File size: 11,263 Bytes
69e6211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c81385d
69e6211
 
 
 
 
 
 
c81385d
69e6211
c81385d
 
69e6211
c81385d
 
69e6211
c81385d
 
69e6211
c81385d
69e6211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
library_name: transformers
base_model: naver-clova-ocr/bros-base-uncased
tags:
- generated_from_trainer
datasets:
- funsd
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bros-funsd-finetuned
  results:
  - task:
      type: token-classification
      name: Token Classification
    dataset:
      name: funsd
      type: funsd
      config: funsd
      split: test
      args: funsd
    metrics:
    - type: precision
      value: 0.5992897306895532
      name: Precision
    - type: recall
      value: 0.6416349809885932
      name: Recall
    - type: f1
      value: 0.6197398622800306
      name: F1
    - type: accuracy
      value: 0.7016008201245959
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bros-funsd-finetuned

This model is a fine-tuned version of [naver-clova-ocr/bros-base-uncased](https://huggingface.co/naver-clova-ocr/bros-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7866
- Precision: 0.5993
- Recall: 0.6416
- F1: 0.6197
- Accuracy: 0.7016

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 10   | 1.6503          | 0.0207    | 0.0032 | 0.0055 | 0.3213   |
| No log        | 2.0   | 20   | 1.5622          | 0.1480    | 0.0596 | 0.0850 | 0.3890   |
| No log        | 3.0   | 30   | 1.5357          | 0.0770    | 0.0672 | 0.0717 | 0.3803   |
| No log        | 4.0   | 40   | 1.5160          | 0.1058    | 0.0976 | 0.1015 | 0.4078   |
| No log        | 5.0   | 50   | 1.4925          | 0.1608    | 0.1768 | 0.1684 | 0.4354   |
| No log        | 6.0   | 60   | 1.4216          | 0.2011    | 0.2288 | 0.2141 | 0.4571   |
| No log        | 7.0   | 70   | 1.3546          | 0.2565    | 0.3241 | 0.2864 | 0.5001   |
| No log        | 8.0   | 80   | 1.2950          | 0.2829    | 0.3818 | 0.3250 | 0.5048   |
| No log        | 9.0   | 90   | 1.2862          | 0.2909    | 0.3745 | 0.3275 | 0.5226   |
| No log        | 10.0  | 100  | 1.2108          | 0.2911    | 0.3815 | 0.3302 | 0.5491   |
| No log        | 11.0  | 110  | 1.2023          | 0.3348    | 0.3609 | 0.3474 | 0.5545   |
| No log        | 12.0  | 120  | 1.1720          | 0.3616    | 0.4030 | 0.3812 | 0.5668   |
| No log        | 13.0  | 130  | 1.1267          | 0.3600    | 0.4005 | 0.3792 | 0.5825   |
| No log        | 14.0  | 140  | 1.1025          | 0.3677    | 0.4499 | 0.4047 | 0.6144   |
| No log        | 15.0  | 150  | 1.1038          | 0.3914    | 0.4655 | 0.4252 | 0.6182   |
| No log        | 16.0  | 160  | 1.1034          | 0.4144    | 0.4769 | 0.4434 | 0.6399   |
| No log        | 17.0  | 170  | 1.1885          | 0.4136    | 0.5250 | 0.4627 | 0.6303   |
| No log        | 18.0  | 180  | 1.1734          | 0.4652    | 0.4854 | 0.4751 | 0.6491   |
| No log        | 19.0  | 190  | 1.2263          | 0.4312    | 0.5995 | 0.5016 | 0.6457   |
| No log        | 20.0  | 200  | 1.2326          | 0.4482    | 0.5612 | 0.4984 | 0.6478   |
| No log        | 21.0  | 210  | 1.1374          | 0.4892    | 0.5954 | 0.5371 | 0.6776   |
| No log        | 22.0  | 220  | 1.2278          | 0.4939    | 0.5779 | 0.5326 | 0.6712   |
| No log        | 23.0  | 230  | 1.2979          | 0.4728    | 0.6030 | 0.5300 | 0.6642   |
| No log        | 24.0  | 240  | 1.3170          | 0.4885    | 0.5916 | 0.5351 | 0.6682   |
| No log        | 25.0  | 250  | 1.3692          | 0.4746    | 0.6011 | 0.5304 | 0.6596   |
| No log        | 26.0  | 260  | 1.3706          | 0.5121    | 0.6106 | 0.5570 | 0.6742   |
| No log        | 27.0  | 270  | 1.4494          | 0.5195    | 0.6036 | 0.5584 | 0.6719   |
| No log        | 28.0  | 280  | 1.4790          | 0.5207    | 0.6027 | 0.5587 | 0.6678   |
| No log        | 29.0  | 290  | 1.4106          | 0.5499    | 0.5887 | 0.5686 | 0.6838   |
| No log        | 30.0  | 300  | 1.4539          | 0.5607    | 0.5954 | 0.5775 | 0.6810   |
| No log        | 31.0  | 310  | 1.4746          | 0.5681    | 0.5989 | 0.5831 | 0.6827   |
| No log        | 32.0  | 320  | 1.5373          | 0.5233    | 0.6144 | 0.5652 | 0.6698   |
| No log        | 33.0  | 330  | 1.6007          | 0.5131    | 0.6353 | 0.5677 | 0.6682   |
| No log        | 34.0  | 340  | 1.5237          | 0.5392    | 0.6489 | 0.5890 | 0.6868   |
| No log        | 35.0  | 350  | 1.5382          | 0.5439    | 0.6239 | 0.5812 | 0.6908   |
| No log        | 36.0  | 360  | 1.5363          | 0.5615    | 0.6071 | 0.5834 | 0.6872   |
| No log        | 37.0  | 370  | 1.5504          | 0.5572    | 0.6201 | 0.5870 | 0.6943   |
| No log        | 38.0  | 380  | 1.6496          | 0.5478    | 0.6176 | 0.5806 | 0.6796   |
| No log        | 39.0  | 390  | 1.6083          | 0.5665    | 0.6144 | 0.5895 | 0.6913   |
| No log        | 40.0  | 400  | 1.5588          | 0.5719    | 0.6239 | 0.5968 | 0.6977   |
| No log        | 41.0  | 410  | 1.6280          | 0.5578    | 0.6328 | 0.5929 | 0.6928   |
| No log        | 42.0  | 420  | 1.5925          | 0.5842    | 0.6112 | 0.5974 | 0.7023   |
| No log        | 43.0  | 430  | 1.5921          | 0.5810    | 0.6204 | 0.6001 | 0.6981   |
| No log        | 44.0  | 440  | 1.6152          | 0.5740    | 0.6207 | 0.5964 | 0.6917   |
| No log        | 45.0  | 450  | 1.6629          | 0.5634    | 0.6283 | 0.5941 | 0.6853   |
| No log        | 46.0  | 460  | 1.6112          | 0.5829    | 0.6214 | 0.6015 | 0.7021   |
| No log        | 47.0  | 470  | 1.6214          | 0.5761    | 0.6258 | 0.5999 | 0.6982   |
| No log        | 48.0  | 480  | 1.6216          | 0.5953    | 0.6119 | 0.6034 | 0.7023   |
| No log        | 49.0  | 490  | 1.6592          | 0.5809    | 0.6163 | 0.5981 | 0.6962   |
| 0.4349        | 50.0  | 500  | 1.6796          | 0.5603    | 0.6489 | 0.6014 | 0.6947   |
| 0.4349        | 51.0  | 510  | 1.6835          | 0.5967    | 0.6001 | 0.5984 | 0.6933   |
| 0.4349        | 52.0  | 520  | 1.6615          | 0.5832    | 0.6553 | 0.6171 | 0.6999   |
| 0.4349        | 53.0  | 530  | 1.6553          | 0.5778    | 0.6565 | 0.6147 | 0.6970   |
| 0.4349        | 54.0  | 540  | 1.6980          | 0.5946    | 0.6004 | 0.5975 | 0.6888   |
| 0.4349        | 55.0  | 550  | 1.6484          | 0.5694    | 0.6356 | 0.6007 | 0.6960   |
| 0.4349        | 56.0  | 560  | 1.6996          | 0.5902    | 0.6293 | 0.6091 | 0.6941   |
| 0.4349        | 57.0  | 570  | 1.6973          | 0.5780    | 0.6337 | 0.6046 | 0.6947   |
| 0.4349        | 58.0  | 580  | 1.7212          | 0.5973    | 0.6087 | 0.6030 | 0.6969   |
| 0.4349        | 59.0  | 590  | 1.7086          | 0.5791    | 0.6435 | 0.6096 | 0.6976   |
| 0.4349        | 60.0  | 600  | 1.6767          | 0.5845    | 0.6233 | 0.6033 | 0.6996   |
| 0.4349        | 61.0  | 610  | 1.6744          | 0.5886    | 0.6201 | 0.6039 | 0.6993   |
| 0.4349        | 62.0  | 620  | 1.6783          | 0.5989    | 0.6286 | 0.6134 | 0.6999   |
| 0.4349        | 63.0  | 630  | 1.6958          | 0.5936    | 0.6489 | 0.6200 | 0.7019   |
| 0.4349        | 64.0  | 640  | 1.7297          | 0.5806    | 0.6286 | 0.6037 | 0.6941   |
| 0.4349        | 65.0  | 650  | 1.7373          | 0.5804    | 0.6540 | 0.6150 | 0.6961   |
| 0.4349        | 66.0  | 660  | 1.7579          | 0.5818    | 0.6404 | 0.6097 | 0.6941   |
| 0.4349        | 67.0  | 670  | 1.7654          | 0.5889    | 0.6369 | 0.6120 | 0.6971   |
| 0.4349        | 68.0  | 680  | 1.7649          | 0.5846    | 0.6515 | 0.6162 | 0.6953   |
| 0.4349        | 69.0  | 690  | 1.7294          | 0.5940    | 0.6445 | 0.6182 | 0.6999   |
| 0.4349        | 70.0  | 700  | 1.7256          | 0.5871    | 0.6511 | 0.6175 | 0.7021   |
| 0.4349        | 71.0  | 710  | 1.7303          | 0.5889    | 0.6518 | 0.6187 | 0.7029   |
| 0.4349        | 72.0  | 720  | 1.7391          | 0.5994    | 0.6334 | 0.6159 | 0.7023   |
| 0.4349        | 73.0  | 730  | 1.7270          | 0.5838    | 0.6448 | 0.6128 | 0.6999   |
| 0.4349        | 74.0  | 740  | 1.7357          | 0.6060    | 0.6324 | 0.6189 | 0.7035   |
| 0.4349        | 75.0  | 750  | 1.7210          | 0.6030    | 0.6362 | 0.6192 | 0.7036   |
| 0.4349        | 76.0  | 760  | 1.7575          | 0.5903    | 0.6473 | 0.6175 | 0.6990   |
| 0.4349        | 77.0  | 770  | 1.7530          | 0.5859    | 0.6416 | 0.6125 | 0.6958   |
| 0.4349        | 78.0  | 780  | 1.7395          | 0.5865    | 0.6445 | 0.6141 | 0.6988   |
| 0.4349        | 79.0  | 790  | 1.7432          | 0.5900    | 0.6575 | 0.6219 | 0.7025   |
| 0.4349        | 80.0  | 800  | 1.7497          | 0.5957    | 0.6556 | 0.6242 | 0.7039   |
| 0.4349        | 81.0  | 810  | 1.7590          | 0.6003    | 0.6467 | 0.6226 | 0.7040   |
| 0.4349        | 82.0  | 820  | 1.7641          | 0.5979    | 0.6413 | 0.6189 | 0.7019   |
| 0.4349        | 83.0  | 830  | 1.7632          | 0.6103    | 0.6407 | 0.6251 | 0.7070   |
| 0.4349        | 84.0  | 840  | 1.7602          | 0.6082    | 0.6420 | 0.6246 | 0.7066   |
| 0.4349        | 85.0  | 850  | 1.7697          | 0.6014    | 0.6458 | 0.6228 | 0.7051   |
| 0.4349        | 86.0  | 860  | 1.7828          | 0.5945    | 0.6397 | 0.6163 | 0.7001   |
| 0.4349        | 87.0  | 870  | 1.7834          | 0.6005    | 0.6369 | 0.6182 | 0.7005   |
| 0.4349        | 88.0  | 880  | 1.7760          | 0.5966    | 0.6388 | 0.6170 | 0.7013   |
| 0.4349        | 89.0  | 890  | 1.7757          | 0.5942    | 0.6426 | 0.6174 | 0.7021   |
| 0.4349        | 90.0  | 900  | 1.7755          | 0.5946    | 0.6442 | 0.6184 | 0.7025   |
| 0.4349        | 91.0  | 910  | 1.7778          | 0.5964    | 0.6432 | 0.6189 | 0.7012   |
| 0.4349        | 92.0  | 920  | 1.7757          | 0.5993    | 0.6435 | 0.6206 | 0.7019   |
| 0.4349        | 93.0  | 930  | 1.7751          | 0.6014    | 0.6448 | 0.6223 | 0.7025   |
| 0.4349        | 94.0  | 940  | 1.7769          | 0.6024    | 0.6410 | 0.6211 | 0.7025   |
| 0.4349        | 95.0  | 950  | 1.7791          | 0.6026    | 0.6394 | 0.6204 | 0.7020   |
| 0.4349        | 96.0  | 960  | 1.7862          | 0.6016    | 0.6381 | 0.6193 | 0.7012   |
| 0.4349        | 97.0  | 970  | 1.7876          | 0.5985    | 0.6410 | 0.6190 | 0.7007   |
| 0.4349        | 98.0  | 980  | 1.7882          | 0.5976    | 0.6404 | 0.6182 | 0.7012   |
| 0.4349        | 99.0  | 990  | 1.7870          | 0.5988    | 0.6413 | 0.6193 | 0.7014   |
| 0.0052        | 100.0 | 1000 | 1.7866          | 0.5993    | 0.6416 | 0.6197 | 0.7016   |


### Framework versions

- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1