Upload 7 files
Browse files- train/chat_moe_model.py +137 -0
- train/chat_moe_model_zhcn_en.py +177 -0
- train/test_moe_model.py +155 -0
- train/test_moe_model_zhcn_en.py +205 -0
- train/train_moe_router.py +163 -0
- train/train_moe_router_en.py +289 -0
- train/train_moe_router_zh_CN.py +289 -0
train/chat_moe_model.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ==============================================================================
|
| 2 |
+
# Smol-MoE 8x135M - "Chat with Your Creation"
|
| 3 |
+
# (Final Interactive Inference Script)
|
| 4 |
+
# ==============================================================================
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
| 10 |
+
from transformers.models.llama.modeling_llama import LlamaMLP
|
| 11 |
+
import os
|
| 12 |
+
|
| 13 |
+
# --- 1. 关键:重新定义你的所有自定义模块 ---
|
| 14 |
+
# 这是让 from_pretrained() 能够成功重建你自定义模型的关键。
|
| 15 |
+
|
| 16 |
+
MODEL_PATH = "./SmolMoE-8x135M-Instruct-v1-Trained"
|
| 17 |
+
|
| 18 |
+
# 从保存好的模型配置中读取MoE参数
|
| 19 |
+
config = AutoConfig.from_pretrained(MODEL_PATH)
|
| 20 |
+
NUM_EXPERTS = config.moe_num_experts
|
| 21 |
+
TOP_K = config.moe_top_k
|
| 22 |
+
|
| 23 |
+
class MoERouter(nn.Module):
|
| 24 |
+
def __init__(self, hidden_size: int, num_experts: int):
|
| 25 |
+
super().__init__()
|
| 26 |
+
self.layer = nn.Linear(hidden_size, num_experts, bias=False)
|
| 27 |
+
def forward(self, hidden_states):
|
| 28 |
+
return self.layer(hidden_states)
|
| 29 |
+
|
| 30 |
+
class MoEModule(nn.Module):
|
| 31 |
+
def __init__(self, config):
|
| 32 |
+
super().__init__()
|
| 33 |
+
self.hidden_size = config.hidden_size
|
| 34 |
+
self.top_k = TOP_K
|
| 35 |
+
self.num_experts = NUM_EXPERTS
|
| 36 |
+
self.router = MoERouter(self.hidden_size, self.num_experts)
|
| 37 |
+
self.experts = nn.ModuleList([LlamaMLP(config) for _ in range(self.num_experts)])
|
| 38 |
+
|
| 39 |
+
def forward(self, hidden_states):
|
| 40 |
+
original_shape = hidden_states.shape
|
| 41 |
+
flat_hidden_states = hidden_states.view(-1, self.hidden_size)
|
| 42 |
+
router_logits = self.router(flat_hidden_states)
|
| 43 |
+
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
|
| 44 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
| 45 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
| 46 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
| 47 |
+
final_hidden_states = torch.zeros_like(flat_hidden_states)
|
| 48 |
+
for k in range(self.top_k):
|
| 49 |
+
expert_indices_k = selected_experts[:, k]
|
| 50 |
+
routing_weights_k = routing_weights[:, k]
|
| 51 |
+
for i in range(self.num_experts):
|
| 52 |
+
mask = expert_indices_k == i
|
| 53 |
+
if mask.any():
|
| 54 |
+
expert_output = self.experts[i](flat_hidden_states[mask])
|
| 55 |
+
final_hidden_states.index_add_(0, torch.where(mask)[0], expert_output * routing_weights_k[mask].unsqueeze(1))
|
| 56 |
+
return final_hidden_states.view(*original_shape)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
# --- 2. 主程序:加载模型并开始对话 ---
|
| 60 |
+
def main():
|
| 61 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 62 |
+
|
| 63 |
+
# --- 模型加载 ---
|
| 64 |
+
print(f"Loading tokenizer from '{MODEL_PATH}'...")
|
| 65 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
| 66 |
+
|
| 67 |
+
print(f"Manually rebuilding MoE model structure...")
|
| 68 |
+
# 用`from_config`创建一个随机权重的、但结构正确的“空壳”
|
| 69 |
+
moe_model = AutoModelForCausalLM.from_config(config)
|
| 70 |
+
|
| 71 |
+
# 手动进行“架构手术”,把标准的MLP替换成我们的MoE模块
|
| 72 |
+
for i, layer in enumerate(moe_model.model.layers):
|
| 73 |
+
layer.mlp = MoEModule(config)
|
| 74 |
+
|
| 75 |
+
print(f"Loading your trained MoE weights into the correct structure...")
|
| 76 |
+
from safetensors.torch import load_file
|
| 77 |
+
state_dict = load_file(os.path.join(MODEL_PATH, "model.safetensors"), device="cpu")
|
| 78 |
+
|
| 79 |
+
# 使用`strict=False`灵活加载,然后手动绑定权重
|
| 80 |
+
moe_model.load_state_dict(state_dict, strict=False)
|
| 81 |
+
moe_model.tie_weights()
|
| 82 |
+
|
| 83 |
+
moe_model.to(device, dtype=torch.bfloat16)
|
| 84 |
+
moe_model.eval() # 切换到评估模式
|
| 85 |
+
print("--- MoE Model is ready for conversation! ---")
|
| 86 |
+
print("Type 'exit' or 'quit' to end the chat.\n")
|
| 87 |
+
|
| 88 |
+
# --- 交互式对话循环 ---
|
| 89 |
+
messages = []
|
| 90 |
+
while True:
|
| 91 |
+
try:
|
| 92 |
+
user_input = input("You: ")
|
| 93 |
+
if user_input.lower() in ["exit", "quit"]:
|
| 94 |
+
print("Goodbye!")
|
| 95 |
+
break
|
| 96 |
+
|
| 97 |
+
# 1. 将用户输入添加到对话历史
|
| 98 |
+
messages.append({"role": "user", "content": user_input})
|
| 99 |
+
|
| 100 |
+
# 2. 使用聊天模板格式化完整的对话历史
|
| 101 |
+
# `add_generation_prompt=True` 会在末尾添加助手角色的起始标记
|
| 102 |
+
prompt_text = tokenizer.apply_chat_template(
|
| 103 |
+
messages,
|
| 104 |
+
tokenize=False,
|
| 105 |
+
add_generation_prompt=True
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
# 3. 编码输入并发送到GPU
|
| 109 |
+
inputs = tokenizer(prompt_text, return_tensors="pt").to(device)
|
| 110 |
+
|
| 111 |
+
# 4. 生成回复
|
| 112 |
+
with torch.no_grad():
|
| 113 |
+
outputs = moe_model.generate(
|
| 114 |
+
**inputs,
|
| 115 |
+
max_new_tokens=256,
|
| 116 |
+
temperature=0.7,
|
| 117 |
+
top_p=0.9,
|
| 118 |
+
do_sample=True
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
# 5. 解码并清理输出
|
| 122 |
+
# `outputs[0]` 包含了完整的对话(输入+输出),我们需要提取出模型新生成的部分
|
| 123 |
+
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 124 |
+
# 通过移除原始prompt来找到新生成的部分
|
| 125 |
+
model_response = full_response.replace(prompt_text.replace("<s> ", "").replace("</s>", ""), "").strip()
|
| 126 |
+
|
| 127 |
+
print(f"MoE Model: {model_response}")
|
| 128 |
+
|
| 129 |
+
# 6. 将模型的回复也添加到对话历史中,以便进行多轮对话
|
| 130 |
+
messages.append({"role": "assistant", "content": model_response})
|
| 131 |
+
|
| 132 |
+
except KeyboardInterrupt:
|
| 133 |
+
print("\nGoodbye!")
|
| 134 |
+
break
|
| 135 |
+
|
| 136 |
+
if __name__ == "__main__":
|
| 137 |
+
main()
|
train/chat_moe_model_zhcn_en.py
ADDED
|
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ==============================================================================
|
| 2 |
+
# Smol-MoE 8x135M - "Chat with Your Creation"
|
| 3 |
+
# (Final Interactive Inference Script)
|
| 4 |
+
#
|
| 5 |
+
# Smol-MoE 8x135M - “与你的造物对话”
|
| 6 |
+
# (最终版交互式推理脚本)
|
| 7 |
+
# ==============================================================================
|
| 8 |
+
|
| 9 |
+
# --- Core Library Imports / 核心库导入 ---
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
| 14 |
+
from transformers.models.llama.modeling_llama import LlamaMLP
|
| 15 |
+
import os
|
| 16 |
+
|
| 17 |
+
# --- 1. CRITICAL: Re-define Your Custom Architecture ---
|
| 18 |
+
# --- 1. 关键:重新定义你的所有自定义模块 ---
|
| 19 |
+
# When loading a model with a custom architecture, Hugging Face needs to know the definition of the custom classes.
|
| 20 |
+
# By defining them here, we allow the `from_pretrained` process to correctly reconstruct our unique MoE model.
|
| 21 |
+
# 在加载一个拥有自定义架构的模型时,Hugging Face 需要知道这些自定义类的定义。
|
| 22 |
+
# 在这里定义它们,我们才能让 `from_pretrained` 函数成功地重建我们独一-无二的MoE模型。
|
| 23 |
+
|
| 24 |
+
# --- Model Configuration / 模型配置 ---
|
| 25 |
+
MODEL_PATH = "./SmolMoE-8x135M-Instruct-v1-Trained"
|
| 26 |
+
|
| 27 |
+
# Load our custom MoE parameters from the saved config file.
|
| 28 |
+
# 从我们保存的配置文件中,加载自定义的MoE参数。
|
| 29 |
+
config = AutoConfig.from_pretrained(MODEL_PATH)
|
| 30 |
+
NUM_EXPERTS = config.moe_num_experts
|
| 31 |
+
TOP_K = config.moe_top_k
|
| 32 |
+
|
| 33 |
+
class MoERouter(nn.Module):
|
| 34 |
+
"""The Router module. Its job is to score experts for each token."""
|
| 35 |
+
"""路由器模块。它的工作是为每个token给所有专家打分。"""
|
| 36 |
+
def __init__(self, hidden_size: int, num_experts: int):
|
| 37 |
+
super().__init__()
|
| 38 |
+
self.layer = nn.Linear(hidden_size, num_experts, bias=False)
|
| 39 |
+
def forward(self, hidden_states):
|
| 40 |
+
return self.layer(hidden_states)
|
| 41 |
+
|
| 42 |
+
class MoEModule(nn.Module):
|
| 43 |
+
"""The custom Mixture-of-Experts module that replaces the standard FFN."""
|
| 44 |
+
"""我们自定义的混合专家模块,它替换了标准的FFN。"""
|
| 45 |
+
def __init__(self, config):
|
| 46 |
+
super().__init__()
|
| 47 |
+
self.hidden_size = config.hidden_size
|
| 48 |
+
self.top_k = TOP_K
|
| 49 |
+
self.num_experts = NUM_EXPERTS
|
| 50 |
+
self.router = MoERouter(self.hidden_size, self.num_experts)
|
| 51 |
+
self.experts = nn.ModuleList([LlamaMLP(config) for _ in range(self.num_experts)])
|
| 52 |
+
|
| 53 |
+
def forward(self, hidden_states):
|
| 54 |
+
original_shape = hidden_states.shape
|
| 55 |
+
flat_hidden_states = hidden_states.view(-1, self.hidden_size)
|
| 56 |
+
router_logits = self.router(flat_hidden_states)
|
| 57 |
+
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
|
| 58 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
| 59 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
| 60 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
| 61 |
+
final_hidden_states = torch.zeros_like(flat_hidden_states)
|
| 62 |
+
for k in range(self.top_k):
|
| 63 |
+
expert_indices_k = selected_experts[:, k]
|
| 64 |
+
routing_weights_k = routing_weights[:, k]
|
| 65 |
+
for i in range(self.num_experts):
|
| 66 |
+
mask = expert_indices_k == i
|
| 67 |
+
if mask.any():
|
| 68 |
+
expert_output = self.experts[i](flat_hidden_states[mask])
|
| 69 |
+
final_hidden_states.index_add_(0, torch.where(mask)[0], expert_output * routing_weights_k[mask].unsqueeze(1))
|
| 70 |
+
return final_hidden_states.view(*original_shape)
|
| 71 |
+
|
| 72 |
+
# --- 2. Main Program: Load Model and Start Conversation ---
|
| 73 |
+
# --- 2. 主程序:加载模型并开始对话 ---
|
| 74 |
+
def main():
|
| 75 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 76 |
+
|
| 77 |
+
# --- Model Loading / 模型加载 ---
|
| 78 |
+
print(f"Loading tokenizer from '{MODEL_PATH}'...")
|
| 79 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
| 80 |
+
|
| 81 |
+
print(f"Manually rebuilding MoE model structure...")
|
| 82 |
+
# First, we create an "empty shell" of our model with the correct architecture but random weights.
|
| 83 |
+
# `from_config` builds the structure without loading any weights.
|
| 84 |
+
# 首先,我们用`from_config`创建一个拥有正确架构但权重是随机的“空壳”模型。
|
| 85 |
+
# 这一步只搭建骨架,不加载任何权重。
|
| 86 |
+
moe_model = AutoModelForCausalLM.from_config(config)
|
| 87 |
+
|
| 88 |
+
# Then, we perform the "architectural surgery" again, replacing standard MLPs with our MoEModules.
|
| 89 |
+
# 然后,我们再次手动进行“架构手术”,把标准的MLP替换成我们的MoE模块。
|
| 90 |
+
for i, layer in enumerate(moe_model.model.layers):
|
| 91 |
+
layer.mlp = MoEModule(config)
|
| 92 |
+
|
| 93 |
+
print(f"Loading your trained MoE weights into the correct structure...")
|
| 94 |
+
from safetensors.torch import load_file
|
| 95 |
+
state_dict = load_file(os.path.join(MODEL_PATH, "model.safetensors"), device="cpu")
|
| 96 |
+
|
| 97 |
+
# Use `strict=False` for flexible loading, then manually tie the weights.
|
| 98 |
+
# This handles the missing `lm_head.weight` key caused by weight tying.
|
| 99 |
+
# 使用`strict=False`进行灵活加载,然后手动绑定权重。
|
| 100 |
+
# 这个操作处理了因权重绑定而导致的`lm_head.weight`键缺失的问题。
|
| 101 |
+
moe_model.load_state_dict(state_dict, strict=False)
|
| 102 |
+
moe_model.tie_weights()
|
| 103 |
+
|
| 104 |
+
# Move the finalized model to the GPU and set it to evaluation mode.
|
| 105 |
+
# 将最终完成的模型移动到GPU,并设置为评估模式。
|
| 106 |
+
moe_model.to(device, dtype=torch.bfloat16)
|
| 107 |
+
moe_model.eval()
|
| 108 |
+
print("--- MoE Model is ready for conversation! ---")
|
| 109 |
+
print("Type 'exit' or 'quit' to end the chat.\n")
|
| 110 |
+
|
| 111 |
+
# --- Interactive Conversation Loop / 交互式对话循环 ---
|
| 112 |
+
messages = []
|
| 113 |
+
while True:
|
| 114 |
+
try:
|
| 115 |
+
user_input = input("You: ")
|
| 116 |
+
if user_input.lower() in ["exit", "quit"]:
|
| 117 |
+
print("Goodbye!")
|
| 118 |
+
break
|
| 119 |
+
|
| 120 |
+
# Step 1: Add the user's input to the conversation history.
|
| 121 |
+
# 步骤 1: 将用户的输入添加到对话历史中。
|
| 122 |
+
messages.append({"role": "user", "content": user_input})
|
| 123 |
+
|
| 124 |
+
# Step 2: Format the entire conversation history using the chat template.
|
| 125 |
+
# `add_generation_prompt=True` adds the starting tokens for the assistant's turn.
|
| 126 |
+
# 步骤 2: 使用聊天模板格式化完整的对话历史。
|
| 127 |
+
# `add_generation_prompt=True` 会在末尾添加助手角色的起始标记。
|
| 128 |
+
prompt_text = tokenizer.apply_chat_template(
|
| 129 |
+
messages,
|
| 130 |
+
tokenize=False,
|
| 131 |
+
add_generation_prompt=True
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
# Step 3: Encode the input text and move it to the GPU.
|
| 135 |
+
# 步骤 3: 编码输入文本并将其发送到GPU。
|
| 136 |
+
inputs = tokenizer(prompt_text, return_tensors="pt").to(device)
|
| 137 |
+
|
| 138 |
+
# Step 4: Generate a response.
|
| 139 |
+
# 步骤 4: 生成回复。
|
| 140 |
+
with torch.no_grad():
|
| 141 |
+
outputs = moe_model.generate(
|
| 142 |
+
**inputs,
|
| 143 |
+
max_new_tokens=256,
|
| 144 |
+
temperature=0.7,
|
| 145 |
+
top_p=0.9,
|
| 146 |
+
do_sample=True
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
# Step 5: Decode and clean the output.
|
| 150 |
+
# `outputs[0]` contains the full conversation (input + output). We need to extract only the new part.
|
| 151 |
+
# 步骤 5: 解码并清理输出。
|
| 152 |
+
# `outputs[0]` 包含了完整的对话(输入+输出),我们需要从中提取出模型新生成的部分。
|
| 153 |
+
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 154 |
+
# Find the newly generated part by removing the original prompt from the full response.
|
| 155 |
+
# 通过从完整回复中移除原始的prompt来找到新生成的部分。
|
| 156 |
+
assistant_prompt_start = "<|assistant|>\n"
|
| 157 |
+
# This is a robust way to find the start of the assistant's actual response
|
| 158 |
+
assistant_response_start_index = full_response.rfind(assistant_prompt_start)
|
| 159 |
+
if assistant_response_start_index != -1:
|
| 160 |
+
model_response = full_response[assistant_response_start_index + len(assistant_prompt_start):].strip()
|
| 161 |
+
else:
|
| 162 |
+
# Fallback for simpler cases
|
| 163 |
+
model_response = full_response.replace(prompt_text.replace("<s>", "").replace("</s>", ""), "").strip()
|
| 164 |
+
|
| 165 |
+
print(f"MoE Model: {model_response}")
|
| 166 |
+
|
| 167 |
+
# Step 6: Add the model's response to the history for multi-turn conversations.
|
| 168 |
+
# 步骤 6: 将模型的回复也添加到对话历史中,以便进行多轮对话。
|
| 169 |
+
messages.append({"role": "assistant", "content": model_response})
|
| 170 |
+
|
| 171 |
+
except KeyboardInterrupt:
|
| 172 |
+
print("\nGoodbye!")
|
| 173 |
+
break
|
| 174 |
+
|
| 175 |
+
# Script entry point / 脚本入口
|
| 176 |
+
if __name__ == "__main__":
|
| 177 |
+
main()
|
train/test_moe_model.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ==============================================================================
|
| 2 |
+
# Smol-MoE 8x135M - "The Mind-Reader" Test Script
|
| 3 |
+
# (Final Version with Correct Loading Logic)
|
| 4 |
+
# ==============================================================================
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
| 10 |
+
from transformers.models.llama.modeling_llama import LlamaMLP, LlamaAttention, LlamaRMSNorm, LlamaForCausalLM
|
| 11 |
+
import numpy as np
|
| 12 |
+
import os
|
| 13 |
+
# --- 1. 关键:重新定义你的所有自定义模块 ---
|
| 14 |
+
# 我们需要这些类的定义,来手动重建模型的正确结构
|
| 15 |
+
|
| 16 |
+
MODEL_PATH = "./SmolMoE-8x135M-Instruct-v1-Trained"
|
| 17 |
+
config = AutoConfig.from_pretrained(MODEL_PATH)
|
| 18 |
+
NUM_EXPERTS = config.moe_num_experts
|
| 19 |
+
TOP_K = config.moe_top_k
|
| 20 |
+
|
| 21 |
+
EXPERT_NAMES = [
|
| 22 |
+
"Actor", "Analyst", "Coder", "Encyclopedia",
|
| 23 |
+
"Guardian", "Summarizer", "Thinker", "Writer"
|
| 24 |
+
]
|
| 25 |
+
|
| 26 |
+
class MoERouter(nn.Module):
|
| 27 |
+
def __init__(self, hidden_size: int, num_experts: int):
|
| 28 |
+
super().__init__()
|
| 29 |
+
self.layer = nn.Linear(hidden_size, num_experts, bias=False)
|
| 30 |
+
def forward(self, hidden_states):
|
| 31 |
+
return self.layer(hidden_states)
|
| 32 |
+
|
| 33 |
+
class MoEModule(nn.Module):
|
| 34 |
+
def __init__(self, config):
|
| 35 |
+
super().__init__()
|
| 36 |
+
self.hidden_size = config.hidden_size
|
| 37 |
+
self.top_k = TOP_K
|
| 38 |
+
self.num_experts = NUM_EXPERTS
|
| 39 |
+
self.router = MoERouter(self.hidden_size, self.num_experts)
|
| 40 |
+
self.experts = nn.ModuleList([LlamaMLP(config) for _ in range(self.num_experts)])
|
| 41 |
+
|
| 42 |
+
def forward(self, hidden_states):
|
| 43 |
+
original_shape = hidden_states.shape
|
| 44 |
+
flat_hidden_states = hidden_states.view(-1, self.hidden_size)
|
| 45 |
+
router_logits = self.router(flat_hidden_states)
|
| 46 |
+
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
|
| 47 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
| 48 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
| 49 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
| 50 |
+
final_hidden_states = torch.zeros_like(flat_hidden_states)
|
| 51 |
+
for k in range(self.top_k):
|
| 52 |
+
expert_indices_k = selected_experts[:, k]
|
| 53 |
+
routing_weights_k = routing_weights[:, k]
|
| 54 |
+
for i in range(self.num_experts):
|
| 55 |
+
mask = expert_indices_k == i
|
| 56 |
+
if mask.any():
|
| 57 |
+
expert_output = self.experts[i](flat_hidden_states[mask])
|
| 58 |
+
final_hidden_states.index_add_(0, torch.where(mask)[0], expert_output * routing_weights_k[mask].unsqueeze(1))
|
| 59 |
+
return final_hidden_states.view(*original_shape)
|
| 60 |
+
|
| 61 |
+
# --- 2. 诊断测试的核心工具 ---
|
| 62 |
+
captured_router_weights = {}
|
| 63 |
+
def get_router_weights_hook(layer_idx):
|
| 64 |
+
"""这是一个创建钩子函数的工厂"""
|
| 65 |
+
def hook(module, input, output):
|
| 66 |
+
# input[0] 是进入MoE模块的hidden_states
|
| 67 |
+
router_logits = module.router(input[0])
|
| 68 |
+
# 我们计算整个句子(所有token)的平均路由概率
|
| 69 |
+
avg_probs = F.softmax(router_logits, dim=-1).mean(dim=[0, 1])
|
| 70 |
+
|
| 71 |
+
# *** 这是最终的修复:在转换成numpy前,先转换成float32 ***
|
| 72 |
+
captured_router_weights[layer_idx] = avg_probs.detach().cpu().to(torch.float32).numpy()
|
| 73 |
+
return hook
|
| 74 |
+
|
| 75 |
+
def visualize_router_decisions(prompt):
|
| 76 |
+
print("\n" + "="*80)
|
| 77 |
+
print(f"ROUTER DECISION ANALYSIS for Prompt: '{prompt[:50]}...'")
|
| 78 |
+
print("="*80)
|
| 79 |
+
print(f"{'Layer':<7} | {'Dominant Expert(s)':<45} | {'Confidence'}")
|
| 80 |
+
print("-"*80)
|
| 81 |
+
for layer_idx, weights in captured_router_weights.items():
|
| 82 |
+
top2_indices = np.argsort(weights)[-2:][::-1]
|
| 83 |
+
dominant_experts_str = f"1. {EXPERT_NAMES[top2_indices[0]]} | 2. {EXPERT_NAMES[top2_indices[1]]}"
|
| 84 |
+
confidence_str = f"({weights[top2_indices[0]]:.1%} | {weights[top2_indices[1]]:.1%})"
|
| 85 |
+
print(f"Layer {layer_idx:<4} | {dominant_experts_str:<45} | {confidence_str}")
|
| 86 |
+
print("="*80 + "\n")
|
| 87 |
+
|
| 88 |
+
# --- 3. 主测试流程 ---
|
| 89 |
+
def main():
|
| 90 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 91 |
+
|
| 92 |
+
print(f"Loading tokenizer from '{MODEL_PATH}'...")
|
| 93 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
| 94 |
+
|
| 95 |
+
print(f"Manually rebuilding MoE model structure...")
|
| 96 |
+
# 首先,我们用`from_config`创建一个随机权重的、但结构正确的“空壳”
|
| 97 |
+
moe_model = AutoModelForCausalLM.from_config(config)
|
| 98 |
+
|
| 99 |
+
# 然后,我们手动进行“架构手术”,把标准的MLP替换成我们的MoE模块
|
| 100 |
+
for i, layer in enumerate(moe_model.model.layers):
|
| 101 |
+
layer.mlp = MoEModule(config)
|
| 102 |
+
|
| 103 |
+
print(f"Loading your trained MoE weights into the correct structure...")
|
| 104 |
+
# 从safetensors文件加载权重
|
| 105 |
+
from safetensors.torch import load_file
|
| 106 |
+
state_dict = load_file(os.path.join(MODEL_PATH, "model.safetensors"), device="cpu")
|
| 107 |
+
|
| 108 |
+
# *** 这是最终的修复:第一步 - 使用strict=False灵活加载 ***
|
| 109 |
+
# 我们知道lm_head.weight会缺失,所以允许这种“不严格”的加载
|
| 110 |
+
moe_model.load_state_dict(state_dict, strict=False)
|
| 111 |
+
|
| 112 |
+
# *** 这是最终的修复:第二步 - 手动执行权重绑定 ***
|
| 113 |
+
# 这个函数会根据config中的"tie_word_embeddings"设置,将lm_head和词嵌入层绑定
|
| 114 |
+
moe_model.tie_weights()
|
| 115 |
+
|
| 116 |
+
moe_model.to(device, dtype=torch.bfloat16)
|
| 117 |
+
moe_model.eval()
|
| 118 |
+
print("--- Custom MoE Model Successfully Loaded and Finalized! ---")
|
| 119 |
+
|
| 120 |
+
# 为诊断测试安装“窃听器”
|
| 121 |
+
hooks = []
|
| 122 |
+
for i, layer in enumerate(moe_model.model.layers):
|
| 123 |
+
# 确保我们是在MoEModule上注册钩子,而不是标准的LlamaMLP
|
| 124 |
+
if isinstance(layer.mlp, MoEModule):
|
| 125 |
+
hook = layer.mlp.register_forward_hook(get_router_weights_hook(i))
|
| 126 |
+
hooks.append(hook)
|
| 127 |
+
|
| 128 |
+
# 设计一系列“考题”
|
| 129 |
+
test_prompts = {
|
| 130 |
+
"Coder": "Write a Python function that takes a list of numbers and returns a new list with only the even numbers.",
|
| 131 |
+
"Writer": "In a world where shadows have a life of their own, a young lamplighter discovers a terrible secret. Write the opening paragraph.",
|
| 132 |
+
"Thinker": "If all bloops are gloops, and some gloops are zloops, is it certain that some bloops are zloops? Explain your reasoning.",
|
| 133 |
+
"Encyclopedia": "What were the primary economic and political causes of the French Revolution?",
|
| 134 |
+
"Multi-Expert": "In the style of a Shakespearean tragedy, write a short monologue for a software developer lamenting a bug in their code. Include a comment line from the code."
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
for expert_name, prompt in test_prompts.items():
|
| 138 |
+
captured_router_weights.clear()
|
| 139 |
+
print(f"\n--- Testing for: {expert_name} Expert ---")
|
| 140 |
+
print(f"Prompt: {prompt}")
|
| 141 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 142 |
+
with torch.no_grad():
|
| 143 |
+
outputs = moe_model.generate(**inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)
|
| 144 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 145 |
+
print("\n--- Generated Text ---")
|
| 146 |
+
print(generated_text)
|
| 147 |
+
print("--- End of Generated Text ---")
|
| 148 |
+
visualize_router_decisions(prompt)
|
| 149 |
+
|
| 150 |
+
for hook in hooks:
|
| 151 |
+
hook.remove()
|
| 152 |
+
print("All tests complete and hooks have been removed.")
|
| 153 |
+
|
| 154 |
+
if __name__ == "__main__":
|
| 155 |
+
main()
|
train/test_moe_model_zhcn_en.py
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ==============================================================================
|
| 2 |
+
# Smol-MoE 8x135M - "The Mind-Reader" Test Script
|
| 3 |
+
# (Final Version with Correct Loading Logic)
|
| 4 |
+
#
|
| 5 |
+
# Smol-MoE 8x135M - “读心器”测试脚本
|
| 6 |
+
# (包含正确加载逻辑的最终版本)
|
| 7 |
+
# ==============================================================================
|
| 8 |
+
|
| 9 |
+
# --- Core Library Imports / 核心库导入 ---
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
| 14 |
+
from transformers.models.llama.modeling_llama import LlamaMLP, LlamaForCausalLM # We need LlamaMLP for the expert definition / 我们需要 LlamaMLP 来定义专家
|
| 15 |
+
import numpy as np
|
| 16 |
+
import os # We need this for path operations / 我们需要 os 库来处理文件路径
|
| 17 |
+
|
| 18 |
+
# --- 1. CRITICAL: Re-define Your Custom Architecture ---
|
| 19 |
+
# --- 1. 关键:重新定义你的所有自定义模块 ---
|
| 20 |
+
# When loading a model with a custom architecture, Hugging Face needs to know the definition of the custom classes.
|
| 21 |
+
# By defining them here, we allow `from_pretrained` to correctly reconstruct our unique MoE model.
|
| 22 |
+
# 在加载一个拥有自定义架构的模型时,Hugging Face 需要知道这些自定义类的定义。
|
| 23 |
+
# 在这里定义它们,我们才能让 `from_pretrained` 函数成功地重建我们独一无二的MoE模型。
|
| 24 |
+
|
| 25 |
+
# --- Model Configuration / 模型配置 ---
|
| 26 |
+
MODEL_PATH = "./SmolMoE-8x135M-Instruct-v1-Trained"
|
| 27 |
+
config = AutoConfig.from_pretrained(MODEL_PATH)
|
| 28 |
+
# Load our custom MoE parameters from the saved config file.
|
| 29 |
+
# 从我们保存的配置文件中,加载自定义的MoE参数。
|
| 30 |
+
NUM_EXPERTS = config.moe_num_experts
|
| 31 |
+
TOP_K = config.moe_top_k
|
| 32 |
+
|
| 33 |
+
# A list of expert names for clear visualization later. The order must match the training script.
|
| 34 |
+
# 用于后续清晰可视化的专家名称列表。顺序必须和训练脚本中的保持一致。
|
| 35 |
+
EXPERT_NAMES = [
|
| 36 |
+
"Actor", "Analyst", "Coder", "Encyclopedia",
|
| 37 |
+
"Guardian", "Summarizer", "Thinker", "Writer"
|
| 38 |
+
]
|
| 39 |
+
|
| 40 |
+
class MoERouter(nn.Module):
|
| 41 |
+
"""The Router module. Its job is to score experts for each token."""
|
| 42 |
+
"""路由器模块。它的工作是为每个token给所有专家打分。"""
|
| 43 |
+
def __init__(self, hidden_size: int, num_experts: int):
|
| 44 |
+
super().__init__()
|
| 45 |
+
self.layer = nn.Linear(hidden_size, num_experts, bias=False)
|
| 46 |
+
def forward(self, hidden_states):
|
| 47 |
+
return self.layer(hidden_states)
|
| 48 |
+
|
| 49 |
+
class MoEModule(nn.Module):
|
| 50 |
+
"""The custom Mixture-of-Experts module that replaces the standard FFN."""
|
| 51 |
+
"""我们自定义的混合专家模块,它替换了标准的FFN。"""
|
| 52 |
+
def __init__(self, config):
|
| 53 |
+
super().__init__()
|
| 54 |
+
self.hidden_size = config.hidden_size
|
| 55 |
+
self.top_k = TOP_K
|
| 56 |
+
self.num_experts = NUM_EXPERTS
|
| 57 |
+
self.router = MoERouter(self.hidden_size, self.num_experts)
|
| 58 |
+
self.experts = nn.ModuleList([LlamaMLP(config) for _ in range(self.num_experts)])
|
| 59 |
+
|
| 60 |
+
def forward(self, hidden_states):
|
| 61 |
+
original_shape = hidden_states.shape
|
| 62 |
+
flat_hidden_states = hidden_states.view(-1, self.hidden_size)
|
| 63 |
+
router_logits = self.router(flat_hidden_states)
|
| 64 |
+
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
|
| 65 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
| 66 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
| 67 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
| 68 |
+
final_hidden_states = torch.zeros_like(flat_hidden_states)
|
| 69 |
+
for k in range(self.top_k):
|
| 70 |
+
expert_indices_k = selected_experts[:, k]
|
| 71 |
+
routing_weights_k = routing_weights[:, k]
|
| 72 |
+
for i in range(self.num_experts):
|
| 73 |
+
mask = expert_indices_k == i
|
| 74 |
+
if mask.any():
|
| 75 |
+
expert_output = self.experts[i](flat_hidden_states[mask])
|
| 76 |
+
final_hidden_states.index_add_(0, torch.where(mask)[0], expert_output * routing_weights_k[mask].unsqueeze(1))
|
| 77 |
+
return final_hidden_states.view(*original_shape)
|
| 78 |
+
|
| 79 |
+
# --- 2. Core Diagnostic Tools / 诊断测试的核心工具 ---
|
| 80 |
+
# This dictionary will store the router decisions captured by our hooks.
|
| 81 |
+
# 这个字典将用于存储我们的钩子捕获到的路由器决策数据。
|
| 82 |
+
captured_router_weights = {}
|
| 83 |
+
|
| 84 |
+
def get_router_weights_hook(layer_idx):
|
| 85 |
+
"""This is a factory function that creates our hook."""
|
| 86 |
+
"""这是一个创建钩子函数的工厂函数。"""
|
| 87 |
+
def hook(module, input, output):
|
| 88 |
+
# `input[0]` is the hidden_states tensor passed to the MoE module.
|
| 89 |
+
# `input[0]` 是传入MoE模块的hidden_states张量。
|
| 90 |
+
router_logits = module.router(input[0])
|
| 91 |
+
# We calculate the average routing probability for all tokens in the sequence.
|
| 92 |
+
# 我们计算序列中所有token的平��路由概率。
|
| 93 |
+
avg_probs = F.softmax(router_logits, dim=-1).mean(dim=[0, 1])
|
| 94 |
+
|
| 95 |
+
# *** FINAL FIX: Convert from BFloat16 to Float32 before converting to NumPy. ***
|
| 96 |
+
# NumPy does not support the bfloat16 dtype, so we must convert it first.
|
| 97 |
+
# *** 最终修复:在转换为numpy数组前,先将数据格式从BFloat16转换为Float32。***
|
| 98 |
+
# NumPy库不支持bfloat16这种数据类型,所以我们必须先进行转换。
|
| 99 |
+
captured_router_weights[layer_idx] = avg_probs.detach().cpu().to(torch.float32).numpy()
|
| 100 |
+
return hook
|
| 101 |
+
|
| 102 |
+
def visualize_router_decisions(prompt):
|
| 103 |
+
"""A helper function to print the captured router decisions in a nice table."""
|
| 104 |
+
"""一个辅助函数,用于将捕获到的路由器决策以漂亮的表格形式打印出来。"""
|
| 105 |
+
print("\n" + "="*80)
|
| 106 |
+
print(f"ROUTER DECISION ANALYSIS for Prompt: '{prompt[:50]}...'")
|
| 107 |
+
print("="*80)
|
| 108 |
+
print(f"{'Layer':<7} | {'Dominant Expert(s)':<45} | {'Confidence'}")
|
| 109 |
+
print("-"*80)
|
| 110 |
+
for layer_idx, weights in captured_router_weights.items():
|
| 111 |
+
top2_indices = np.argsort(weights)[-2:][::-1]
|
| 112 |
+
dominant_experts_str = f"1. {EXPERT_NAMES[top2_indices[0]]} | 2. {EXPERT_NAMES[top2_indices[1]]}"
|
| 113 |
+
confidence_str = f"({weights[top2_indices[0]]:.1%} | {weights[top2_indices[1]]:.1%})"
|
| 114 |
+
print(f"Layer {layer_idx:<4} | {dominant_experts_str:<45} | {confidence_str}")
|
| 115 |
+
print("="*80 + "\n")
|
| 116 |
+
|
| 117 |
+
# --- 3. Main Testing Workflow / 主测试流程 ---
|
| 118 |
+
def main():
|
| 119 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 120 |
+
|
| 121 |
+
print(f"Loading tokenizer from '{MODEL_PATH}'...")
|
| 122 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
|
| 123 |
+
|
| 124 |
+
print(f"Manually rebuilding MoE model structure...")
|
| 125 |
+
# First, we create an "empty shell" of our model with the correct architecture but random weights.
|
| 126 |
+
# `from_config` builds the structure without loading any weights.
|
| 127 |
+
# 首先,我们用`from_config`创建一个拥有正确架构但权重是随机的“空壳”模型。
|
| 128 |
+
# 这一步只搭建骨架,不加载任何权重。
|
| 129 |
+
moe_model = AutoModelForCausalLM.from_config(config)
|
| 130 |
+
|
| 131 |
+
# Then, we perform the "architectural surgery" again, replacing standard MLPs with our MoEModules.
|
| 132 |
+
# 然后,我们再次手动进行“架构手术”,把标准的MLP替换成我们的MoE模块。
|
| 133 |
+
for i, layer in enumerate(moe_model.model.layers):
|
| 134 |
+
layer.mlp = MoEModule(config)
|
| 135 |
+
|
| 136 |
+
print(f"Loading your trained MoE weights into the correct structure...")
|
| 137 |
+
# Load the weights from the safetensors file.
|
| 138 |
+
# 从safetensors文件加载权重。
|
| 139 |
+
from safetensors.torch import load_file
|
| 140 |
+
state_dict = load_file(os.path.join(MODEL_PATH, "model.safetensors"), device="cpu")
|
| 141 |
+
|
| 142 |
+
# *** FINAL FIX #1: Use `strict=False` for flexible loading. ***
|
| 143 |
+
# We know `lm_head.weight` is missing because of `tie_word_embeddings`, so we allow this "inexact" loading.
|
| 144 |
+
# *** 最终修复 #1:使用`strict=False`进行灵活加载。***
|
| 145 |
+
# 我们知道因为`tie_word_embeddings`的设置,`lm_head.weight`是缺失的,所以我们允许这种“不严格”的加载。
|
| 146 |
+
moe_model.load_state_dict(state_dict, strict=False)
|
| 147 |
+
|
| 148 |
+
# *** FINAL FIX #2: Manually tie the weights. ***
|
| 149 |
+
# This function reads the `tie_word_embeddings` setting from the config and correctly links the lm_head to the token embeddings.
|
| 150 |
+
# *** 最终修复 #2:手动执行权重绑定。***
|
| 151 |
+
# 这个函数会根据config中的`tie_word_embeddings`设置,将lm_head和词嵌入层正确地绑定在一起。
|
| 152 |
+
moe_model.tie_weights()
|
| 153 |
+
|
| 154 |
+
# Move the finalized model to the GPU and set it to evaluation mode.
|
| 155 |
+
# 将最终完成的模型移动到GPU,并设置为评估模式。
|
| 156 |
+
moe_model.to(device, dtype=torch.bfloat16)
|
| 157 |
+
moe_model.eval()
|
| 158 |
+
print("--- Custom MoE Model Successfully Loaded and Finalized! ---")
|
| 159 |
+
|
| 160 |
+
# Install our "listening devices" (hooks) on each MoE layer for diagnostics.
|
| 161 |
+
# 为诊断测试,在每个MoE层上都安装我们的“窃听器”(钩子)。
|
| 162 |
+
hooks = []
|
| 163 |
+
for i, layer in enumerate(moe_model.model.layers):
|
| 164 |
+
if isinstance(layer.mlp, MoEModule):
|
| 165 |
+
hook = layer.mlp.register_forward_hook(get_router_weights_hook(i))
|
| 166 |
+
hooks.append(hook)
|
| 167 |
+
|
| 168 |
+
# Design a series of "exam questions" to test different experts.
|
| 169 |
+
# 设计一系列“考题”来测试不同的专家。
|
| 170 |
+
test_prompts = {
|
| 171 |
+
"Coder": "Write a Python function that takes a list of numbers and returns a new list with only the even numbers.",
|
| 172 |
+
"Writer": "In a world where shadows have a life of their own, a young lamplighter discovers a terrible secret. Write the opening paragraph.",
|
| 173 |
+
"Thinker": "If all bloops are gloops, and some gloops are zloops, is it certain that some bloops are zloops? Explain your reasoning.",
|
| 174 |
+
"Encyclopedia": "What were the primary economic and political causes of the French Revolution?",
|
| 175 |
+
"Multi-Expert": "In the style of a Shakespearean tragedy, write a short monologue for a software developer lamenting a bug in their code. Include a comment line from the code."
|
| 176 |
+
}
|
| 177 |
+
|
| 178 |
+
# The main testing loop.
|
| 179 |
+
# 主测试循环。
|
| 180 |
+
for expert_name, prompt in test_prompts.items():
|
| 181 |
+
captured_router_weights.clear() # Clear data from the previous run / 清空上一次的捕获数据
|
| 182 |
+
print(f"\n--- Testing for: {expert_name} Expert ---")
|
| 183 |
+
print(f"Prompt: {prompt}")
|
| 184 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 185 |
+
|
| 186 |
+
# 1. Functional Test: Generate text / 1. 功能测试:生成文本
|
| 187 |
+
with torch.no_grad():
|
| 188 |
+
outputs = moe_model.generate(**inputs, max_new_tokens=100, do_sample=True, top_k=50, top_p=0.95)
|
| 189 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 190 |
+
print("\n--- Generated Text ---")
|
| 191 |
+
print(generated_text)
|
| 192 |
+
print("--- End of Generated Text ---")
|
| 193 |
+
|
| 194 |
+
# 2. Diagnostic Test: Visualize router decisions / 2. 诊断测试:可视化路由决策
|
| 195 |
+
visualize_router_decisions(prompt)
|
| 196 |
+
|
| 197 |
+
# Clean up by removing all hooks to prevent memory leaks.
|
| 198 |
+
# 清理工作:移除所有钩子以防止内存泄漏。
|
| 199 |
+
for hook in hooks:
|
| 200 |
+
hook.remove()
|
| 201 |
+
print("All tests complete and hooks have been removed.")
|
| 202 |
+
|
| 203 |
+
# Script entry point / 脚本入口
|
| 204 |
+
if __name__ == "__main__":
|
| 205 |
+
main()
|
train/train_moe_router.py
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ==============================================================================
|
| 2 |
+
# Smol-MoE 8x135M - Master Script
|
| 3 |
+
# (Final Version, All Fixes Included)
|
| 4 |
+
# ==============================================================================
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
import torch.optim as optim
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer # <<< 这是最关键的修复!确保AutoTokenizer在这里
|
| 11 |
+
from transformers.models.llama.modeling_llama import LlamaMLP
|
| 12 |
+
from safetensors.torch import load_file # <<< 使用正确的safetensors加载器
|
| 13 |
+
import os
|
| 14 |
+
import shutil
|
| 15 |
+
import numpy as np
|
| 16 |
+
import time
|
| 17 |
+
|
| 18 |
+
# --- 0. Configuration & Setup ---
|
| 19 |
+
MODEL_NAME = "./SmolLM2-135M-Instruct"
|
| 20 |
+
BASE_EXPERT_PATH = "./models"
|
| 21 |
+
EXPERT_DIRS = [
|
| 22 |
+
"SmolLM2-135M-Instruct-Actor", "SmolLM2-135M-Instruct-Analyst",
|
| 23 |
+
"SmolLM2-135M-Instruct-Coder", "SmolLM2-135M-Instruct-Encyclopedia",
|
| 24 |
+
"SmolLM2-135M-Instruct-Guardian", "SmolLM2-135M-Instruct-Summarizer",
|
| 25 |
+
"SmolLM2-135M-Instruct-Thinker", "SmolLM2-135M-Instruct-Writer"
|
| 26 |
+
]
|
| 27 |
+
NUM_EXPERTS = 8
|
| 28 |
+
TOP_K = 2
|
| 29 |
+
LEARNING_RATE = 0.001
|
| 30 |
+
EPOCHS = 20 # 既然我们知道模拟数据无法让模型学习,20轮足以验证流程
|
| 31 |
+
BATCH_SIZE = 4
|
| 32 |
+
SEQUENCE_LENGTH = 128
|
| 33 |
+
LB_LOSS_COEFFICIENT = 0.01
|
| 34 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 35 |
+
print(f"Using device: {device}")
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
# --- 1. Define the MoE Architecture Components ---
|
| 39 |
+
class MoERouter(nn.Module):
|
| 40 |
+
def __init__(self, hidden_size: int, num_experts: int):
|
| 41 |
+
super().__init__()
|
| 42 |
+
self.layer = nn.Linear(hidden_size, num_experts, bias=False)
|
| 43 |
+
def forward(self, hidden_states):
|
| 44 |
+
return self.layer(hidden_states)
|
| 45 |
+
|
| 46 |
+
class MoEModule(nn.Module):
|
| 47 |
+
def __init__(self, config):
|
| 48 |
+
super().__init__()
|
| 49 |
+
self.hidden_size = config.hidden_size
|
| 50 |
+
self.top_k = TOP_K
|
| 51 |
+
self.num_experts = NUM_EXPERTS
|
| 52 |
+
self.router = MoERouter(self.hidden_size, self.num_experts)
|
| 53 |
+
self.experts = nn.ModuleList([LlamaMLP(config) for _ in range(self.num_experts)])
|
| 54 |
+
self.most_recent_lb_loss = None
|
| 55 |
+
|
| 56 |
+
def forward(self, hidden_states):
|
| 57 |
+
original_shape = hidden_states.shape
|
| 58 |
+
flat_hidden_states = hidden_states.view(-1, self.hidden_size)
|
| 59 |
+
router_logits = self.router(flat_hidden_states)
|
| 60 |
+
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
|
| 61 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
| 62 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
| 63 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
| 64 |
+
router_probs_full = F.softmax(router_logits, dim=-1, dtype=torch.float)
|
| 65 |
+
avg_expert_prob = router_probs_full.mean(dim=0)
|
| 66 |
+
expert_mask_for_lb = F.one_hot(selected_experts, num_classes=self.num_experts).sum(dim=1)
|
| 67 |
+
avg_expert_fraction = expert_mask_for_lb.float().mean(dim=0)
|
| 68 |
+
self.most_recent_lb_loss = self.num_experts * torch.sum(avg_expert_prob * avg_expert_fraction)
|
| 69 |
+
final_hidden_states = torch.zeros_like(flat_hidden_states)
|
| 70 |
+
for k in range(self.top_k):
|
| 71 |
+
expert_indices_k = selected_experts[:, k]
|
| 72 |
+
routing_weights_k = routing_weights[:, k]
|
| 73 |
+
for i in range(self.num_experts):
|
| 74 |
+
mask = expert_indices_k == i
|
| 75 |
+
if mask.any():
|
| 76 |
+
expert_output = self.experts[i](flat_hidden_states[mask])
|
| 77 |
+
final_hidden_states.index_add_(0, torch.where(mask)[0], expert_output * routing_weights_k[mask].unsqueeze(1))
|
| 78 |
+
return final_hidden_states.view(*original_shape)
|
| 79 |
+
|
| 80 |
+
# --- 2. The Grand Assembly Function ---
|
| 81 |
+
def create_moe_model():
|
| 82 |
+
print("--- Starting Architectural Surgery ---")
|
| 83 |
+
config = AutoConfig.from_pretrained(MODEL_NAME)
|
| 84 |
+
print("Step 1: Loading base model skeleton...")
|
| 85 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 86 |
+
os.path.join(BASE_EXPERT_PATH, EXPERT_DIRS[0]),
|
| 87 |
+
torch_dtype=torch.bfloat16,
|
| 88 |
+
device_map=device
|
| 89 |
+
)
|
| 90 |
+
print("Step 2: Pre-loading all expert weights into CPU memory for efficiency...")
|
| 91 |
+
all_experts_state_dicts = [
|
| 92 |
+
load_file(os.path.join(BASE_EXPERT_PATH, expert_dir, 'model.safetensors'), device='cpu')
|
| 93 |
+
for expert_dir in EXPERT_DIRS
|
| 94 |
+
]
|
| 95 |
+
print("All expert weights pre-loaded.")
|
| 96 |
+
print("Step 3: Replacing FFNs with MoE modules and transplanting expert weights...")
|
| 97 |
+
for layer_idx, layer in enumerate(base_model.model.layers):
|
| 98 |
+
layer.mlp = MoEModule(config).to(device, dtype=torch.bfloat16)
|
| 99 |
+
for expert_idx in range(NUM_EXPERTS):
|
| 100 |
+
expert_state_dict = all_experts_state_dicts[expert_idx]
|
| 101 |
+
expert_mlp_weights = {
|
| 102 |
+
k.replace(f"model.layers.{layer_idx}.mlp.", ""): v
|
| 103 |
+
for k, v in expert_state_dict.items()
|
| 104 |
+
if f"model.layers.{layer_idx}.mlp." in k
|
| 105 |
+
}
|
| 106 |
+
layer.mlp.experts[expert_idx].load_state_dict(expert_mlp_weights)
|
| 107 |
+
print("Step 4: Freezing all parameters except for the routers...")
|
| 108 |
+
for name, param in base_model.named_parameters():
|
| 109 |
+
if "router" not in name:
|
| 110 |
+
param.requires_grad = False
|
| 111 |
+
print("\n--- Surgery Complete! MoE Model is assembled and ready for training. ---")
|
| 112 |
+
trainable_params = sum(p.numel() for p in base_model.parameters() if p.requires_grad)
|
| 113 |
+
total_params = sum(p.numel() for p in base_model.parameters())
|
| 114 |
+
print(f"Total Parameters: {total_params / 1e6:.2f}M")
|
| 115 |
+
print(f"Trainable Parameters (Routers): {trainable_params}")
|
| 116 |
+
return base_model
|
| 117 |
+
|
| 118 |
+
# --- 3. The Main Training & Saving Process ---
|
| 119 |
+
def main():
|
| 120 |
+
moe_model = create_moe_model()
|
| 121 |
+
optimizer = optim.AdamW([p for p in moe_model.parameters() if p.requires_grad], lr=LEARNING_RATE)
|
| 122 |
+
print("\n--- Preparing Simulated Mixed Dataset for Training ---")
|
| 123 |
+
mock_input_ids = torch.randint(0, moe_model.config.vocab_size, (BATCH_SIZE, SEQUENCE_LENGTH), device=device)
|
| 124 |
+
mock_labels = mock_input_ids.clone()
|
| 125 |
+
print("--- Starting Router Training Loop (Optimized & Corrected) ---")
|
| 126 |
+
moe_model.train()
|
| 127 |
+
start_time = time.time()
|
| 128 |
+
for epoch in range(EPOCHS):
|
| 129 |
+
optimizer.zero_grad()
|
| 130 |
+
outputs = moe_model(input_ids=mock_input_ids, labels=mock_labels)
|
| 131 |
+
main_loss = outputs.loss
|
| 132 |
+
total_lb_loss = 0.0
|
| 133 |
+
for layer in moe_model.model.layers:
|
| 134 |
+
total_lb_loss += layer.mlp.most_recent_lb_loss
|
| 135 |
+
total_loss = main_loss + LB_LOSS_COEFFICIENT * total_lb_loss
|
| 136 |
+
total_loss.backward()
|
| 137 |
+
optimizer.step()
|
| 138 |
+
if (epoch + 1) % 10 == 0:
|
| 139 |
+
elapsed_time = time.time() - start_time
|
| 140 |
+
print(f"Epoch [{epoch+1:03d}/{EPOCHS}] | Total Loss: {total_loss.item():.4f} | "
|
| 141 |
+
f"Main Loss: {main_loss.item():.4f} | "
|
| 142 |
+
f"Avg LB Loss: {(total_lb_loss.item() / moe_model.config.num_hidden_layers):.4f} | "
|
| 143 |
+
f"Time: {elapsed_time:.2f}s")
|
| 144 |
+
start_time = time.time()
|
| 145 |
+
print("\n--- Router Training Complete! ---")
|
| 146 |
+
print("\n--- Phase 5: Saving the fully trained MoE model to disk ---")
|
| 147 |
+
OUTPUT_MODEL_DIR = "./SmolMoE-8x135M-Instruct-v1-Trained"
|
| 148 |
+
if os.path.exists(OUTPUT_MODEL_DIR):
|
| 149 |
+
shutil.rmtree(OUTPUT_MODEL_DIR)
|
| 150 |
+
os.makedirs(OUTPUT_MODEL_DIR)
|
| 151 |
+
print("Updating model config with MoE-specific parameters...")
|
| 152 |
+
moe_model.config.moe_num_experts = NUM_EXPERTS
|
| 153 |
+
moe_model.config.moe_top_k = TOP_K
|
| 154 |
+
print(f"Saving model to '{OUTPUT_MODEL_DIR}'...")
|
| 155 |
+
moe_model.save_pretrained(OUTPUT_MODEL_DIR)
|
| 156 |
+
print("Saving tokenizer...")
|
| 157 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 158 |
+
tokenizer.save_pretrained(OUTPUT_MODEL_DIR)
|
| 159 |
+
print("\n--- Model successfully saved! ---")
|
| 160 |
+
print("You can now load this model in other scripts, but you must re-define the custom MoE classes first.")
|
| 161 |
+
|
| 162 |
+
if __name__ == "__main__":
|
| 163 |
+
main()
|
train/train_moe_router_en.py
ADDED
|
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ==============================================================================
|
| 2 |
+
# Smol-MoE 8x135M - The "Genesis" Master Script
|
| 3 |
+
# (Final Optimized Version with All Fixes & Detailed Comments)
|
| 4 |
+
# ==============================================================================
|
| 5 |
+
|
| 6 |
+
# --- Core Library Imports ---
|
| 7 |
+
# PyTorch Core
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
import torch.optim as optim
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
|
| 13 |
+
# Hugging Face Transformers library, the source of our "Lego bricks"
|
| 14 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
| 15 |
+
from transformers.models.llama.modeling_llama import LlamaMLP # The standard FFN module from Llama, which we use as the base for our "Experts"
|
| 16 |
+
|
| 17 |
+
# Safetensors library, for safely and efficiently loading model weights
|
| 18 |
+
from safetensors.torch import load_file
|
| 19 |
+
|
| 20 |
+
# Standard Python Libraries
|
| 21 |
+
import os # For handling file paths
|
| 22 |
+
import shutil # For directory operations (like deleting an old model folder)
|
| 23 |
+
import numpy as np # For data analysis (in the final test)
|
| 24 |
+
import time # For timing the training process
|
| 25 |
+
|
| 26 |
+
# --- 0. Global Configuration & Hyperparameters ---
|
| 27 |
+
# This is the master control panel for the entire project. All key parameters are defined here.
|
| 28 |
+
|
| 29 |
+
# MODEL_NAME: The path to the base model. We use this to load the initial config and tokenizer.
|
| 30 |
+
# Note: This should point to a standard, unmodified SmolLM model.
|
| 31 |
+
MODEL_NAME = "./SmolLM2-135M-Instruct"
|
| 32 |
+
|
| 33 |
+
# BASE_EXPERT_PATH: The parent directory containing all 8 of your pre-trained expert model folders.
|
| 34 |
+
BASE_EXPERT_PATH = "./models"
|
| 35 |
+
|
| 36 |
+
# EXPERT_DIRS: A list of the specific directory names for your 8 expert models. The order is important.
|
| 37 |
+
EXPERT_DIRS = [
|
| 38 |
+
"SmolLM2-135M-Instruct-Actor", "SmolLM2-135M-Instruct-Analyst",
|
| 39 |
+
"SmolLM2-135M-Instruct-Coder", "SmolLM2-135M-Instruct-Encyclopedia",
|
| 40 |
+
"SmolLM2-135M-Instruct-Guardian", "SmolLM2-135M-Instruct-Summarizer",
|
| 41 |
+
"SmolLM2-135M-Instruct-Thinker", "SmolLM2-135M-Instruct-Writer"
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
# MoE Architecture Parameters
|
| 45 |
+
NUM_EXPERTS = 8 # The number of experts in our committee
|
| 46 |
+
TOP_K = 2 # The number of top experts to route to for each token
|
| 47 |
+
|
| 48 |
+
# Training Hyperparameters
|
| 49 |
+
LEARNING_RATE = 0.001 # The learning rate for the routers. Since we only train routers, it can be slightly higher.
|
| 50 |
+
EPOCHS = 20 # Number of training epochs. Since we're using mock data to validate the process, 20 is sufficient.
|
| 51 |
+
# This needs to be much higher when using real data.
|
| 52 |
+
BATCH_SIZE = 4 # The number of sequences to process in each batch. Adjust based on your VRAM.
|
| 53 |
+
SEQUENCE_LENGTH = 128 # The length of text sequences the model processes. Adjust based on your VRAM.
|
| 54 |
+
LB_LOSS_COEFFICIENT = 0.01 # The weight coefficient for the load balancing loss. This is a critical "balancing valve"
|
| 55 |
+
# used to trade off between "doing the job well" and "distributing work fairly."
|
| 56 |
+
|
| 57 |
+
# Device Configuration
|
| 58 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 59 |
+
print(f"Using device: {device}")
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# --- 1. MoE Architecture Component Definitions ---
|
| 63 |
+
# These are the blueprints for the new parts we've "invented."
|
| 64 |
+
|
| 65 |
+
class MoERouter(nn.Module):
|
| 66 |
+
"""
|
| 67 |
+
The Router (or Gate Network) - The "CEO" or "dispatcher" of the expert committee.
|
| 68 |
+
Its structure is a simple linear layer, responsible for scoring all experts for each incoming token.
|
| 69 |
+
"""
|
| 70 |
+
def __init__(self, hidden_size: int, num_experts: int):
|
| 71 |
+
super().__init__()
|
| 72 |
+
self.layer = nn.Linear(hidden_size, num_experts, bias=False)
|
| 73 |
+
|
| 74 |
+
def forward(self, hidden_states):
|
| 75 |
+
# Outputs the "scores" (logits) for each expert, which will later be turned into probabilities via Softmax.
|
| 76 |
+
return self.layer(hidden_states)
|
| 77 |
+
|
| 78 |
+
class MoEModule(nn.Module):
|
| 79 |
+
"""
|
| 80 |
+
The Mixture-of-Experts Module - The "conference room" for the entire expert committee.
|
| 81 |
+
This module replaces the standard FFN (MLP) block in the original Llama model.
|
| 82 |
+
It contains one router (the CEO) and a list of experts (the board members).
|
| 83 |
+
"""
|
| 84 |
+
def __init__(self, config):
|
| 85 |
+
super().__init__()
|
| 86 |
+
# Get necessary parameters from the global config
|
| 87 |
+
self.hidden_size = config.hidden_size
|
| 88 |
+
self.top_k = TOP_K
|
| 89 |
+
self.num_experts = NUM_EXPERTS
|
| 90 |
+
|
| 91 |
+
# Create the components
|
| 92 |
+
self.router = MoERouter(self.hidden_size, self.num_experts)
|
| 93 |
+
# LlamaMLP is the standard FFN implementation in Hugging Face's Llama, which we use as the base for our "experts".
|
| 94 |
+
self.experts = nn.ModuleList([LlamaMLP(config) for _ in range(self.num_experts)])
|
| 95 |
+
|
| 96 |
+
# A placeholder to temporarily store the load balancing loss for this layer during a forward pass
|
| 97 |
+
self.most_recent_lb_loss = None
|
| 98 |
+
|
| 99 |
+
def forward(self, hidden_states):
|
| 100 |
+
# Store the original shape to reshape the output at the end
|
| 101 |
+
original_shape = hidden_states.shape
|
| 102 |
+
# Flatten the input from (batch, sequence, dim) to (batch * sequence, dim) for token-level routing
|
| 103 |
+
flat_hidden_states = hidden_states.view(-1, self.hidden_size)
|
| 104 |
+
|
| 105 |
+
# --- Step 1: Routing Decision ---
|
| 106 |
+
# Get scores from the router for each token
|
| 107 |
+
router_logits = self.router(flat_hidden_states)
|
| 108 |
+
# Use Softmax to convert scores to probabilities
|
| 109 |
+
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
|
| 110 |
+
# Select the top-k experts and their corresponding probabilities
|
| 111 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
| 112 |
+
# Normalize the probabilities of the top-k experts so they sum to 1
|
| 113 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
| 114 |
+
# Cast weights back to the model's main dtype (e.g., bfloat16) for efficiency
|
| 115 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
| 116 |
+
|
| 117 |
+
# --- Step 2: Calculate and Store Load Balancing Loss ---
|
| 118 |
+
# This is the soul of MoE training: ensuring the router doesn't get "lazy" and uses all experts fairly.
|
| 119 |
+
router_probs_full = F.softmax(router_logits, dim=-1, dtype=torch.float)
|
| 120 |
+
avg_expert_prob = router_probs_full.mean(dim=0) # The average probability for each expert across all tokens
|
| 121 |
+
expert_mask_for_lb = F.one_hot(selected_experts, num_classes=self.num_experts).sum(dim=1) # Checks which experts were chosen for each token
|
| 122 |
+
avg_expert_fraction = expert_mask_for_lb.float().mean(dim=0) # The average fraction of tokens processed by each expert
|
| 123 |
+
# Calculate the loss, multiply by the number of experts as a penalty term, and store it.
|
| 124 |
+
self.most_recent_lb_loss = self.num_experts * torch.sum(avg_expert_prob * avg_expert_fraction)
|
| 125 |
+
|
| 126 |
+
# --- Step 3: Expert Computation and Result Aggregation (Vectorized & Efficient) ---
|
| 127 |
+
# Create an empty tensor to store the final results
|
| 128 |
+
final_hidden_states = torch.zeros_like(flat_hidden_states)
|
| 129 |
+
|
| 130 |
+
# This loop only iterates `top_k` times (e.g., 2), which is very fast.
|
| 131 |
+
for k in range(self.top_k):
|
| 132 |
+
# Get the expert indices and weights for the k-th choice across all tokens
|
| 133 |
+
expert_indices_k = selected_experts[:, k]
|
| 134 |
+
routing_weights_k = routing_weights[:, k]
|
| 135 |
+
|
| 136 |
+
# This loop iterates over all experts, but the computations inside are batched and fast.
|
| 137 |
+
for i in range(self.num_experts):
|
| 138 |
+
# Create a mask to find all tokens that were routed to the current expert `i`
|
| 139 |
+
mask = expert_indices_k == i
|
| 140 |
+
if mask.any(): # If any token was routed to this expert
|
| 141 |
+
# Process all selected tokens in a single batch
|
| 142 |
+
expert_output = self.experts[i](flat_hidden_states[mask])
|
| 143 |
+
# Weight the expert's output by its routing weight and "add" it back to the correct positions in the final tensor
|
| 144 |
+
final_hidden_states.index_add_(0, torch.where(mask)[0], expert_output * routing_weights_k[mask].unsqueeze(1))
|
| 145 |
+
|
| 146 |
+
# Reshape the result back to the original (batch, sequence, hidden_size) shape and return
|
| 147 |
+
return final_hidden_states.view(*original_shape)
|
| 148 |
+
|
| 149 |
+
# --- 2. The "Genesis" Function: Assembling, Transplanting, and Modifying the Model ---
|
| 150 |
+
def create_moe_model():
|
| 151 |
+
"""
|
| 152 |
+
This is the "Architectural Surgery" function. It is responsible for:
|
| 153 |
+
1. Building an empty model skeleton with MoE modules.
|
| 154 |
+
2. "Transplanting" the weights from your 8 pre-trained experts into it.
|
| 155 |
+
3. Freezing all expert parameters, leaving only the routers trainable.
|
| 156 |
+
"""
|
| 157 |
+
print("--- Starting Architectural Surgery ---")
|
| 158 |
+
|
| 159 |
+
# Load the config from the standard model; this is the "genetic blueprint" for our new model
|
| 160 |
+
config = AutoConfig.from_pretrained(MODEL_NAME)
|
| 161 |
+
|
| 162 |
+
print("Step 1: Loading base model skeleton...")
|
| 163 |
+
# Load one of the experts to serve as the "skeleton" for our MoE model.
|
| 164 |
+
# We will use its non-FFN parts (embeddings, attention modules, etc.).
|
| 165 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 166 |
+
os.path.join(BASE_EXPERT_PATH, EXPERT_DIRS[0]),
|
| 167 |
+
torch_dtype=torch.bfloat16,
|
| 168 |
+
device_map=device
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
print("Step 2: Pre-loading all expert weights into CPU memory for efficiency...")
|
| 172 |
+
# To improve efficiency, we load all expert weights from disk into CPU RAM at once.
|
| 173 |
+
# We use `safetensors.torch.load_file` as it is the correct and safe way to load .safetensors files.
|
| 174 |
+
all_experts_state_dicts = [
|
| 175 |
+
load_file(os.path.join(BASE_EXPERT_PATH, expert_dir, 'model.safetensors'), device='cpu')
|
| 176 |
+
for expert_dir in EXPERT_DIRS
|
| 177 |
+
]
|
| 178 |
+
print("All expert weights pre-loaded.")
|
| 179 |
+
|
| 180 |
+
print("Step 3: Replacing FFNs with MoE modules and transplanting expert weights...")
|
| 181 |
+
# Iterate through all 30 layers of the model
|
| 182 |
+
for layer_idx, layer in enumerate(base_model.model.layers):
|
| 183 |
+
# In each layer, replace the original, standard LlamaMLP with our custom MoEModule
|
| 184 |
+
layer.mlp = MoEModule(config).to(device, dtype=torch.bfloat16)
|
| 185 |
+
|
| 186 |
+
# Begin the "Organ Transplant"
|
| 187 |
+
for expert_idx in range(NUM_EXPERTS):
|
| 188 |
+
# Get the weights for the current expert from memory
|
| 189 |
+
expert_state_dict = all_experts_state_dicts[expert_idx]
|
| 190 |
+
# Filter to get only the weights for the FFN part of the current layer
|
| 191 |
+
expert_mlp_weights = {
|
| 192 |
+
k.replace(f"model.layers.{layer_idx}.mlp.", ""): v
|
| 193 |
+
for k, v in expert_state_dict.items()
|
| 194 |
+
if f"model.layers.{layer_idx}.mlp." in k
|
| 195 |
+
}
|
| 196 |
+
# Load these weights into the corresponding expert "seat" in our MoE module
|
| 197 |
+
layer.mlp.experts[expert_idx].load_state_dict(expert_mlp_weights)
|
| 198 |
+
|
| 199 |
+
print("Step 4: Freezing all parameters except for the routers...")
|
| 200 |
+
# This is our key strategy: only train the "CEO", don't disturb the already-smart "experts".
|
| 201 |
+
for name, param in base_model.named_parameters():
|
| 202 |
+
if "router" not in name:
|
| 203 |
+
param.requires_grad = False
|
| 204 |
+
|
| 205 |
+
print("\n--- Surgery Complete! MoE Model is assembled and ready for training. ---")
|
| 206 |
+
# Print parameter statistics to verify our operation was successful
|
| 207 |
+
trainable_params = sum(p.numel() for p in base_model.parameters() if p.requires_grad)
|
| 208 |
+
total_params = sum(p.numel() for p in base_model.parameters())
|
| 209 |
+
print(f"Total Parameters: {total_params / 1e6:.2f}M")
|
| 210 |
+
print(f"Trainable Parameters (Routers): {trainable_params}")
|
| 211 |
+
|
| 212 |
+
return base_model
|
| 213 |
+
|
| 214 |
+
# --- 3. Main Process: Training and Saving ---
|
| 215 |
+
def main():
|
| 216 |
+
# Step 1: Call the "Genesis" function to create our model
|
| 217 |
+
moe_model = create_moe_model()
|
| 218 |
+
|
| 219 |
+
# Step 2: Create the optimizer. It's smart enough to only include parameters where `requires_grad=True` (i.e., the routers).
|
| 220 |
+
optimizer = optim.AdamW([p for p in moe_model.parameters() if p.requires_grad], lr=LEARNING_RATE)
|
| 221 |
+
|
| 222 |
+
print("\n--- Preparing Simulated Mixed Dataset for Training ---")
|
| 223 |
+
# NOTE: We are using completely random "mock data" here, solely to validate that the entire process runs.
|
| 224 |
+
# To make the routers truly intelligent, you MUST replace this with a real, diverse dataset.
|
| 225 |
+
mock_input_ids = torch.randint(0, moe_model.config.vocab_size, (BATCH_SIZE, SEQUENCE_LENGTH), device=device)
|
| 226 |
+
mock_labels = mock_input_ids.clone()
|
| 227 |
+
|
| 228 |
+
print("--- Starting Router Training Loop (Optimized & Corrected) ---")
|
| 229 |
+
moe_model.train() # Set the model to training mode
|
| 230 |
+
|
| 231 |
+
start_time = time.time()
|
| 232 |
+
for epoch in range(EPOCHS):
|
| 233 |
+
optimizer.zero_grad() # Clear gradients from the previous epoch
|
| 234 |
+
|
| 235 |
+
# --- The Elegant and Correct Forward Pass ---
|
| 236 |
+
# Call the model directly. Hugging Face automatically handles all complex internal details (like attention masks).
|
| 237 |
+
# By providing `labels`, it also automatically calculates the main cross-entropy loss for us.
|
| 238 |
+
outputs = moe_model(input_ids=mock_input_ids, labels=mock_labels)
|
| 239 |
+
main_loss = outputs.loss # Extract the main task loss
|
| 240 |
+
|
| 241 |
+
# --- Safely Collect Load Balancing Losses ---
|
| 242 |
+
total_lb_loss = 0.0
|
| 243 |
+
for layer in moe_model.model.layers:
|
| 244 |
+
total_lb_loss += layer.mlp.most_recent_lb_loss # Retrieve the loss stored in our placeholder
|
| 245 |
+
|
| 246 |
+
# --- Calculate the Final "Composite KPI" (Total Loss) ---
|
| 247 |
+
total_loss = main_loss + LB_LOSS_COEFFICIENT * total_lb_loss
|
| 248 |
+
|
| 249 |
+
# --- Backpropagation and Optimization ---
|
| 250 |
+
total_loss.backward() # Calculate gradients
|
| 251 |
+
optimizer.step() # Update router weights
|
| 252 |
+
|
| 253 |
+
# --- Print Training Logs ---
|
| 254 |
+
if (epoch + 1) % 10 == 0:
|
| 255 |
+
elapsed_time = time.time() - start_time
|
| 256 |
+
print(f"Epoch [{epoch+1:03d}/{EPOCHS}] | Total Loss: {total_loss.item():.4f} | "
|
| 257 |
+
f"Main Loss: {main_loss.item():.4f} | "
|
| 258 |
+
f"Avg LB Loss: {(total_lb_loss.item() / moe_model.config.num_hidden_layers):.4f} | "
|
| 259 |
+
f"Time: {elapsed_time:.2f}s")
|
| 260 |
+
start_time = time.time()
|
| 261 |
+
|
| 262 |
+
print("\n--- Router Training Complete! ---")
|
| 263 |
+
|
| 264 |
+
# --- Step 5: Solidifying our great work onto the disk ---
|
| 265 |
+
print("\n--- Phase 5: Saving the fully trained MoE model to disk ---")
|
| 266 |
+
OUTPUT_MODEL_DIR = "./SmolMoE-8x135M-Instruct-v1-Trained"
|
| 267 |
+
if os.path.exists(OUTPUT_MODEL_DIR):
|
| 268 |
+
shutil.rmtree(OUTPUT_MODEL_DIR)
|
| 269 |
+
os.makedirs(OUTPUT_MODEL_DIR)
|
| 270 |
+
|
| 271 |
+
print("Updating model config with MoE-specific parameters...")
|
| 272 |
+
# We use custom names for our MoE parameters to avoid conflicts with standard Hugging Face generation configs.
|
| 273 |
+
moe_model.config.moe_num_experts = NUM_EXPERTS
|
| 274 |
+
moe_model.config.moe_top_k = TOP_K
|
| 275 |
+
|
| 276 |
+
print(f"Saving model to '{OUTPUT_MODEL_DIR}'...")
|
| 277 |
+
moe_model.save_pretrained(OUTPUT_MODEL_DIR) # Saves weights and the updated config file
|
| 278 |
+
|
| 279 |
+
print("Saving tokenizer...")
|
| 280 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) # Save the tokenizer
|
| 281 |
+
tokenizer.save_pretrained(OUTPUT_MODEL_DIR)
|
| 282 |
+
|
| 283 |
+
print("\n--- Model successfully saved! ---")
|
| 284 |
+
print("You can now load this model in other scripts, but you must re-define the custom MoE classes first.")
|
| 285 |
+
|
| 286 |
+
# --- Script Entry Point ---
|
| 287 |
+
# Ensures that the main() function is only called when this file is executed directly.
|
| 288 |
+
if __name__ == "__main__":
|
| 289 |
+
main()
|
train/train_moe_router_zh_CN.py
ADDED
|
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ==============================================================================
|
| 2 |
+
# Smol-MoE 8x135M - “创世纪”主脚本
|
| 3 |
+
# (最终优化版,包含所有修正与详细注释)
|
| 4 |
+
# ==============================================================================
|
| 5 |
+
|
| 6 |
+
# --- 核心库导入 ---
|
| 7 |
+
# PyTorch 核心
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
import torch.optim as optim
|
| 11 |
+
import torch.nn.functional as F
|
| 12 |
+
|
| 13 |
+
# Hugging Face Transformers 库,我们的“乐高积木”来源
|
| 14 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
| 15 |
+
from transformers.models.llama.modeling_llama import LlamaMLP # Llama模型中标准的FFN模块,我们将其作为“专家”的基础结构
|
| 16 |
+
|
| 17 |
+
# Safetensors 库,用于安全、高效地加载模型权重
|
| 18 |
+
from safetensors.torch import load_file
|
| 19 |
+
|
| 20 |
+
# 标准Python库
|
| 21 |
+
import os # 用于处理文件路径
|
| 22 |
+
import shutil # 用于处理文件夹(如删除旧的模型文件夹)
|
| 23 |
+
import numpy as np # 用于数据分析(在最终测试中)
|
| 24 |
+
import time # 用于计算训练时长
|
| 25 |
+
|
| 26 |
+
# --- 0. 全局配置与超参数 ---
|
| 27 |
+
# 这里是整个项目的“总控制台”,所有关键参数都在此定义。
|
| 28 |
+
|
| 29 |
+
# MODEL_NAME: 基础模型的路径。我们用它来加载初始的配置(config)和分词器(tokenizer)。
|
| 30 |
+
# 注意:它指向一个标准的、未经修改的SmolLM模型。
|
| 31 |
+
MODEL_NAME = "./SmolLM2-135M-Instruct"
|
| 32 |
+
|
| 33 |
+
# BASE_EXPERT_PATH: 存放你所有8个预训练好的专家模型的父文件夹。
|
| 34 |
+
BASE_EXPERT_PATH = "./models"
|
| 35 |
+
|
| 36 |
+
# EXPERT_DIRS: 8个专家模型文件夹的具体名称列表。顺序很重要。
|
| 37 |
+
EXPERT_DIRS = [
|
| 38 |
+
"SmolLM2-135M-Instruct-Actor", "SmolLM2-135M-Instruct-Analyst",
|
| 39 |
+
"SmolLM2-135M-Instruct-Coder", "SmolLM2-135M-Instruct-Encyclopedia",
|
| 40 |
+
"SmolLM2-135M-Instruct-Guardian", "SmolLM2-135M-Instruct-Summarizer",
|
| 41 |
+
"SmolLM2-135M-Instruct-Thinker", "SmolLM2-135M-Instruct-Writer"
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
# MoE 架构参数
|
| 45 |
+
NUM_EXPERTS = 8 # 专家委员会的专家数量
|
| 46 |
+
TOP_K = 2 # 每次路由时,为每个Token选择的最优专家的数量
|
| 47 |
+
|
| 48 |
+
# 训练超参数
|
| 49 |
+
LEARNING_RATE = 0.001 # 路由器的学习率。只训练路由器,所以可以设置得稍高一些。
|
| 50 |
+
EPOCHS = 20 # 训练轮次。因为我们用的是模拟数据来验证流程,所以20轮就足够了。
|
| 51 |
+
# 当使用真实数据时,你需要把它设置得更高。
|
| 52 |
+
BATCH_SIZE = 4 # 每批次处理的数据量。根据你的显存大小调整。
|
| 53 |
+
SEQUENCE_LENGTH = 128 # 模型处理的文本序列长度。根据你的显存大小调整。
|
| 54 |
+
LB_LOSS_COEFFICIENT = 0.01 # 负载均衡损失的权重系数。这是个关键的“平衡阀”,
|
| 55 |
+
# 用来平衡“任务做得好”和“分配得公平”这两个目标。
|
| 56 |
+
|
| 57 |
+
# 设备配置
|
| 58 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 59 |
+
print(f"Using device: {device}")
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
# --- 1. MoE架构组件定义 ---
|
| 63 |
+
# 这里是我们“发明”的新零件的蓝图。
|
| 64 |
+
|
| 65 |
+
class MoERouter(nn.Module):
|
| 66 |
+
"""
|
| 67 |
+
路由器 (Router / Gate Network) - 专家委员会的“CEO”或“调度员”。
|
| 68 |
+
它的结构非常简单,就是一个线性层,负责为每个输入的Token,给所有专家打分。
|
| 69 |
+
"""
|
| 70 |
+
def __init__(self, hidden_size: int, num_experts: int):
|
| 71 |
+
super().__init__()
|
| 72 |
+
self.layer = nn.Linear(hidden_size, num_experts, bias=False)
|
| 73 |
+
|
| 74 |
+
def forward(self, hidden_states):
|
| 75 |
+
# 输出每个专家的“得分”(logits),后续会通过Softmax转换成概率
|
| 76 |
+
return self.layer(hidden_states)
|
| 77 |
+
|
| 78 |
+
class MoEModule(nn.Module):
|
| 79 |
+
"""
|
| 80 |
+
混合专家模块 (MoE Module) - 整个“专家委员会”的会议室。
|
| 81 |
+
它替换了原来Llama模型中标准的FFN(MLP)模块。
|
| 82 |
+
它内部包含一个路由器(CEO)和8个专家(董事会成员)。
|
| 83 |
+
"""
|
| 84 |
+
def __init__(self, config):
|
| 85 |
+
super().__init__()
|
| 86 |
+
# 从全局配置中获取必要的参数
|
| 87 |
+
self.hidden_size = config.hidden_size
|
| 88 |
+
self.top_k = TOP_K
|
| 89 |
+
self.num_experts = NUM_EXPERTS
|
| 90 |
+
|
| 91 |
+
# 创建组件
|
| 92 |
+
self.router = MoERouter(self.hidden_size, self.num_experts)
|
| 93 |
+
# LlamaMLP是Hugging Face中Llama模型标准的FFN实现,我们用它作为“专家”的基础结构
|
| 94 |
+
self.experts = nn.ModuleList([LlamaMLP(config) for _ in range(self.num_experts)])
|
| 95 |
+
|
| 96 |
+
# 创建一个占位符,用于在训练时临时存储该层的负载均衡损失
|
| 97 |
+
self.most_recent_lb_loss = None
|
| 98 |
+
|
| 99 |
+
def forward(self, hidden_states):
|
| 100 |
+
# 记录输入的原始形状,以便最后恢复
|
| 101 |
+
original_shape = hidden_states.shape
|
| 102 |
+
# 将输入“扁平化”处理,把batch和sequence维度合并,方便进行Token级别的路由
|
| 103 |
+
flat_hidden_states = hidden_states.view(-1, self.hidden_size)
|
| 104 |
+
|
| 105 |
+
# --- 步骤 1: 路由决策 ---
|
| 106 |
+
# 让路由器为每个Token打分
|
| 107 |
+
router_logits = self.router(flat_hidden_states)
|
| 108 |
+
# 用Softmax将分数转换成概率
|
| 109 |
+
routing_weights = F.softmax(router_logits, dim=-1, dtype=torch.float)
|
| 110 |
+
# 选出得分最高的Top-K个专家及其对应的概率
|
| 111 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
| 112 |
+
# 对Top-K个专家的概率进行归一化,确保它们的和为1
|
| 113 |
+
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
| 114 |
+
# 将权重的数据类型转换回模型的主数据类型(如bfloat16)以提高效率
|
| 115 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
| 116 |
+
|
| 117 |
+
# --- 步骤 2: 计算并存储负载均衡损失 ---
|
| 118 |
+
# 这是MoE训练的灵魂:确保路由器不会“偏心”,公平地使用所有专家
|
| 119 |
+
router_probs_full = F.softmax(router_logits, dim=-1, dtype=torch.float)
|
| 120 |
+
avg_expert_prob = router_probs_full.mean(dim=0) # 每个专家在所有Token上的平均被选择概率
|
| 121 |
+
expert_mask_for_lb = F.one_hot(selected_experts, num_classes=self.num_experts).sum(dim=1) # 统计每个Token被分配给了哪些专家
|
| 122 |
+
avg_expert_fraction = expert_mask_for_lb.float().mean(dim=0) # 每个专家平均处理的Token比例
|
| 123 |
+
# 计算损失并乘以专家数量作为惩罚项,然后存储起来
|
| 124 |
+
self.most_recent_lb_loss = self.num_experts * torch.sum(avg_expert_prob * avg_expert_fraction)
|
| 125 |
+
|
| 126 |
+
# --- 步骤 3: 专家计算与结果融合 (矢量化高效版) ---
|
| 127 |
+
# 创建一个空的张量用于存放最终结果
|
| 128 |
+
final_hidden_states = torch.zeros_like(flat_hidden_states)
|
| 129 |
+
|
| 130 |
+
# 这个循环只遍历Top-K次(比如2次),非常快
|
| 131 |
+
for k in range(self.top_k):
|
| 132 |
+
# 获取所有Token在第k个选择上的专家索引和权重
|
| 133 |
+
expert_indices_k = selected_experts[:, k]
|
| 134 |
+
routing_weights_k = routing_weights[:, k]
|
| 135 |
+
|
| 136 |
+
# 这个循环遍历所有专家,但内部计算是批处理的,也非常快
|
| 137 |
+
for i in range(self.num_experts):
|
| 138 |
+
# 创建一个掩码,找到所有选择了当前专家i的Token
|
| 139 |
+
mask = expert_indices_k == i
|
| 140 |
+
if mask.any(): # 如果有任何Token选择了这个专家
|
| 141 |
+
# 将这些Token的输入作为一个批次,交给专家i处理
|
| 142 |
+
expert_output = self.experts[i](flat_hidden_states[mask])
|
| 143 |
+
# 将专家的输出乘以对应的路由权重,并“添加”回最终结果张量的正确位置
|
| 144 |
+
final_hidden_states.index_add_(0, torch.where(mask)[0], expert_output * routing_weights_k[mask].unsqueeze(1))
|
| 145 |
+
|
| 146 |
+
# 将结果恢复成原始的(batch, sequence, hidden_size)形状并返回
|
| 147 |
+
return final_hidden_states.view(*original_shape)
|
| 148 |
+
|
| 149 |
+
# --- 2. “创世纪”函数:组装、移植、改造模型 ---
|
| 150 |
+
def create_moe_model():
|
| 151 |
+
"""
|
| 152 |
+
这是“架构手术”函数。它负责:
|
| 153 |
+
1. 搭建一个带有MoE模块的空壳模型。
|
| 154 |
+
2. 将你预训练好的8个专家的权重精准地“移植”进去。
|
| 155 |
+
3. 冻结所有专家,只留下路由器是可训练的。
|
| 156 |
+
"""
|
| 157 |
+
print("--- Starting Architectural Surgery ---")
|
| 158 |
+
|
| 159 |
+
# 从标准模型加载配置,这是我们新模型的“基因蓝图”
|
| 160 |
+
config = AutoConfig.from_pretrained(MODEL_NAME)
|
| 161 |
+
|
| 162 |
+
print("Step 1: Loading base model skeleton...")
|
| 163 |
+
# 加载8个专家中的任意一个,作为我们MoE模型的“骨架”
|
| 164 |
+
# 我们将使用它的词嵌入、注意力模块等非FFN部分
|
| 165 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 166 |
+
os.path.join(BASE_EXPERT_PATH, EXPERT_DIRS[0]),
|
| 167 |
+
torch_dtype=torch.bfloat16,
|
| 168 |
+
device_map=device
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
print("Step 2: Pre-loading all expert weights into CPU memory for efficiency...")
|
| 172 |
+
# 为了提高效率,我们一次性把所有专家的权重从硬盘加载到CPU内存
|
| 173 |
+
# 我们使用 `safetensors.torch.load_file`,这是加载.safetensors文件的正确方式
|
| 174 |
+
all_experts_state_dicts = [
|
| 175 |
+
load_file(os.path.join(BASE_EXPERT_PATH, expert_dir, 'model.safetensors'), device='cpu')
|
| 176 |
+
for expert_dir in EXPERT_DIRS
|
| 177 |
+
]
|
| 178 |
+
print("All expert weights pre-loaded.")
|
| 179 |
+
|
| 180 |
+
print("Step 3: Replacing FFNs with MoE modules and transplanting expert weights...")
|
| 181 |
+
# 遍历模型的30层
|
| 182 |
+
for layer_idx, layer in enumerate(base_model.model.layers):
|
| 183 |
+
# 在每一层,都用我们自己设计的MoEModule替换掉原来标准的LlamaMLP
|
| 184 |
+
layer.mlp = MoEModule(config).to(device, dtype=torch.bfloat16)
|
| 185 |
+
|
| 186 |
+
# 开始“器官移植”
|
| 187 |
+
for expert_idx in range(NUM_EXPERTS):
|
| 188 |
+
# 从内存中获取当前专家的权重字典
|
| 189 |
+
expert_state_dict = all_experts_state_dicts[expert_idx]
|
| 190 |
+
# 筛选出只属于当前层级的FFN��分的权重
|
| 191 |
+
expert_mlp_weights = {
|
| 192 |
+
k.replace(f"model.layers.{layer_idx}.mlp.", ""): v
|
| 193 |
+
for k, v in expert_state_dict.items()
|
| 194 |
+
if f"model.layers.{layer_idx}.mlp." in k
|
| 195 |
+
}
|
| 196 |
+
# 将这些权重加载到MoE模块对应的专家“席位”上
|
| 197 |
+
layer.mlp.experts[expert_idx].load_state_dict(expert_mlp_weights)
|
| 198 |
+
|
| 199 |
+
print("Step 4: Freezing all parameters except for the routers...")
|
| 200 |
+
# 这是关键策略:只训练“CEO”,不打扰已经很聪明的“专家”
|
| 201 |
+
for name, param in base_model.named_parameters():
|
| 202 |
+
if "router" not in name:
|
| 203 |
+
param.requires_grad = False
|
| 204 |
+
|
| 205 |
+
print("\n--- Surgery Complete! MoE Model is assembled and ready for training. ---")
|
| 206 |
+
# 打印参数统计,验证我们的操作是否正确
|
| 207 |
+
trainable_params = sum(p.numel() for p in base_model.parameters() if p.requires_grad)
|
| 208 |
+
total_params = sum(p.numel() for p in base_model.parameters())
|
| 209 |
+
print(f"Total Parameters: {total_params / 1e6:.2f}M")
|
| 210 |
+
print(f"Trainable Parameters (Routers): {trainable_params}")
|
| 211 |
+
|
| 212 |
+
return base_model
|
| 213 |
+
|
| 214 |
+
# --- 3. 主流程:训练与保存 ---
|
| 215 |
+
def main():
|
| 216 |
+
# 步骤 1: 调用“创世纪”函数,创造我们的模型
|
| 217 |
+
moe_model = create_moe_model()
|
| 218 |
+
|
| 219 |
+
# 步骤 2: 创建优化器。它很聪明,只会包含那些 `requires_grad=True` 的参数(也就是路由器)
|
| 220 |
+
optimizer = optim.AdamW([p for p in moe_model.parameters() if p.requires_grad], lr=LEARNING_RATE)
|
| 221 |
+
|
| 222 |
+
print("\n--- Preparing Simulated Mixed Dataset for Training ---")
|
| 223 |
+
# 注意:这里我们用的是完全随机的“模拟数据”,仅用于验证整个流程能跑通。
|
| 224 |
+
# 要想让路由器真正变聪明,必须用真实的、多样化的数据集替换这里。
|
| 225 |
+
mock_input_ids = torch.randint(0, moe_model.config.vocab_size, (BATCH_SIZE, SEQUENCE_LENGTH), device=device)
|
| 226 |
+
mock_labels = mock_input_ids.clone()
|
| 227 |
+
|
| 228 |
+
print("--- Starting Router Training Loop (Optimized & Corrected) ---")
|
| 229 |
+
moe_model.train() # 将模型设置为训练模式
|
| 230 |
+
|
| 231 |
+
start_time = time.time()
|
| 232 |
+
for epoch in range(EPOCHS):
|
| 233 |
+
optimizer.zero_grad() # 每个epoch开始前,清空上一轮的梯度
|
| 234 |
+
|
| 235 |
+
# --- 优雅且正确的前向传播 ---
|
| 236 |
+
# 直接调用模型,Hugging Face会自动为我们处理所有复杂的内部细节(如attention mask)
|
| 237 |
+
# 同时,因为我们提供了 `labels`,它会自动计算主线任务的交叉熵损失
|
| 238 |
+
outputs = moe_model(input_ids=mock_input_ids, labels=mock_labels)
|
| 239 |
+
main_loss = outputs.loss # 提取主线任务损失
|
| 240 |
+
|
| 241 |
+
# --- 安全地收集所有层的负载均衡损失 ---
|
| 242 |
+
total_lb_loss = 0.0
|
| 243 |
+
for layer in moe_model.model.layers:
|
| 244 |
+
total_lb_loss += layer.mlp.most_recent_lb_loss # 从我们设置的占位符中取出损失
|
| 245 |
+
|
| 246 |
+
# --- 计算最终的“复合KPI”(总损失)---
|
| 247 |
+
total_loss = main_loss + LB_LOSS_COEFFICIENT * total_lb_loss
|
| 248 |
+
|
| 249 |
+
# --- 反向传播与优化 ---
|
| 250 |
+
total_loss.backward() # 计算梯度
|
| 251 |
+
optimizer.step() # 更新路由器权重
|
| 252 |
+
|
| 253 |
+
# --- 打印训练日志 ---
|
| 254 |
+
if (epoch + 1) % 10 == 0:
|
| 255 |
+
elapsed_time = time.time() - start_time
|
| 256 |
+
print(f"Epoch [{epoch+1:03d}/{EPOCHS}] | Total Loss: {total_loss.item():.4f} | "
|
| 257 |
+
f"Main Loss: {main_loss.item():.4f} | "
|
| 258 |
+
f"Avg LB Loss: {(total_lb_loss.item() / moe_model.config.num_hidden_layers):.4f} | "
|
| 259 |
+
f"Time: {elapsed_time:.2f}s")
|
| 260 |
+
start_time = time.time()
|
| 261 |
+
|
| 262 |
+
print("\n--- Router Training Complete! ---")
|
| 263 |
+
|
| 264 |
+
# --- 步骤 5: 将我们伟大的作品“固化”到硬盘上 ---
|
| 265 |
+
print("\n--- Phase 5: Saving the fully trained MoE model to disk ---")
|
| 266 |
+
OUTPUT_MODEL_DIR = "./SmolMoE-8x135M-Instruct-v1-Trained"
|
| 267 |
+
if os.path.exists(OUTPUT_MODEL_DIR):
|
| 268 |
+
shutil.rmtree(OUTPUT_MODEL_DIR)
|
| 269 |
+
os.makedirs(OUTPUT_MODEL_DIR)
|
| 270 |
+
|
| 271 |
+
print("Updating model config with MoE-specific parameters...")
|
| 272 |
+
# 使用不会与Hugging Face原生配置冲突的自定义名称来保存我们的MoE参数
|
| 273 |
+
moe_model.config.moe_num_experts = NUM_EXPERTS
|
| 274 |
+
moe_model.config.moe_top_k = TOP_K
|
| 275 |
+
|
| 276 |
+
print(f"Saving model to '{OUTPUT_MODEL_DIR}'...")
|
| 277 |
+
moe_model.save_pretrained(OUTPUT_MODEL_DIR) # 保存权重和配置文件
|
| 278 |
+
|
| 279 |
+
print("Saving tokenizer...")
|
| 280 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) # 保存分词器
|
| 281 |
+
tokenizer.save_pretrained(OUTPUT_MODEL_DIR)
|
| 282 |
+
|
| 283 |
+
print("\n--- Model successfully saved! ---")
|
| 284 |
+
print("You can now load this model in other scripts, but you must re-define the custom MoE classes first.")
|
| 285 |
+
|
| 286 |
+
# --- 脚本入口 ---
|
| 287 |
+
# 确保只有在直接运行此文件时,才会执行main函数
|
| 288 |
+
if __name__ == "__main__":
|
| 289 |
+
main()
|