |
-
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 453 |
-
create_custom_forward(block),
|
| 454 |
-
hidden_states,
|
| 455 |
-
encoder_hidden_states,
|
| 456 |
-
temb,
|
| 457 |
-
**ckpt_kwargs,
|
| 458 |
-
)
|
| 459 |
-
|
| 460 |
-
else:
|
| 461 |
-
encoder_hidden_states, hidden_states = block(
|
| 462 |
-
hidden_states=hidden_states,
|
| 463 |
-
encoder_hidden_states=encoder_hidden_states,
|
| 464 |
-
temb=temb,
|
| 465 |
-
)
|
| 466 |
-
|
| 467 |
-
block_res_samples = block_res_samples + (hidden_states,)
|
| 468 |
-
|
| 469 |
-
controlnet_block_res_samples = ()
|
| 470 |
-
for block_res_sample, controlnet_block in zip(
|
| 471 |
-
block_res_samples, self.controlnet_blocks
|
| 472 |
-
):
|
| 473 |
-
block_res_sample = controlnet_block(block_res_sample)
|
| 474 |
-
controlnet_block_res_samples = controlnet_block_res_samples + (
|
| 475 |
-
block_res_sample,
|
| 476 |
-
)
|
| 477 |
-
|
| 478 |
-
# 6. scaling
|
| 479 |
-
controlnet_block_res_samples = [
|
| 480 |
-
sample * conditioning_scale for sample in controlnet_block_res_samples
|
| 481 |
-
]
|
| 482 |
-
|
| 483 |
-
if USE_PEFT_BACKEND:
|
| 484 |
-
# remove `lora_scale` from each PEFT layer
|
| 485 |
-
unscale_lora_layers(self, lora_scale)
|
| 486 |
-
|
| 487 |
-
if not return_dict:
|
| 488 |
-
return (controlnet_block_res_samples,)
|
| 489 |
-
|
| 490 |
-
return SD3ControlNetOutput(
|
| 491 |
-
controlnet_block_samples=controlnet_block_res_samples
|
| 492 |
-
)
|
| 493 |
-
|
| 494 |
-
def invert_copy_paste(self, controlnet_block_samples):
|
| 495 |
-
controlnet_block_samples = controlnet_block_samples + controlnet_block_samples[::-1]
|
| 496 |
-
return controlnet_block_samples
|
| 497 |
-
|
| 498 |
-
class SD3MultiControlNetModel(ModelMixin):
|
| 499 |
-
r"""
|
| 500 |
-
`SD3ControlNetModel` wrapper class for Multi-SD3ControlNet
|
| 501 |
-
|
| 502 |
-
This module is a wrapper for multiple instances of the `SD3ControlNetModel`. The `forward()` API is designed to be
|
| 503 |
-
compatible with `SD3ControlNetModel`.
|
| 504 |
-
|
| 505 |
-
Args:
|
| 506 |
-
controlnets (`List[SD3ControlNetModel]`):
|
| 507 |
-
Provides additional conditioning to the unet during the denoising process. You must set multiple
|
| 508 |
-
`SD3ControlNetModel` as a list.
|
| 509 |
-
"""
|
| 510 |
-
|
| 511 |
-
def __init__(self, controlnets):
|
| 512 |
-
super().__init__()
|
| 513 |
-
self.nets = nn.ModuleList(controlnets)
|
| 514 |
-
|
| 515 |
-
def forward(
|
| 516 |
-
self,
|
| 517 |
-
hidden_states: torch.FloatTensor,
|
| 518 |
-
controlnet_cond: List[torch.tensor],
|
| 519 |
-
conditioning_scale: List[float],
|
| 520 |
-
pooled_projections: torch.FloatTensor,
|
| 521 |
-
encoder_hidden_states: torch.FloatTensor = None,
|
| 522 |
-
timestep: torch.LongTensor = None,
|
| 523 |
-
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 524 |
-
return_dict: bool = True,
|
| 525 |
-
) -> Union[SD3ControlNetOutput, Tuple]:
|
| 526 |
-
for i, (image, scale, controlnet) in enumerate(
|
| 527 |
-
zip(controlnet_cond, conditioning_scale, self.nets)
|
| 528 |
-
):
|
| 529 |
-
block_samples = controlnet(
|
| 530 |
-
hidden_states=hidden_states,
|
| 531 |
-
timestep=timestep,
|
| 532 |
-
encoder_hidden_states=encoder_hidden_states,
|
| 533 |
-
pooled_projections=pooled_projections,
|
| 534 |
-
controlnet_cond=image,
|
| 535 |
-
conditioning_scale=scale,
|
| 536 |
-
joint_attention_kwargs=joint_attention_kwargs,
|
| 537 |
-
return_dict=return_dict,
|
| 538 |
-
)
|
| 539 |
-
|
| 540 |
-
# merge samples
|
| 541 |
-
if i == 0:
|
| 542 |
-
control_block_samples = block_samples
|
| 543 |
-
else:
|
| 544 |
-
control_block_samples = [
|
| 545 |
-
control_block_sample + block_sample
|
| 546 |
-
for control_block_sample, block_sample in zip(
|
| 547 |
-
control_block_samples[0], block_samples[0]
|
| 548 |
-
)
|
| 549 |
-
]
|
| 550 |
-
control_block_samples = (tuple(control_block_samples),)
|
| 551 |
-
|
| 552 |
-
return control_block_samples
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo.py
DELETED
|
@@ -1,53 +0,0 @@
|
|
| 1 |
-
from diffusers.utils import load_image, check_min_version
|
| 2 |
-
import torch
|
| 3 |
-
|
| 4 |
-
# Local File
|
| 5 |
-
from pipeline_sd3_controlnet_inpainting import StableDiffusion3ControlNetInpaintingPipeline, one_image_and_mask
|
| 6 |
-
from controlnet_sd3 import SD3ControlNetModel
|
| 7 |
-
|
| 8 |
-
check_min_version("0.29.2")
|
| 9 |
-
|
| 10 |
-
# Build model
|
| 11 |
-
controlnet = SD3ControlNetModel.from_pretrained(
|
| 12 |
-
"alimama-creative/SD3-Controlnet-Inpainting",
|
| 13 |
-
use_safetensors=True,
|
| 14 |
-
)
|
| 15 |
-
pipe = StableDiffusion3ControlNetInpaintingPipeline.from_pretrained(
|
| 16 |
-
"stabilityai/stable-diffusion-3-medium-diffusers",
|
| 17 |
-
controlnet=controlnet,
|
| 18 |
-
torch_dtype=torch.float16,
|
| 19 |
-
)
|
| 20 |
-
pipe.text_encoder.to(torch.float16)
|
| 21 |
-
pipe.controlnet.to(torch.float16)
|
| 22 |
-
pipe.to("cuda")
|
| 23 |
-
|
| 24 |
-
# Load image
|
| 25 |
-
image = load_image(
|
| 26 |
-
"https://huggingface.co/alimama-creative/SD3-Controlnet-Inpainting/blob/main/images/prod.png"
|
| 27 |
-
)
|
| 28 |
-
mask = load_image(
|
| 29 |
-
"https://huggingface.co/alimama-creative/SD3-Controlnet-Inpainting/blob/main/images/mask.jpeg"
|
| 30 |
-
)
|
| 31 |
-
|
| 32 |
-
# Set args
|
| 33 |
-
width = 1024
|
| 34 |
-
height = 1024
|
| 35 |
-
prompt="a woman wearing a white jacket, black hat and black pants is standing in a field, the hat writes SD3"
|
| 36 |
-
generator = torch.Generator(device="cuda").manual_seed(24)
|
| 37 |
-
input_dict = one_image_and_mask(image, mask, size=(width, height), latent_scale=pipe.vae_scale_factor, invert_mask = True)
|
| 38 |
-
|
| 39 |
-
# Inference
|
| 40 |
-
res_image = pipe(
|
| 41 |
-
negative_prompt='deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW',
|
| 42 |
-
prompt=prompt,
|
| 43 |
-
height=height,
|
| 44 |
-
width=width,
|
| 45 |
-
control_image= input_dict['pil_masked_image'], # H, W, C,
|
| 46 |
-
control_mask=input_dict["mask"] > 0.5, # B,1,H,W
|
| 47 |
-
num_inference_steps=28,
|
| 48 |
-
generator=generator,
|
| 49 |
-
controlnet_conditioning_scale=0.95,
|
| 50 |
-
guidance_scale=7,
|
| 51 |
-
).images[0]
|
| 52 |
-
|
| 53 |
-
res_image.save(f'res.png')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_pytorch_model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f7e2bcf98ed0989558dd05d857cc49c0aff14dfa3197050d65e51a9d37008dde
|
| 3 |
+
size 4160564288
|
pipeline_sd3_controlnet_inpainting.py
DELETED
|
@@ -1,1333 +0,0 @@
|
|
| 1 |
-
# Copyright 2024 Stability AI, The HuggingFace Team and The InstantX Team. All rights reserved.
|
| 2 |
-
#
|
| 3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
-
# you may not use this file except in compliance with the License.
|
| 5 |
-
# You may obtain a copy of the License at
|
| 6 |
-
#
|
| 7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
-
#
|
| 9 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
-
# See the License for the specific language governing permissions and
|
| 13 |
-
# limitations under the License.
|
| 14 |
-
|
| 15 |
-
import inspect
|
| 16 |
-
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
| 17 |
-
|
| 18 |
-
import torch
|
| 19 |
-
from transformers import (
|
| 20 |
-
CLIPTextModelWithProjection,
|
| 21 |
-
CLIPTokenizer,
|
| 22 |
-
T5EncoderModel,
|
| 23 |
-
T5TokenizerFast,
|
| 24 |
-
)
|
| 25 |
-
|
| 26 |
-
from PIL import Image, ImageOps
|
| 27 |
-
import numpy as np
|
| 28 |
-
import os
|
| 29 |
-
from torchvision.transforms import v2
|
| 30 |
-
|
| 31 |
-
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 32 |
-
from diffusers.loaders import FromSingleFileMixin, SD3LoraLoaderMixin
|
| 33 |
-
from diffusers.models.autoencoders import AutoencoderKL
|
| 34 |
-
from diffusers.models.transformers import SD3Transformer2DModel
|
| 35 |
-
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
| 36 |
-
from diffusers.utils import (
|
| 37 |
-
is_torch_xla_available,
|
| 38 |
-
logging,
|
| 39 |
-
replace_example_docstring,
|
| 40 |
-
)
|
| 41 |
-
from diffusers.utils.torch_utils import randn_tensor
|
| 42 |
-
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 43 |
-
from diffusers.pipelines.stable_diffusion_3.pipeline_output import (
|
| 44 |
-
StableDiffusion3PipelineOutput,
|
| 45 |
-
)
|
| 46 |
-
from torchvision.transforms.functional import resize, InterpolationMode
|
| 47 |
-
|
| 48 |
-
from controlnet_sd3 import SD3ControlNetModel, SD3MultiControlNetModel
|
| 49 |
-
|
| 50 |
-
if is_torch_xla_available():
|
| 51 |
-
import torch_xla.core.xla_model as xm
|
| 52 |
-
|
| 53 |
-
XLA_AVAILABLE = True
|
| 54 |
-
else:
|
| 55 |
-
XLA_AVAILABLE = False
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 59 |
-
|
| 60 |
-
EXAMPLE_DOC_STRING = """
|
| 61 |
-
Examples:
|
| 62 |
-
```py
|
| 63 |
-
>>> import torch
|
| 64 |
-
>>> from diffusers import StableDiffusion3ControlNetPipeline
|
| 65 |
-
>>> from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel
|
| 66 |
-
>>> from diffusers.utils import load_image
|
| 67 |
-
|
| 68 |
-
>>> controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16)
|
| 69 |
-
|
| 70 |
-
>>> pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
|
| 71 |
-
... "stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
|
| 72 |
-
... )
|
| 73 |
-
>>> pipe.to("cuda")
|
| 74 |
-
>>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
|
| 75 |
-
>>> prompt = "A girl holding a sign that says InstantX"
|
| 76 |
-
>>> image = pipe(prompt, control_image=control_image, controlnet_conditioning_scale=0.7).images[0]
|
| 77 |
-
>>> image.save("sd3.png")
|
| 78 |
-
```
|
| 79 |
-
"""
|
| 80 |
-
|
| 81 |
-
def one_image_and_mask(image, mask, size = None, latent_scale = 8 , invert_mask = False):
|
| 82 |
-
'''
|
| 83 |
-
Image : PIL Image, Torch Tensor [-1, 1], Path, B,C,H,W
|
| 84 |
-
Mask : PIL Image , Torch Tensor [0, 1], Path, B,1,H,W
|
| 85 |
-
'''
|
| 86 |
-
# size = (W, H)
|
| 87 |
-
if size is not None:
|
| 88 |
-
if not ( type(size) == list or type(size) == tuple):
|
| 89 |
-
size = (size, size)
|
| 90 |
-
|
| 91 |
-
# Get image @ torch tensor
|
| 92 |
-
if type(image) == str and os.path.exists(image):
|
| 93 |
-
image = Image.open(image)
|
| 94 |
-
|
| 95 |
-
if isinstance(image, Image.Image):
|
| 96 |
-
image = image.convert("RGB")
|
| 97 |
-
if size is not None:
|
| 98 |
-
image = image.resize(size, Image.Resampling.LANCZOS)
|
| 99 |
-
pil_image = image
|
| 100 |
-
image_arr = np.array(image)
|
| 101 |
-
assert image_arr.ndim == 3
|
| 102 |
-
assert image_arr.shape[2] == 3
|
| 103 |
-
th_image = torch.from_numpy(image_arr).float() / 127. - 1
|
| 104 |
-
th_image = th_image.permute(2, 0, 1)
|
| 105 |
-
else:
|
| 106 |
-
th_image = image
|
| 107 |
-
pil_image = None
|
| 108 |
-
|
| 109 |
-
# Get BCHW
|
| 110 |
-
assert isinstance(th_image, torch.Tensor)
|
| 111 |
-
if len(th_image.shape) == 3:
|
| 112 |
-
th_image = th_image.unsqueeze(0)
|
| 113 |
-
H, W = th_image.shape[-2:]
|
| 114 |
-
assert H % 8 == 0 and W % 8 == 0
|
| 115 |
-
|
| 116 |
-
# Get mask @ torch tensor
|
| 117 |
-
if type(mask) == str and os.path.exists(mask):
|
| 118 |
-
mask = Image.open(mask)
|
| 119 |
-
|
| 120 |
-
if isinstance(mask, Image.Image):
|
| 121 |
-
mask = mask.convert("L")
|
| 122 |
-
if invert_mask:
|
| 123 |
-
mask = ImageOps.invert(mask)
|
| 124 |
-
mask = mask.resize((W, H), Image.Resampling.LANCZOS)
|
| 125 |
-
pil_mask = mask
|
| 126 |
-
mask_arr = np.array(mask)
|
| 127 |
-
if mask_arr.ndim == 3 and mask_arr.shape[2] == 3:
|
| 128 |
-
mask_arr = mask_arr[:, :, 0] # H, W
|
| 129 |
-
th_mask = torch.from_numpy(mask_arr).float() / 255.
|
| 130 |
-
th_mask = th_mask.unsqueeze(0)
|
| 131 |
-
else:
|
| 132 |
-
th_mask = mask
|
| 133 |
-
pil_mask = None
|
| 134 |
-
|
| 135 |
-
assert isinstance(th_mask, torch.Tensor)
|
| 136 |
-
if len(th_mask.shape) == 3:
|
| 137 |
-
th_mask = th_mask.unsqueeze(0)
|
| 138 |
-
|
| 139 |
-
# Get mask at latent space
|
| 140 |
-
th_mask_latent = torch.nn.functional.interpolate(
|
| 141 |
-
th_mask, size=(H // latent_scale, W // latent_scale), mode="bilinear", antialias=True
|
| 142 |
-
)
|
| 143 |
-
|
| 144 |
-
# Get masked image for vae-cond
|
| 145 |
-
masked_image = th_image.clone()
|
| 146 |
-
masked_image[(th_mask < 0.5).repeat(1,3,1,1)] = - 1. # set 0. like power paint @ https://github.com/open-mmlab/PowerPaint/blob/main/powerpaint/pipelines/pipeline_PowerPaint.py
|
| 147 |
-
|
| 148 |
-
# Get pil masked image
|
| 149 |
-
pil_masked_image = v2.ToPILImage()((masked_image/2 + 1/2).clip(0, 1).squeeze(0))
|
| 150 |
-
|
| 151 |
-
# Get masked image
|
| 152 |
-
return {
|
| 153 |
-
'image': th_image,
|
| 154 |
-
'mask': th_mask,
|
| 155 |
-
'mask_latent': th_mask_latent,
|
| 156 |
-
'masked_image': masked_image,
|
| 157 |
-
'pil_image': pil_image,
|
| 158 |
-
'pil_mask': pil_mask,
|
| 159 |
-
'pil_masked_image': pil_masked_image
|
| 160 |
-
}
|
| 161 |
-
|
| 162 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 163 |
-
def retrieve_timesteps(
|
| 164 |
-
scheduler,
|
| 165 |
-
num_inference_steps: Optional[int] = None,
|
| 166 |
-
device: Optional[Union[str, torch.device]] = None,
|
| 167 |
-
timesteps: Optional[List[int]] = None,
|
| 168 |
-
sigmas: Optional[List[float]] = None,
|
| 169 |
-
**kwargs,
|
| 170 |
-
):
|
| 171 |
-
"""
|
| 172 |
-
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 173 |
-
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 174 |
-
|
| 175 |
-
Args:
|
| 176 |
-
scheduler (`SchedulerMixin`):
|
| 177 |
-
The scheduler to get timesteps from.
|
| 178 |
-
num_inference_steps (`int`):
|
| 179 |
-
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 180 |
-
must be `None`.
|
| 181 |
-
device (`str` or `torch.device`, *optional*):
|
| 182 |
-
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 183 |
-
timesteps (`List[int]`, *optional*):
|
| 184 |
-
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
| 185 |
-
`num_inference_steps` and `sigmas` must be `None`.
|
| 186 |
-
sigmas (`List[float]`, *optional*):
|
| 187 |
-
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
| 188 |
-
`num_inference_steps` and `timesteps` must be `None`.
|
| 189 |
-
|
| 190 |
-
Returns:
|
| 191 |
-
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 192 |
-
second element is the number of inference steps.
|
| 193 |
-
"""
|
| 194 |
-
if timesteps is not None and sigmas is not None:
|
| 195 |
-
raise ValueError(
|
| 196 |
-
"Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values"
|
| 197 |
-
)
|
| 198 |
-
if timesteps is not None:
|
| 199 |
-
accepts_timesteps = "timesteps" in set(
|
| 200 |
-
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
| 201 |
-
)
|
| 202 |
-
if not accepts_timesteps:
|
| 203 |
-
raise ValueError(
|
| 204 |
-
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 205 |
-
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 206 |
-
)
|
| 207 |
-
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 208 |
-
timesteps = scheduler.timesteps
|
| 209 |
-
num_inference_steps = len(timesteps)
|
| 210 |
-
elif sigmas is not None:
|
| 211 |
-
accept_sigmas = "sigmas" in set(
|
| 212 |
-
inspect.signature(scheduler.set_timesteps).parameters.keys()
|
| 213 |
-
)
|
| 214 |
-
if not accept_sigmas:
|
| 215 |
-
raise ValueError(
|
| 216 |
-
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 217 |
-
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 218 |
-
)
|
| 219 |
-
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 220 |
-
timesteps = scheduler.timesteps
|
| 221 |
-
num_inference_steps = len(timesteps)
|
| 222 |
-
else:
|
| 223 |
-
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 224 |
-
timesteps = scheduler.timesteps
|
| 225 |
-
return timesteps, num_inference_steps
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
class StableDiffusion3ControlNetInpaintingPipeline(
|
| 229 |
-
DiffusionPipeline, SD3LoraLoaderMixin, FromSingleFileMixin
|
| 230 |
-
):
|
| 231 |
-
r"""
|
| 232 |
-
Args:
|
| 233 |
-
transformer ([`SD3Transformer2DModel`]):
|
| 234 |
-
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
| 235 |
-
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
| 236 |
-
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
| 237 |
-
vae ([`AutoencoderKL`]):
|
| 238 |
-
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
| 239 |
-
text_encoder ([`CLIPTextModelWithProjection`]):
|
| 240 |
-
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
| 241 |
-
specifically the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant,
|
| 242 |
-
with an additional added projection layer that is initialized with a diagonal matrix with the `hidden_size`
|
| 243 |
-
as its dimension.
|
| 244 |
-
text_encoder_2 ([`CLIPTextModelWithProjection`]):
|
| 245 |
-
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
| 246 |
-
specifically the
|
| 247 |
-
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
| 248 |
-
variant.
|
| 249 |
-
text_encoder_3 ([`T5EncoderModel`]):
|
| 250 |
-
Frozen text-encoder. Stable Diffusion 3 uses
|
| 251 |
-
[T5](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5EncoderModel), specifically the
|
| 252 |
-
[t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
| 253 |
-
tokenizer (`CLIPTokenizer`):
|
| 254 |
-
Tokenizer of class
|
| 255 |
-
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
| 256 |
-
tokenizer_2 (`CLIPTokenizer`):
|
| 257 |
-
Second Tokenizer of class
|
| 258 |
-
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
| 259 |
-
tokenizer_3 (`T5TokenizerFast`):
|
| 260 |
-
Tokenizer of class
|
| 261 |
-
[T5Tokenizer](https://huggingface.co/docs/transformers/model_doc/t5#transformers.T5Tokenizer).
|
| 262 |
-
controlnet ([`SD3ControlNetModel`] or `List[SD3ControlNetModel]` or [`SD3MultiControlNetModel`]):
|
| 263 |
-
Provides additional conditioning to the `unet` during the denoising process. If you set multiple
|
| 264 |
-
ControlNets as a list, the outputs from each ControlNet are added together to create one combined
|
| 265 |
-
additional conditioning.
|
| 266 |
-
"""
|
| 267 |
-
|
| 268 |
-
model_cpu_offload_seq = (
|
| 269 |
-
"text_encoder->text_encoder_2->text_encoder_3->transformer->vae"
|
| 270 |
-
)
|
| 271 |
-
_optional_components = []
|
| 272 |
-
_callback_tensor_inputs = [
|
| 273 |
-
"latents",
|
| 274 |
-
"prompt_embeds",
|
| 275 |
-
"negative_prompt_embeds",
|
| 276 |
-
"negative_pooled_prompt_embeds",
|
| 277 |
-
]
|
| 278 |
-
|
| 279 |
-
def __init__(
|
| 280 |
-
self,
|
| 281 |
-
transformer: SD3Transformer2DModel,
|
| 282 |
-
scheduler: FlowMatchEulerDiscreteScheduler,
|
| 283 |
-
vae: AutoencoderKL,
|
| 284 |
-
text_encoder: CLIPTextModelWithProjection,
|
| 285 |
-
tokenizer: CLIPTokenizer,
|
| 286 |
-
text_encoder_2: CLIPTextModelWithProjection,
|
| 287 |
-
tokenizer_2: CLIPTokenizer,
|
| 288 |
-
text_encoder_3: T5EncoderModel,
|
| 289 |
-
tokenizer_3: T5TokenizerFast,
|
| 290 |
-
controlnet: Union[
|
| 291 |
-
SD3ControlNetModel,
|
| 292 |
-
List[SD3ControlNetModel],
|
| 293 |
-
Tuple[SD3ControlNetModel],
|
| 294 |
-
SD3MultiControlNetModel,
|
| 295 |
-
],
|
| 296 |
-
):
|
| 297 |
-
super().__init__()
|
| 298 |
-
|
| 299 |
-
self.register_modules(
|
| 300 |
-
vae=vae,
|
| 301 |
-
text_encoder=text_encoder,
|
| 302 |
-
text_encoder_2=text_encoder_2,
|
| 303 |
-
text_encoder_3=text_encoder_3,
|
| 304 |
-
tokenizer=tokenizer,
|
| 305 |
-
tokenizer_2=tokenizer_2,
|
| 306 |
-
tokenizer_3=tokenizer_3,
|
| 307 |
-
transformer=transformer,
|
| 308 |
-
scheduler=scheduler,
|
| 309 |
-
controlnet=controlnet,
|
| 310 |
-
)
|
| 311 |
-
self.vae_scale_factor = (
|
| 312 |
-
2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 313 |
-
if hasattr(self, "vae") and self.vae is not None
|
| 314 |
-
else 8
|
| 315 |
-
)
|
| 316 |
-
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 317 |
-
self.control_image_processor = VaeImageProcessor(
|
| 318 |
-
vae_scale_factor=self.vae_scale_factor,
|
| 319 |
-
do_convert_rgb=True,
|
| 320 |
-
do_normalize=False,
|
| 321 |
-
)
|
| 322 |
-
self.tokenizer_max_length = (
|
| 323 |
-
self.tokenizer.model_max_length
|
| 324 |
-
if hasattr(self, "tokenizer") and self.tokenizer is not None
|
| 325 |
-
else 77
|
| 326 |
-
)
|
| 327 |
-
self.default_sample_size = (
|
| 328 |
-
self.transformer.config.sample_size
|
| 329 |
-
if hasattr(self, "transformer") and self.transformer is not None
|
| 330 |
-
else 128
|
| 331 |
-
)
|
| 332 |
-
|
| 333 |
-
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_t5_prompt_embeds
|
| 334 |
-
def _get_t5_prompt_embeds(
|
| 335 |
-
self,
|
| 336 |
-
prompt: Union[str, List[str]] = None,
|
| 337 |
-
num_images_per_prompt: int = 1,
|
| 338 |
-
device: Optional[torch.device] = None,
|
| 339 |
-
dtype: Optional[torch.dtype] = None,
|
| 340 |
-
):
|
| 341 |
-
device = device or self._execution_device
|
| 342 |
-
dtype = dtype or self.text_encoder.dtype
|
| 343 |
-
|
| 344 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 345 |
-
batch_size = len(prompt)
|
| 346 |
-
|
| 347 |
-
if self.text_encoder_3 is None:
|
| 348 |
-
return torch.zeros(
|
| 349 |
-
(
|
| 350 |
-
batch_size,
|
| 351 |
-
self.tokenizer_max_length,
|
| 352 |
-
self.transformer.config.joint_attention_dim,
|
| 353 |
-
),
|
| 354 |
-
device=device,
|
| 355 |
-
dtype=dtype,
|
| 356 |
-
)
|
| 357 |
-
|
| 358 |
-
text_inputs = self.tokenizer_3(
|
| 359 |
-
prompt,
|
| 360 |
-
padding="max_length",
|
| 361 |
-
max_length=self.tokenizer_max_length,
|
| 362 |
-
truncation=True,
|
| 363 |
-
add_special_tokens=True,
|
| 364 |
-
return_tensors="pt",
|
| 365 |
-
)
|
| 366 |
-
text_input_ids = text_inputs.input_ids
|
| 367 |
-
untruncated_ids = self.tokenizer_3(
|
| 368 |
-
prompt, padding="longest", return_tensors="pt"
|
| 369 |
-
).input_ids
|
| 370 |
-
|
| 371 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
| 372 |
-
text_input_ids, untruncated_ids
|
| 373 |
-
):
|
| 374 |
-
removed_text = self.tokenizer_3.batch_decode(
|
| 375 |
-
untruncated_ids[:, self.tokenizer_max_length - 1 : -1]
|
| 376 |
-
)
|
| 377 |
-
logger.warning(
|
| 378 |
-
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 379 |
-
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
| 380 |
-
)
|
| 381 |
-
|
| 382 |
-
prompt_embeds = self.text_encoder_3(text_input_ids.to(device))[0]
|
| 383 |
-
|
| 384 |
-
dtype = self.text_encoder_3.dtype
|
| 385 |
-
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
| 386 |
-
|
| 387 |
-
_, seq_len, _ = prompt_embeds.shape
|
| 388 |
-
|
| 389 |
-
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
| 390 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 391 |
-
prompt_embeds = prompt_embeds.view(
|
| 392 |
-
batch_size * num_images_per_prompt, seq_len, -1
|
| 393 |
-
)
|
| 394 |
-
|
| 395 |
-
return prompt_embeds
|
| 396 |
-
|
| 397 |
-
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline._get_clip_prompt_embeds
|
| 398 |
-
def _get_clip_prompt_embeds(
|
| 399 |
-
self,
|
| 400 |
-
prompt: Union[str, List[str]],
|
| 401 |
-
num_images_per_prompt: int = 1,
|
| 402 |
-
device: Optional[torch.device] = None,
|
| 403 |
-
clip_skip: Optional[int] = None,
|
| 404 |
-
clip_model_index: int = 0,
|
| 405 |
-
):
|
| 406 |
-
device = device or self._execution_device
|
| 407 |
-
|
| 408 |
-
clip_tokenizers = [self.tokenizer, self.tokenizer_2]
|
| 409 |
-
clip_text_encoders = [self.text_encoder, self.text_encoder_2]
|
| 410 |
-
|
| 411 |
-
tokenizer = clip_tokenizers[clip_model_index]
|
| 412 |
-
text_encoder = clip_text_encoders[clip_model_index]
|
| 413 |
-
|
| 414 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 415 |
-
batch_size = len(prompt)
|
| 416 |
-
|
| 417 |
-
text_inputs = tokenizer(
|
| 418 |
-
prompt,
|
| 419 |
-
padding="max_length",
|
| 420 |
-
max_length=self.tokenizer_max_length,
|
| 421 |
-
truncation=True,
|
| 422 |
-
return_tensors="pt",
|
| 423 |
-
)
|
| 424 |
-
|
| 425 |
-
text_input_ids = text_inputs.input_ids
|
| 426 |
-
untruncated_ids = tokenizer(
|
| 427 |
-
prompt, padding="longest", return_tensors="pt"
|
| 428 |
-
).input_ids
|
| 429 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
| 430 |
-
text_input_ids, untruncated_ids
|
| 431 |
-
):
|
| 432 |
-
removed_text = tokenizer.batch_decode(
|
| 433 |
-
untruncated_ids[:, self.tokenizer_max_length - 1 : -1]
|
| 434 |
-
)
|
| 435 |
-
logger.warning(
|
| 436 |
-
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 437 |
-
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
| 438 |
-
)
|
| 439 |
-
prompt_embeds = text_encoder(
|
| 440 |
-
text_input_ids.to(device), output_hidden_states=True
|
| 441 |
-
)
|
| 442 |
-
pooled_prompt_embeds = prompt_embeds[0]
|
| 443 |
-
|
| 444 |
-
if clip_skip is None:
|
| 445 |
-
prompt_embeds = prompt_embeds.hidden_states[-2]
|
| 446 |
-
else:
|
| 447 |
-
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
| 448 |
-
|
| 449 |
-
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
| 450 |
-
|
| 451 |
-
_, seq_len, _ = prompt_embeds.shape
|
| 452 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 453 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 454 |
-
prompt_embeds = prompt_embeds.view(
|
| 455 |
-
batch_size * num_images_per_prompt, seq_len, -1
|
| 456 |
-
)
|
| 457 |
-
|
| 458 |
-
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 459 |
-
pooled_prompt_embeds = pooled_prompt_embeds.view(
|
| 460 |
-
batch_size * num_images_per_prompt, -1
|
| 461 |
-
)
|
| 462 |
-
|
| 463 |
-
return prompt_embeds, pooled_prompt_embeds
|
| 464 |
-
|
| 465 |
-
# Copied from diffusers.pipelines.stable_diffusion_3.pipeline_stable_diffusion_3.StableDiffusion3Pipeline.encode_prompt
|
| 466 |
-
def encode_prompt(
|
| 467 |
-
self,
|
| 468 |
-
prompt: Union[str, List[str]],
|
| 469 |
-
prompt_2: Union[str, List[str]],
|
| 470 |
-
prompt_3: Union[str, List[str]],
|
| 471 |
-
device: Optional[torch.device] = None,
|
| 472 |
-
num_images_per_prompt: int = 1,
|
| 473 |
-
do_classifier_free_guidance: bool = True,
|
| 474 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 475 |
-
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 476 |
-
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
| 477 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 478 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 479 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 480 |
-
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 481 |
-
clip_skip: Optional[int] = None,
|
| 482 |
-
):
|
| 483 |
-
r"""
|
| 484 |
-
|
| 485 |
-
Args:
|
| 486 |
-
prompt (`str` or `List[str]`, *optional*):
|
| 487 |
-
prompt to be encoded
|
| 488 |
-
prompt_2 (`str` or `List[str]`, *optional*):
|
| 489 |
-
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 490 |
-
used in all text-encoders
|
| 491 |
-
prompt_3 (`str` or `List[str]`, *optional*):
|
| 492 |
-
The prompt or prompts to be sent to the `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
| 493 |
-
used in all text-encoders
|
| 494 |
-
device: (`torch.device`):
|
| 495 |
-
torch device
|
| 496 |
-
num_images_per_prompt (`int`):
|
| 497 |
-
number of images that should be generated per prompt
|
| 498 |
-
do_classifier_free_guidance (`bool`):
|
| 499 |
-
whether to use classifier free guidance or not
|
| 500 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
| 501 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 502 |
-
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 503 |
-
less than `1`).
|
| 504 |
-
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
| 505 |
-
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
| 506 |
-
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
|
| 507 |
-
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
| 508 |
-
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
|
| 509 |
-
`text_encoder_3`. If not defined, `negative_prompt` is used in both text-encoders
|
| 510 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 511 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 512 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
| 513 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 514 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 515 |
-
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 516 |
-
argument.
|
| 517 |
-
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 518 |
-
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 519 |
-
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 520 |
-
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 521 |
-
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 522 |
-
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
| 523 |
-
input argument.
|
| 524 |
-
clip_skip (`int`, *optional*):
|
| 525 |
-
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
| 526 |
-
the output of the pre-final layer will be used for computing the prompt embeddings.
|
| 527 |
-
"""
|
| 528 |
-
device = device or self._execution_device
|
| 529 |
-
|
| 530 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 531 |
-
if prompt is not None:
|
| 532 |
-
batch_size = len(prompt)
|
| 533 |
-
else:
|
| 534 |
-
batch_size = prompt_embeds.shape[0]
|
| 535 |
-
|
| 536 |
-
if prompt_embeds is None:
|
| 537 |
-
prompt_2 = prompt_2 or prompt
|
| 538 |
-
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
| 539 |
-
|
| 540 |
-
prompt_3 = prompt_3 or prompt
|
| 541 |
-
prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
|
| 542 |
-
|
| 543 |
-
prompt_embed, pooled_prompt_embed = self._get_clip_prompt_embeds(
|
| 544 |
-
prompt=prompt,
|
| 545 |
-
device=device,
|
| 546 |
-
num_images_per_prompt=num_images_per_prompt,
|
| 547 |
-
clip_skip=clip_skip,
|
| 548 |
-
clip_model_index=0,
|
| 549 |
-
)
|
| 550 |
-
prompt_2_embed, pooled_prompt_2_embed = self._get_clip_prompt_embeds(
|
| 551 |
-
prompt=prompt_2,
|
| 552 |
-
device=device,
|
| 553 |
-
num_images_per_prompt=num_images_per_prompt,
|
| 554 |
-
clip_skip=clip_skip,
|
| 555 |
-
clip_model_index=1,
|
| 556 |
-
)
|
| 557 |
-
clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
|
| 558 |
-
|
| 559 |
-
t5_prompt_embed = self._get_t5_prompt_embeds(
|
| 560 |
-
prompt=prompt_3,
|
| 561 |
-
num_images_per_prompt=num_images_per_prompt,
|
| 562 |
-
device=device,
|
| 563 |
-
)
|
| 564 |
-
|
| 565 |
-
clip_prompt_embeds = torch.nn.functional.pad(
|
| 566 |
-
clip_prompt_embeds,
|
| 567 |
-
(0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1]),
|
| 568 |
-
)
|
| 569 |
-
|
| 570 |
-
prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
|
| 571 |
-
pooled_prompt_embeds = torch.cat(
|
| 572 |
-
[pooled_prompt_embed, pooled_prompt_2_embed], dim=-1
|
| 573 |
-
)
|
| 574 |
-
|
| 575 |
-
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
| 576 |
-
negative_prompt = negative_prompt or ""
|
| 577 |
-
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
| 578 |
-
negative_prompt_3 = negative_prompt_3 or negative_prompt
|
| 579 |
-
|
| 580 |
-
# normalize str to list
|
| 581 |
-
negative_prompt = (
|
| 582 |
-
batch_size * [negative_prompt]
|
| 583 |
-
if isinstance(negative_prompt, str)
|
| 584 |
-
else negative_prompt
|
| 585 |
-
)
|
| 586 |
-
negative_prompt_2 = (
|
| 587 |
-
batch_size * [negative_prompt_2]
|
| 588 |
-
if isinstance(negative_prompt_2, str)
|
| 589 |
-
else negative_prompt_2
|
| 590 |
-
)
|
| 591 |
-
negative_prompt_3 = (
|
| 592 |
-
batch_size * [negative_prompt_3]
|
| 593 |
-
if isinstance(negative_prompt_3, str)
|
| 594 |
-
else negative_prompt_3
|
| 595 |
-
)
|
| 596 |
-
|
| 597 |
-
if prompt is not None and type(prompt) is not type(negative_prompt):
|
| 598 |
-
raise TypeError(
|
| 599 |
-
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
| 600 |
-
f" {type(prompt)}."
|
| 601 |
-
)
|
| 602 |
-
elif batch_size != len(negative_prompt):
|
| 603 |
-
raise ValueError(
|
| 604 |
-
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
| 605 |
-
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
| 606 |
-
" the batch size of `prompt`."
|
| 607 |
-
)
|
| 608 |
-
|
| 609 |
-
negative_prompt_embed, negative_pooled_prompt_embed = (
|
| 610 |
-
self._get_clip_prompt_embeds(
|
| 611 |
-
negative_prompt,
|
| 612 |
-
device=device,
|
| 613 |
-
num_images_per_prompt=num_images_per_prompt,
|
| 614 |
-
clip_skip=None,
|
| 615 |
-
clip_model_index=0,
|
| 616 |
-
)
|
| 617 |
-
)
|
| 618 |
-
negative_prompt_2_embed, negative_pooled_prompt_2_embed = (
|
| 619 |
-
self._get_clip_prompt_embeds(
|
| 620 |
-
negative_prompt_2,
|
| 621 |
-
device=device,
|
| 622 |
-
num_images_per_prompt=num_images_per_prompt,
|
| 623 |
-
clip_skip=None,
|
| 624 |
-
clip_model_index=1,
|
| 625 |
-
)
|
| 626 |
-
)
|
| 627 |
-
negative_clip_prompt_embeds = torch.cat(
|
| 628 |
-
[negative_prompt_embed, negative_prompt_2_embed], dim=-1
|
| 629 |
-
)
|
| 630 |
-
|
| 631 |
-
t5_negative_prompt_embed = self._get_t5_prompt_embeds(
|
| 632 |
-
prompt=negative_prompt_3,
|
| 633 |
-
num_images_per_prompt=num_images_per_prompt,
|
| 634 |
-
device=device,
|
| 635 |
-
)
|
| 636 |
-
|
| 637 |
-
negative_clip_prompt_embeds = torch.nn.functional.pad(
|
| 638 |
-
negative_clip_prompt_embeds,
|
| 639 |
-
(
|
| 640 |
-
0,
|
| 641 |
-
t5_negative_prompt_embed.shape[-1]
|
| 642 |
-
- negative_clip_prompt_embeds.shape[-1],
|
| 643 |
-
),
|
| 644 |
-
)
|
| 645 |
-
|
| 646 |
-
negative_prompt_embeds = torch.cat(
|
| 647 |
-
[negative_clip_prompt_embeds, t5_negative_prompt_embed], dim=-2
|
| 648 |
-
)
|
| 649 |
-
negative_pooled_prompt_embeds = torch.cat(
|
| 650 |
-
[negative_pooled_prompt_embed, negative_pooled_prompt_2_embed], dim=-1
|
| 651 |
-
)
|
| 652 |
-
|
| 653 |
-
return (
|
| 654 |
-
prompt_embeds,
|
| 655 |
-
negative_prompt_embeds,
|
| 656 |
-
pooled_prompt_embeds,
|
| 657 |
-
negative_pooled_prompt_embeds,
|
| 658 |
-
)
|
| 659 |
-
|
| 660 |
-
def check_inputs(
|
| 661 |
-
self,
|
| 662 |
-
prompt,
|
| 663 |
-
prompt_2,
|
| 664 |
-
prompt_3,
|
| 665 |
-
height,
|
| 666 |
-
width,
|
| 667 |
-
negative_prompt=None,
|
| 668 |
-
negative_prompt_2=None,
|
| 669 |
-
negative_prompt_3=None,
|
| 670 |
-
prompt_embeds=None,
|
| 671 |
-
negative_prompt_embeds=None,
|
| 672 |
-
pooled_prompt_embeds=None,
|
| 673 |
-
negative_pooled_prompt_embeds=None,
|
| 674 |
-
callback_on_step_end_tensor_inputs=None,
|
| 675 |
-
):
|
| 676 |
-
if height % 8 != 0 or width % 8 != 0:
|
| 677 |
-
raise ValueError(
|
| 678 |
-
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
|
| 679 |
-
)
|
| 680 |
-
|
| 681 |
-
if callback_on_step_end_tensor_inputs is not None and not all(
|
| 682 |
-
k in self._callback_tensor_inputs
|
| 683 |
-
for k in callback_on_step_end_tensor_inputs
|
| 684 |
-
):
|
| 685 |
-
raise ValueError(
|
| 686 |
-
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
| 687 |
-
)
|
| 688 |
-
|
| 689 |
-
if prompt is not None and prompt_embeds is not None:
|
| 690 |
-
raise ValueError(
|
| 691 |
-
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 692 |
-
" only forward one of the two."
|
| 693 |
-
)
|
| 694 |
-
elif prompt_2 is not None and prompt_embeds is not None:
|
| 695 |
-
raise ValueError(
|
| 696 |
-
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 697 |
-
" only forward one of the two."
|
| 698 |
-
)
|
| 699 |
-
elif prompt_3 is not None and prompt_embeds is not None:
|
| 700 |
-
raise ValueError(
|
| 701 |
-
f"Cannot forward both `prompt_3`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 702 |
-
" only forward one of the two."
|
| 703 |
-
)
|
| 704 |
-
elif prompt is None and prompt_embeds is None:
|
| 705 |
-
raise ValueError(
|
| 706 |
-
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 707 |
-
)
|
| 708 |
-
elif prompt is not None and (
|
| 709 |
-
not isinstance(prompt, str) and not isinstance(prompt, list)
|
| 710 |
-
):
|
| 711 |
-
raise ValueError(
|
| 712 |
-
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
| 713 |
-
)
|
| 714 |
-
elif prompt_2 is not None and (
|
| 715 |
-
not isinstance(prompt_2, str) and not isinstance(prompt_2, list)
|
| 716 |
-
):
|
| 717 |
-
raise ValueError(
|
| 718 |
-
f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}"
|
| 719 |
-
)
|
| 720 |
-
elif prompt_3 is not None and (
|
| 721 |
-
not isinstance(prompt_3, str) and not isinstance(prompt_3, list)
|
| 722 |
-
):
|
| 723 |
-
raise ValueError(
|
| 724 |
-
f"`prompt_3` has to be of type `str` or `list` but is {type(prompt_3)}"
|
| 725 |
-
)
|
| 726 |
-
|
| 727 |
-
if negative_prompt is not None and negative_prompt_embeds is not None:
|
| 728 |
-
raise ValueError(
|
| 729 |
-
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
| 730 |
-
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 731 |
-
)
|
| 732 |
-
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
| 733 |
-
raise ValueError(
|
| 734 |
-
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
| 735 |
-
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 736 |
-
)
|
| 737 |
-
elif negative_prompt_3 is not None and negative_prompt_embeds is not None:
|
| 738 |
-
raise ValueError(
|
| 739 |
-
f"Cannot forward both `negative_prompt_3`: {negative_prompt_3} and `negative_prompt_embeds`:"
|
| 740 |
-
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
| 741 |
-
)
|
| 742 |
-
|
| 743 |
-
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
| 744 |
-
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
| 745 |
-
raise ValueError(
|
| 746 |
-
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
| 747 |
-
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
| 748 |
-
f" {negative_prompt_embeds.shape}."
|
| 749 |
-
)
|
| 750 |
-
|
| 751 |
-
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
| 752 |
-
raise ValueError(
|
| 753 |
-
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
| 754 |
-
)
|
| 755 |
-
|
| 756 |
-
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
| 757 |
-
raise ValueError(
|
| 758 |
-
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
| 759 |
-
)
|
| 760 |
-
|
| 761 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
| 762 |
-
def prepare_latents(
|
| 763 |
-
self,
|
| 764 |
-
batch_size,
|
| 765 |
-
num_channels_latents,
|
| 766 |
-
height,
|
| 767 |
-
width,
|
| 768 |
-
dtype,
|
| 769 |
-
device,
|
| 770 |
-
generator,
|
| 771 |
-
latents=None,
|
| 772 |
-
):
|
| 773 |
-
shape = (
|
| 774 |
-
batch_size,
|
| 775 |
-
num_channels_latents,
|
| 776 |
-
int(height) // self.vae_scale_factor,
|
| 777 |
-
int(width) // self.vae_scale_factor,
|
| 778 |
-
)
|
| 779 |
-
|
| 780 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
| 781 |
-
raise ValueError(
|
| 782 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 783 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 784 |
-
)
|
| 785 |
-
|
| 786 |
-
if latents is None:
|
| 787 |
-
latents = randn_tensor(
|
| 788 |
-
shape, generator=generator, device=device, dtype=dtype
|
| 789 |
-
)
|
| 790 |
-
else:
|
| 791 |
-
latents = latents.to(device=device, dtype=dtype)
|
| 792 |
-
|
| 793 |
-
return latents
|
| 794 |
-
|
| 795 |
-
# Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.prepare_image
|
| 796 |
-
def prepare_image(
|
| 797 |
-
self,
|
| 798 |
-
image,
|
| 799 |
-
width,
|
| 800 |
-
height,
|
| 801 |
-
batch_size,
|
| 802 |
-
num_images_per_prompt,
|
| 803 |
-
device,
|
| 804 |
-
dtype,
|
| 805 |
-
do_classifier_free_guidance=False,
|
| 806 |
-
guess_mode=False,
|
| 807 |
-
):
|
| 808 |
-
image = self.control_image_processor.preprocess(
|
| 809 |
-
image, height=height, width=width
|
| 810 |
-
).to(dtype=torch.float32)
|
| 811 |
-
image_batch_size = image.shape[0]
|
| 812 |
-
|
| 813 |
-
if image_batch_size == 1:
|
| 814 |
-
repeat_by = batch_size
|
| 815 |
-
else:
|
| 816 |
-
# image batch size is the same as prompt batch size
|
| 817 |
-
repeat_by = num_images_per_prompt
|
| 818 |
-
|
| 819 |
-
image = image.repeat_interleave(repeat_by, dim=0)
|
| 820 |
-
|
| 821 |
-
image = image.to(device=device, dtype=dtype)
|
| 822 |
-
|
| 823 |
-
if do_classifier_free_guidance and not guess_mode:
|
| 824 |
-
image = torch.cat([image] * 2)
|
| 825 |
-
|
| 826 |
-
return image
|
| 827 |
-
|
| 828 |
-
def prepare_image_with_mask(
|
| 829 |
-
self,
|
| 830 |
-
image,
|
| 831 |
-
mask,
|
| 832 |
-
width,
|
| 833 |
-
height,
|
| 834 |
-
batch_size,
|
| 835 |
-
num_images_per_prompt,
|
| 836 |
-
device,
|
| 837 |
-
dtype,
|
| 838 |
-
do_classifier_free_guidance=False,
|
| 839 |
-
guess_mode=False,
|
| 840 |
-
):
|
| 841 |
-
|
| 842 |
-
if isinstance(image, torch.Tensor):
|
| 843 |
-
pass
|
| 844 |
-
else:
|
| 845 |
-
image = self.image_processor.preprocess(
|
| 846 |
-
image, height=height, width=width
|
| 847 |
-
) # C,H,W
|
| 848 |
-
|
| 849 |
-
if isinstance(mask, torch.Tensor):
|
| 850 |
-
pass
|
| 851 |
-
else:
|
| 852 |
-
raise "Control Mask must be tensor"
|
| 853 |
-
|
| 854 |
-
image_batch_size = image.shape[0]
|
| 855 |
-
|
| 856 |
-
if image_batch_size == 1:
|
| 857 |
-
repeat_by = batch_size
|
| 858 |
-
else:
|
| 859 |
-
# image batch size is the same as prompt batch size
|
| 860 |
-
repeat_by = num_images_per_prompt
|
| 861 |
-
|
| 862 |
-
image = image.repeat_interleave(repeat_by, dim=0)
|
| 863 |
-
mask = mask.repeat_interleave(repeat_by, dim=0)
|
| 864 |
-
|
| 865 |
-
image = image.to(device=device, dtype=self.vae.dtype)
|
| 866 |
-
mask = mask.to(device=device, dtype=dtype)
|
| 867 |
-
|
| 868 |
-
image_latents = self.vae.encode(image).latent_dist.sample()
|
| 869 |
-
image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
| 870 |
-
image_latents = image_latents.to(dtype)
|
| 871 |
-
|
| 872 |
-
# cat image and mask
|
| 873 |
-
mask = torch.nn.functional.interpolate(
|
| 874 |
-
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
|
| 875 |
-
)
|
| 876 |
-
|
| 877 |
-
control_image = torch.cat([image_latents, mask], dim=1)
|
| 878 |
-
|
| 879 |
-
if do_classifier_free_guidance and not guess_mode:
|
| 880 |
-
control_image = torch.cat([control_image] * 2)
|
| 881 |
-
return control_image
|
| 882 |
-
|
| 883 |
-
@property
|
| 884 |
-
def guidance_scale(self):
|
| 885 |
-
return self._guidance_scale
|
| 886 |
-
|
| 887 |
-
@property
|
| 888 |
-
def clip_skip(self):
|
| 889 |
-
return self._clip_skip
|
| 890 |
-
|
| 891 |
-
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 892 |
-
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 893 |
-
# corresponds to doing no classifier free guidance.
|
| 894 |
-
@property
|
| 895 |
-
def do_classifier_free_guidance(self):
|
| 896 |
-
return self._guidance_scale > 1
|
| 897 |
-
|
| 898 |
-
@property
|
| 899 |
-
def joint_attention_kwargs(self):
|
| 900 |
-
return self._joint_attention_kwargs
|
| 901 |
-
|
| 902 |
-
@property
|
| 903 |
-
def num_timesteps(self):
|
| 904 |
-
return self._num_timesteps
|
| 905 |
-
|
| 906 |
-
@property
|
| 907 |
-
def interrupt(self):
|
| 908 |
-
return self._interrupt
|
| 909 |
-
|
| 910 |
-
@torch.no_grad()
|
| 911 |
-
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 912 |
-
def __call__(
|
| 913 |
-
self,
|
| 914 |
-
prompt: Union[str, List[str]] = None,
|
| 915 |
-
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 916 |
-
prompt_3: Optional[Union[str, List[str]]] = None,
|
| 917 |
-
height: Optional[int] = None,
|
| 918 |
-
width: Optional[int] = None,
|
| 919 |
-
num_inference_steps: int = 28,
|
| 920 |
-
timesteps: List[int] = None,
|
| 921 |
-
guidance_scale: float = 7.0,
|
| 922 |
-
control_guidance_start: Union[float, List[float]] = 0.0,
|
| 923 |
-
control_guidance_end: Union[float, List[float]] = 1.0,
|
| 924 |
-
control_image: Union[
|
| 925 |
-
PipelineImageInput,
|
| 926 |
-
List[PipelineImageInput],
|
| 927 |
-
] = None,
|
| 928 |
-
control_mask=None,
|
| 929 |
-
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
| 930 |
-
controlnet_pooled_projections: Optional[torch.FloatTensor] = None,
|
| 931 |
-
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 932 |
-
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
| 933 |
-
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
| 934 |
-
num_images_per_prompt: Optional[int] = 1,
|
| 935 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 936 |
-
latents: Optional[torch.FloatTensor] = None,
|
| 937 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 938 |
-
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 939 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 940 |
-
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 941 |
-
output_type: Optional[str] = "pil",
|
| 942 |
-
return_dict: bool = True,
|
| 943 |
-
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 944 |
-
clip_skip: Optional[int] = None,
|
| 945 |
-
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 946 |
-
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 947 |
-
):
|
| 948 |
-
r"""
|
| 949 |
-
Function invoked when calling the pipeline for generation.
|
| 950 |
-
|
| 951 |
-
Args:
|
| 952 |
-
prompt (`str` or `List[str]`, *optional*):
|
| 953 |
-
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 954 |
-
instead.
|
| 955 |
-
prompt_2 (`str` or `List[str]`, *optional*):
|
| 956 |
-
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 957 |
-
will be used instead
|
| 958 |
-
prompt_3 (`str` or `List[str]`, *optional*):
|
| 959 |
-
The prompt or prompts to be sent to `tokenizer_3` and `text_encoder_3`. If not defined, `prompt` is
|
| 960 |
-
will be used instead
|
| 961 |
-
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 962 |
-
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 963 |
-
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 964 |
-
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 965 |
-
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 966 |
-
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 967 |
-
expense of slower inference.
|
| 968 |
-
timesteps (`List[int]`, *optional*):
|
| 969 |
-
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
| 970 |
-
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
| 971 |
-
passed will be used. Must be in descending order.
|
| 972 |
-
guidance_scale (`float`, *optional*, defaults to 5.0):
|
| 973 |
-
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 974 |
-
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 975 |
-
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 976 |
-
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 977 |
-
usually at the expense of lower image quality.
|
| 978 |
-
control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
|
| 979 |
-
The percentage of total steps at which the ControlNet starts applying.
|
| 980 |
-
control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
|
| 981 |
-
The percentage of total steps at which the ControlNet stops applying.
|
| 982 |
-
control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
| 983 |
-
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
| 984 |
-
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
| 985 |
-
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
|
| 986 |
-
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
|
| 987 |
-
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
|
| 988 |
-
images must be passed as a list such that each element of the list can be correctly batched for input
|
| 989 |
-
to a single ControlNet.
|
| 990 |
-
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
| 991 |
-
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
| 992 |
-
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
|
| 993 |
-
the corresponding scale as a list.
|
| 994 |
-
controlnet_pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`):
|
| 995 |
-
Embeddings projected from the embeddings of controlnet input conditions.
|
| 996 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
| 997 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 998 |
-
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 999 |
-
less than `1`).
|
| 1000 |
-
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
| 1001 |
-
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
| 1002 |
-
`text_encoder_2`. If not defined, `negative_prompt` is used instead
|
| 1003 |
-
negative_prompt_3 (`str` or `List[str]`, *optional*):
|
| 1004 |
-
The prompt or prompts not to guide the image generation to be sent to `tokenizer_3` and
|
| 1005 |
-
`text_encoder_3`. If not defined, `negative_prompt` is used instead
|
| 1006 |
-
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 1007 |
-
The number of images to generate per prompt.
|
| 1008 |
-
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 1009 |
-
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 1010 |
-
to make generation deterministic.
|
| 1011 |
-
latents (`torch.FloatTensor`, *optional*):
|
| 1012 |
-
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 1013 |
-
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 1014 |
-
tensor will ge generated by sampling using the supplied random `generator`.
|
| 1015 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 1016 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 1017 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
| 1018 |
-
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 1019 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 1020 |
-
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 1021 |
-
argument.
|
| 1022 |
-
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 1023 |
-
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 1024 |
-
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 1025 |
-
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 1026 |
-
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 1027 |
-
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
| 1028 |
-
input argument.
|
| 1029 |
-
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 1030 |
-
The output format of the generate image. Choose between
|
| 1031 |
-
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 1032 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1033 |
-
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
| 1034 |
-
of a plain tuple.
|
| 1035 |
-
joint_attention_kwargs (`dict`, *optional*):
|
| 1036 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 1037 |
-
`self.processor` in
|
| 1038 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 1039 |
-
callback_on_step_end (`Callable`, *optional*):
|
| 1040 |
-
A function that calls at the end of each denoising steps during the inference. The function is called
|
| 1041 |
-
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
| 1042 |
-
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
| 1043 |
-
`callback_on_step_end_tensor_inputs`.
|
| 1044 |
-
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 1045 |
-
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 1046 |
-
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 1047 |
-
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 1048 |
-
|
| 1049 |
-
Examples:
|
| 1050 |
-
|
| 1051 |
-
Returns:
|
| 1052 |
-
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
| 1053 |
-
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
| 1054 |
-
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
| 1055 |
-
"""
|
| 1056 |
-
|
| 1057 |
-
height = height or self.default_sample_size * self.vae_scale_factor
|
| 1058 |
-
width = width or self.default_sample_size * self.vae_scale_factor
|
| 1059 |
-
|
| 1060 |
-
# align format for control guidance
|
| 1061 |
-
if not isinstance(control_guidance_start, list) and isinstance(
|
| 1062 |
-
control_guidance_end, list
|
| 1063 |
-
):
|
| 1064 |
-
control_guidance_start = len(control_guidance_end) * [
|
| 1065 |
-
control_guidance_start
|
| 1066 |
-
]
|
| 1067 |
-
elif not isinstance(control_guidance_end, list) and isinstance(
|
| 1068 |
-
control_guidance_start, list
|
| 1069 |
-
):
|
| 1070 |
-
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
|
| 1071 |
-
elif not isinstance(control_guidance_start, list) and not isinstance(
|
| 1072 |
-
control_guidance_end, list
|
| 1073 |
-
):
|
| 1074 |
-
mult = (
|
| 1075 |
-
len(self.controlnet.nets)
|
| 1076 |
-
if isinstance(self.controlnet, SD3MultiControlNetModel)
|
| 1077 |
-
else 1
|
| 1078 |
-
)
|
| 1079 |
-
control_guidance_start, control_guidance_end = (
|
| 1080 |
-
mult * [control_guidance_start],
|
| 1081 |
-
mult * [control_guidance_end],
|
| 1082 |
-
)
|
| 1083 |
-
|
| 1084 |
-
# 1. Check inputs. Raise error if not correct
|
| 1085 |
-
self.check_inputs(
|
| 1086 |
-
prompt,
|
| 1087 |
-
prompt_2,
|
| 1088 |
-
prompt_3,
|
| 1089 |
-
height,
|
| 1090 |
-
width,
|
| 1091 |
-
negative_prompt=negative_prompt,
|
| 1092 |
-
negative_prompt_2=negative_prompt_2,
|
| 1093 |
-
negative_prompt_3=negative_prompt_3,
|
| 1094 |
-
prompt_embeds=prompt_embeds,
|
| 1095 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
| 1096 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 1097 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 1098 |
-
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
| 1099 |
-
)
|
| 1100 |
-
|
| 1101 |
-
self._guidance_scale = guidance_scale
|
| 1102 |
-
self._clip_skip = clip_skip
|
| 1103 |
-
self._joint_attention_kwargs = joint_attention_kwargs
|
| 1104 |
-
self._interrupt = False
|
| 1105 |
-
|
| 1106 |
-
# 2. Define call parameters
|
| 1107 |
-
if prompt is not None and isinstance(prompt, str):
|
| 1108 |
-
batch_size = 1
|
| 1109 |
-
elif prompt is not None and isinstance(prompt, list):
|
| 1110 |
-
batch_size = len(prompt)
|
| 1111 |
-
else:
|
| 1112 |
-
batch_size = prompt_embeds.shape[0]
|
| 1113 |
-
|
| 1114 |
-
device = self._execution_device
|
| 1115 |
-
dtype = self.transformer.dtype
|
| 1116 |
-
|
| 1117 |
-
(
|
| 1118 |
-
prompt_embeds,
|
| 1119 |
-
negative_prompt_embeds,
|
| 1120 |
-
pooled_prompt_embeds,
|
| 1121 |
-
negative_pooled_prompt_embeds,
|
| 1122 |
-
) = self.encode_prompt(
|
| 1123 |
-
prompt=prompt,
|
| 1124 |
-
prompt_2=prompt_2,
|
| 1125 |
-
prompt_3=prompt_3,
|
| 1126 |
-
negative_prompt=negative_prompt,
|
| 1127 |
-
negative_prompt_2=negative_prompt_2,
|
| 1128 |
-
negative_prompt_3=negative_prompt_3,
|
| 1129 |
-
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
| 1130 |
-
prompt_embeds=prompt_embeds,
|
| 1131 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
| 1132 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 1133 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 1134 |
-
device=device,
|
| 1135 |
-
clip_skip=self.clip_skip,
|
| 1136 |
-
num_images_per_prompt=num_images_per_prompt,
|
| 1137 |
-
)
|
| 1138 |
-
|
| 1139 |
-
if self.do_classifier_free_guidance:
|
| 1140 |
-
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
| 1141 |
-
pooled_prompt_embeds = torch.cat(
|
| 1142 |
-
[negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0
|
| 1143 |
-
)
|
| 1144 |
-
|
| 1145 |
-
# 3. Prepare control image
|
| 1146 |
-
if isinstance(self.controlnet, SD3ControlNetModel):
|
| 1147 |
-
control_image = self.prepare_image_with_mask(
|
| 1148 |
-
image=control_image,
|
| 1149 |
-
mask=control_mask,
|
| 1150 |
-
width=width,
|
| 1151 |
-
height=height,
|
| 1152 |
-
batch_size=batch_size * num_images_per_prompt,
|
| 1153 |
-
num_images_per_prompt=num_images_per_prompt,
|
| 1154 |
-
device=device,
|
| 1155 |
-
dtype=self.controlnet.dtype,
|
| 1156 |
-
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
| 1157 |
-
)
|
| 1158 |
-
height, width = control_image.shape[-2:]
|
| 1159 |
-
height = height * self.vae_scale_factor
|
| 1160 |
-
width = width * self.vae_scale_factor
|
| 1161 |
-
elif isinstance(self.controlnet, SD3MultiControlNetModel):
|
| 1162 |
-
images = []
|
| 1163 |
-
for image_ in control_image:
|
| 1164 |
-
image_ = self.prepare_image_with_mask(
|
| 1165 |
-
image=image_,
|
| 1166 |
-
mask=control_mask,
|
| 1167 |
-
width=width,
|
| 1168 |
-
height=height,
|
| 1169 |
-
batch_size=batch_size * num_images_per_prompt,
|
| 1170 |
-
num_images_per_prompt=num_images_per_prompt,
|
| 1171 |
-
device=device,
|
| 1172 |
-
dtype=self.controlnet.dtype,
|
| 1173 |
-
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
| 1174 |
-
)
|
| 1175 |
-
images.append(image_)
|
| 1176 |
-
|
| 1177 |
-
control_image = images
|
| 1178 |
-
height, width = control_image[0].shape[-2:]
|
| 1179 |
-
height = height * self.vae_scale_factor
|
| 1180 |
-
width = width * self.vae_scale_factor
|
| 1181 |
-
else:
|
| 1182 |
-
raise ValueError("ControlNet must be of type SD3ControlNetModel")
|
| 1183 |
-
|
| 1184 |
-
if controlnet_pooled_projections is None:
|
| 1185 |
-
controlnet_pooled_projections = torch.zeros_like(pooled_prompt_embeds)
|
| 1186 |
-
else:
|
| 1187 |
-
controlnet_pooled_projections = (
|
| 1188 |
-
controlnet_pooled_projections or pooled_prompt_embeds
|
| 1189 |
-
)
|
| 1190 |
-
|
| 1191 |
-
# 4. Prepare timesteps
|
| 1192 |
-
timesteps, num_inference_steps = retrieve_timesteps(
|
| 1193 |
-
self.scheduler, num_inference_steps, device, timesteps
|
| 1194 |
-
)
|
| 1195 |
-
num_warmup_steps = max(
|
| 1196 |
-
len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
| 1197 |
-
)
|
| 1198 |
-
self._num_timesteps = len(timesteps)
|
| 1199 |
-
|
| 1200 |
-
# 5. Prepare latent variables
|
| 1201 |
-
num_channels_latents = self.transformer.config.in_channels
|
| 1202 |
-
latents = self.prepare_latents(
|
| 1203 |
-
batch_size * num_images_per_prompt,
|
| 1204 |
-
num_channels_latents,
|
| 1205 |
-
height,
|
| 1206 |
-
width,
|
| 1207 |
-
prompt_embeds.dtype,
|
| 1208 |
-
device,
|
| 1209 |
-
generator,
|
| 1210 |
-
latents,
|
| 1211 |
-
)
|
| 1212 |
-
|
| 1213 |
-
# 6. Create tensor stating which controlnets to keep
|
| 1214 |
-
controlnet_keep = []
|
| 1215 |
-
for i in range(len(timesteps)):
|
| 1216 |
-
keeps = [
|
| 1217 |
-
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
|
| 1218 |
-
for s, e in zip(control_guidance_start, control_guidance_end)
|
| 1219 |
-
]
|
| 1220 |
-
controlnet_keep.append(
|
| 1221 |
-
keeps[0] if isinstance(self.controlnet, SD3ControlNetModel) else keeps
|
| 1222 |
-
)
|
| 1223 |
-
|
| 1224 |
-
# 7. Denoising loop
|
| 1225 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 1226 |
-
for i, t in enumerate(timesteps):
|
| 1227 |
-
if self.interrupt:
|
| 1228 |
-
continue
|
| 1229 |
-
|
| 1230 |
-
# expand the latents if we are doing classifier free guidance
|
| 1231 |
-
latent_model_input = (
|
| 1232 |
-
torch.cat([latents] * 2)
|
| 1233 |
-
if self.do_classifier_free_guidance
|
| 1234 |
-
else latents
|
| 1235 |
-
)
|
| 1236 |
-
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 1237 |
-
timestep = t.expand(latent_model_input.shape[0])
|
| 1238 |
-
|
| 1239 |
-
if isinstance(controlnet_keep[i], list):
|
| 1240 |
-
cond_scale = [
|
| 1241 |
-
c * s
|
| 1242 |
-
for c, s in zip(
|
| 1243 |
-
controlnet_conditioning_scale, controlnet_keep[i]
|
| 1244 |
-
)
|
| 1245 |
-
]
|
| 1246 |
-
else:
|
| 1247 |
-
controlnet_cond_scale = controlnet_conditioning_scale
|
| 1248 |
-
if isinstance(controlnet_cond_scale, list):
|
| 1249 |
-
controlnet_cond_scale = controlnet_cond_scale[0]
|
| 1250 |
-
cond_scale = controlnet_cond_scale * controlnet_keep[i]
|
| 1251 |
-
|
| 1252 |
-
# controlnet(s) inference
|
| 1253 |
-
control_block_samples = self.controlnet(
|
| 1254 |
-
hidden_states=latent_model_input,
|
| 1255 |
-
timestep=timestep,
|
| 1256 |
-
encoder_hidden_states=prompt_embeds,
|
| 1257 |
-
pooled_projections=controlnet_pooled_projections,
|
| 1258 |
-
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 1259 |
-
controlnet_cond=control_image,
|
| 1260 |
-
conditioning_scale=cond_scale,
|
| 1261 |
-
return_dict=False,
|
| 1262 |
-
)[0]
|
| 1263 |
-
|
| 1264 |
-
noise_pred = self.transformer(
|
| 1265 |
-
hidden_states=latent_model_input,
|
| 1266 |
-
timestep=timestep,
|
| 1267 |
-
encoder_hidden_states=prompt_embeds,
|
| 1268 |
-
pooled_projections=pooled_prompt_embeds,
|
| 1269 |
-
block_controlnet_hidden_states=control_block_samples,
|
| 1270 |
-
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 1271 |
-
return_dict=False,
|
| 1272 |
-
)[0]
|
| 1273 |
-
|
| 1274 |
-
# perform guidance
|
| 1275 |
-
if self.do_classifier_free_guidance:
|
| 1276 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 1277 |
-
noise_pred = noise_pred_uncond + self.guidance_scale * (
|
| 1278 |
-
noise_pred_text - noise_pred_uncond
|
| 1279 |
-
)
|
| 1280 |
-
|
| 1281 |
-
# compute the previous noisy sample x_t -> x_t-1
|
| 1282 |
-
latents_dtype = latents.dtype
|
| 1283 |
-
latents = self.scheduler.step(
|
| 1284 |
-
noise_pred, t, latents, return_dict=False
|
| 1285 |
-
)[0]
|
| 1286 |
-
|
| 1287 |
-
if latents.dtype != latents_dtype:
|
| 1288 |
-
if torch.backends.mps.is_available():
|
| 1289 |
-
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
| 1290 |
-
latents = latents.to(latents_dtype)
|
| 1291 |
-
|
| 1292 |
-
if callback_on_step_end is not None:
|
| 1293 |
-
callback_kwargs = {}
|
| 1294 |
-
for k in callback_on_step_end_tensor_inputs:
|
| 1295 |
-
callback_kwargs[k] = locals()[k]
|
| 1296 |
-
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 1297 |
-
|
| 1298 |
-
latents = callback_outputs.pop("latents", latents)
|
| 1299 |
-
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 1300 |
-
negative_prompt_embeds = callback_outputs.pop(
|
| 1301 |
-
"negative_prompt_embeds", negative_prompt_embeds
|
| 1302 |
-
)
|
| 1303 |
-
negative_pooled_prompt_embeds = callback_outputs.pop(
|
| 1304 |
-
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
| 1305 |
-
)
|
| 1306 |
-
|
| 1307 |
-
# call the callback, if provided
|
| 1308 |
-
if i == len(timesteps) - 1 or (
|
| 1309 |
-
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
| 1310 |
-
):
|
| 1311 |
-
progress_bar.update()
|
| 1312 |
-
|
| 1313 |
-
if XLA_AVAILABLE:
|
| 1314 |
-
xm.mark_step()
|
| 1315 |
-
|
| 1316 |
-
if output_type == "latent":
|
| 1317 |
-
image = latents
|
| 1318 |
-
|
| 1319 |
-
else:
|
| 1320 |
-
latents = (
|
| 1321 |
-
latents / self.vae.config.scaling_factor
|
| 1322 |
-
) + self.vae.config.shift_factor
|
| 1323 |
-
latents = latents.to(dtype=self.vae.dtype)
|
| 1324 |
-
image = self.vae.decode(latents, return_dict=False)[0]
|
| 1325 |
-
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 1326 |
-
|
| 1327 |
-
# Offload all models
|
| 1328 |
-
self.maybe_free_model_hooks()
|
| 1329 |
-
|
| 1330 |
-
if not return_dict:
|
| 1331 |
-
return (image,)
|
| 1332 |
-
|
| 1333 |
-
return StableDiffusion3PipelineOutput(images=image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|