Update README.md
Browse files
README.md
CHANGED
|
@@ -50,13 +50,60 @@ parameters:
|
|
| 50 |
dtype: bfloat16
|
| 51 |
```
|
| 52 |
|
| 53 |
-
### Key Parameters
|
| 54 |
|
| 55 |
- **Self-Attention Filtering** (`self_attn`): Controls the blending extent across self-attention layers, allowing for a dynamic mix between the two source models.
|
| 56 |
- **MLP Filtering** (`mlp`): Adjusts the balance within the Multi-Layer Perceptrons, fine-tuning the model’s neural network layers for optimal performance.
|
| 57 |
- **Global Weight (`t.value`)**: Sets a general interpolation factor for all unspecified layers, ensuring an equal contribution from both models.
|
| 58 |
- **Data Type (`dtype`)**: Utilizes `bfloat16` to maintain computational efficiency while preserving high precision.
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
## 🎯 Use Case & Applications
|
| 61 |
|
| 62 |
**Qwen-2.5-Aether-SlerpFusion-7B** excels in scenarios that require both robust language understanding and specialized task performance. This merged model is ideal for:
|
|
|
|
| 50 |
dtype: bfloat16
|
| 51 |
```
|
| 52 |
|
| 53 |
+
### 🔑 Key Parameters
|
| 54 |
|
| 55 |
- **Self-Attention Filtering** (`self_attn`): Controls the blending extent across self-attention layers, allowing for a dynamic mix between the two source models.
|
| 56 |
- **MLP Filtering** (`mlp`): Adjusts the balance within the Multi-Layer Perceptrons, fine-tuning the model’s neural network layers for optimal performance.
|
| 57 |
- **Global Weight (`t.value`)**: Sets a general interpolation factor for all unspecified layers, ensuring an equal contribution from both models.
|
| 58 |
- **Data Type (`dtype`)**: Utilizes `bfloat16` to maintain computational efficiency while preserving high precision.
|
| 59 |
|
| 60 |
+
### 🗣️ Inference
|
| 61 |
+
|
| 62 |
+
Below is an example of how to load and use the model for text generation:
|
| 63 |
+
|
| 64 |
+
```python
|
| 65 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 66 |
+
import torch
|
| 67 |
+
|
| 68 |
+
# Define the model name
|
| 69 |
+
model_name = "ZeroXClem/Qwen-2.5-Aether-SlerpFusion-7B"
|
| 70 |
+
|
| 71 |
+
# Load the tokenizer
|
| 72 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 73 |
+
|
| 74 |
+
# Load the model
|
| 75 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 76 |
+
model_name,
|
| 77 |
+
torch_dtype=torch.bfloat16,
|
| 78 |
+
device_map="auto"
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
# Initialize the pipeline
|
| 82 |
+
text_generator = pipeline(
|
| 83 |
+
"text-generation",
|
| 84 |
+
model=model,
|
| 85 |
+
tokenizer=tokenizer,
|
| 86 |
+
torch_dtype=torch.bfloat16,
|
| 87 |
+
device_map="auto"
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
# Define the input prompt
|
| 91 |
+
prompt = "Explain the significance of artificial intelligence in modern healthcare."
|
| 92 |
+
|
| 93 |
+
# Generate the output
|
| 94 |
+
outputs = text_generator(
|
| 95 |
+
prompt,
|
| 96 |
+
max_new_tokens=150,
|
| 97 |
+
do_sample=True,
|
| 98 |
+
temperature=0.7,
|
| 99 |
+
top_k=50,
|
| 100 |
+
top_p=0.95
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
# Print the generated text
|
| 104 |
+
print(outputs[0]["generated_text"])
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
## 🎯 Use Case & Applications
|
| 108 |
|
| 109 |
**Qwen-2.5-Aether-SlerpFusion-7B** excels in scenarios that require both robust language understanding and specialized task performance. This merged model is ideal for:
|