Update README.md
Browse files
README.md
CHANGED
|
@@ -10,4 +10,117 @@ tags:
|
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
-
# `wav2vec2-large-xlsr-53-th`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
license: apache-2.0
|
| 11 |
---
|
| 12 |
|
| 13 |
+
# `wav2vec2-large-xlsr-53-th`
|
| 14 |
+
Finetuning `wav2vec2-large-xlsr-53` on Thai [Common Voice 7.0](https://commonvoice.mozilla.org/en/datasets)
|
| 15 |
+
|
| 16 |
+
We finetune [wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) based on [Fine-tuning Wav2Vec2 for English ASR](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/Fine_tuning_Wav2Vec2_for_English_ASR.ipynb) using Thai examples of [Common Voice Corpus 7.0](https://commonvoice.mozilla.org/en/datasets). The notebooks and scripts can be found in [vistec-ai/wav2vec2-large-xlsr-53-th](https://github.com/vistec-ai/wav2vec2-large-xlsr-53-th). The pretrained model and processor can be found at [airesearch/wav2vec2-large-xlsr-53-th](https://huggingface.co/airesearch/wav2vec2-large-xlsr-53-th).
|
| 17 |
+
|
| 18 |
+
## Usage
|
| 19 |
+
|
| 20 |
+
```
|
| 21 |
+
#load pretrained processor and model
|
| 22 |
+
processor = Wav2Vec2Processor.from_pretrained("vistec-ai/wav2vec2-large-xlsr-53-th")
|
| 23 |
+
model = Wav2Vec2ForCTC.from_pretrained("vistec-ai/wav2vec2-large-xlsr-53-th")
|
| 24 |
+
|
| 25 |
+
#function to resample to 16_000
|
| 26 |
+
def speech_file_to_array_fn(batch,
|
| 27 |
+
text_col="sentence",
|
| 28 |
+
fname_col="path",
|
| 29 |
+
resampling_to=16000):
|
| 30 |
+
speech_array, sampling_rate = torchaudio.load(batch[fname_col])
|
| 31 |
+
resampler=torchaudio.transforms.Resample(sampling_rate, resampling_to)
|
| 32 |
+
batch["speech"] = resampler(speech_array)[0].numpy()
|
| 33 |
+
batch["sampling_rate"] = resampling_to
|
| 34 |
+
batch["target_text"] = batch[text_col]
|
| 35 |
+
return batch
|
| 36 |
+
|
| 37 |
+
#get 2 examples as sample input
|
| 38 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
| 39 |
+
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 40 |
+
|
| 41 |
+
#infer
|
| 42 |
+
with torch.no_grad():
|
| 43 |
+
logits = model(inputs.input_values,).logits
|
| 44 |
+
|
| 45 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 46 |
+
|
| 47 |
+
print("Prediction:", processor.batch_decode(predicted_ids))
|
| 48 |
+
print("Reference:", test_dataset["sentence"][:2])
|
| 49 |
+
|
| 50 |
+
>> Prediction: ['และ เขา ก็ สัมผัส ดีบุก', 'คุณ สามารถ รับทราบ เมื่อ ข้อความ นี้ ถูก อ่าน แล้ว']
|
| 51 |
+
>> Reference: ['และเขาก็สัมผัสดีบุก', 'คุณสามารถรับทราบเมื่อข้อความนี้ถูกอ่านแล้ว']
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
## Datasets
|
| 55 |
+
|
| 56 |
+
Common Voice Corpus 7.0](https://commonvoice.mozilla.org/en/datasets) contains 133 validated hours of Thai (255 total hours) at 5GB. We pre-tokenize with `pythainlp.tokenize.word_tokenize`. We preprocess the dataset using cleaning rules described in `notebooks/cv-preprocess.ipynb` by [@tann9949](https://github.com/tann9949). We then deduplicate and split as described in [ekapolc/Thai_commonvoice_split](https://github.com/ekapolc/Thai_commonvoice_split) in order to 1) avoid data leakage due to random splits after cleaning in [Common Voice Corpus 7.0](https://commonvoice.mozilla.org/en/datasets) and 2) preserve the majority of the data for the training set. The dataset loading script is `scripts/th_common_voice_70.py`. The resulting dataset is as follows:
|
| 57 |
+
|
| 58 |
+
```
|
| 59 |
+
DatasetDict({
|
| 60 |
+
train: Dataset({
|
| 61 |
+
features: ['path', 'sentence'],
|
| 62 |
+
num_rows: 86586
|
| 63 |
+
})
|
| 64 |
+
test: Dataset({
|
| 65 |
+
features: ['path', 'sentence'],
|
| 66 |
+
num_rows: 2502
|
| 67 |
+
})
|
| 68 |
+
validation: Dataset({
|
| 69 |
+
features: ['path', 'sentence'],
|
| 70 |
+
num_rows: 3027
|
| 71 |
+
})
|
| 72 |
+
})
|
| 73 |
+
```
|
| 74 |
+
|
| 75 |
+
## Training
|
| 76 |
+
|
| 77 |
+
We fintuned using the following configuration on a single V100 GPU and chose the checkpoint with the lowest validation loss. The finetuning script is `scripts/wav2vec2_finetune.py`
|
| 78 |
+
|
| 79 |
+
```
|
| 80 |
+
# create model
|
| 81 |
+
model = Wav2Vec2ForCTC.from_pretrained(
|
| 82 |
+
"facebook/wav2vec2-large-xlsr-53",
|
| 83 |
+
attention_dropout=0.1,
|
| 84 |
+
hidden_dropout=0.1,
|
| 85 |
+
feat_proj_dropout=0.0,
|
| 86 |
+
mask_time_prob=0.05,
|
| 87 |
+
layerdrop=0.1,
|
| 88 |
+
gradient_checkpointing=True,
|
| 89 |
+
ctc_loss_reduction="mean",
|
| 90 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
| 91 |
+
vocab_size=len(processor.tokenizer)
|
| 92 |
+
)
|
| 93 |
+
model.freeze_feature_extractor()
|
| 94 |
+
training_args = TrainingArguments(
|
| 95 |
+
output_dir="../data/wav2vec2-large-xlsr-53-thai",
|
| 96 |
+
group_by_length=True,
|
| 97 |
+
per_device_train_batch_size=32,
|
| 98 |
+
gradient_accumulation_steps=1,
|
| 99 |
+
per_device_eval_batch_size=16,
|
| 100 |
+
metric_for_best_model='wer',
|
| 101 |
+
evaluation_strategy="steps",
|
| 102 |
+
eval_steps=1000,
|
| 103 |
+
logging_strategy="steps",
|
| 104 |
+
logging_steps=1000,
|
| 105 |
+
save_strategy="steps",
|
| 106 |
+
save_steps=1000,
|
| 107 |
+
num_train_epochs=100,
|
| 108 |
+
fp16=True,
|
| 109 |
+
learning_rate=1e-4,
|
| 110 |
+
warmup_steps=1000,
|
| 111 |
+
save_total_limit=3,
|
| 112 |
+
report_to="tensorboard"
|
| 113 |
+
)
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
## Evaluation
|
| 117 |
+
|
| 118 |
+
We benchmark on the test set using WER with words tokenized by [PyThaiNLP](https://github.com/PyThaiNLP/pythainlp) 2.3.1 and CER. We also measure performance when spell correction using [TNC](http://www.arts.chula.ac.th/ling/tnc/) ngrams is applied. Evaluation codes can be found in `notebooks/wav2vec2_finetuning_tutorial.ipynb`
|
| 119 |
+
|
| 120 |
+
| | WER | CER |
|
| 121 |
+
|--------------------------|------------|------------|
|
| 122 |
+
| without spell correction | 0.20754109 | 0.03727126 |
|
| 123 |
+
| with spell correction | TBD | TBD |
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
|