Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,63 @@
|
|
| 1 |
---
|
|
|
|
| 2 |
license: other
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
library_name: transformers.js
|
| 3 |
license: other
|
| 4 |
+
tags:
|
| 5 |
+
- mobileclip
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
https://github.com/apple/ml-mobileclip with ONNX weights to be compatible with Transformers.js.
|
| 9 |
+
|
| 10 |
+
## Usage (Transformers.js)
|
| 11 |
+
|
| 12 |
+
If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@xenova/transformers) using:
|
| 13 |
+
```bash
|
| 14 |
+
npm i @xenova/transformers
|
| 15 |
+
```
|
| 16 |
+
|
| 17 |
+
**Example:** Perform zero-shot image classification.
|
| 18 |
+
```js
|
| 19 |
+
import {
|
| 20 |
+
AutoTokenizer,
|
| 21 |
+
CLIPTextModelWithProjection,
|
| 22 |
+
AutoProcessor,
|
| 23 |
+
CLIPVisionModelWithProjection,
|
| 24 |
+
RawImage,
|
| 25 |
+
dot,
|
| 26 |
+
softmax,
|
| 27 |
+
} from '@xenova/transformers';
|
| 28 |
+
|
| 29 |
+
const model_id = 'Xenova/mobileclip_blt';
|
| 30 |
+
|
| 31 |
+
// Load tokenizer and text model
|
| 32 |
+
const tokenizer = await AutoTokenizer.from_pretrained(model_id);
|
| 33 |
+
const text_model = await CLIPTextModelWithProjection.from_pretrained(model_id);
|
| 34 |
+
|
| 35 |
+
// Load processor and vision model
|
| 36 |
+
const processor = await AutoProcessor.from_pretrained(model_id);
|
| 37 |
+
const vision_model = await CLIPVisionModelWithProjection.from_pretrained(model_id, {
|
| 38 |
+
quantized: false, // NOTE: vision model is sensitive to quantization.
|
| 39 |
+
});
|
| 40 |
+
|
| 41 |
+
// Run tokenization
|
| 42 |
+
const texts = ['cats', 'dogs', 'birds'];
|
| 43 |
+
const text_inputs = tokenizer(texts, { padding: 'max_length', truncation: true });
|
| 44 |
+
|
| 45 |
+
// Compute text embeddings
|
| 46 |
+
const { text_embeds } = await text_model(text_inputs);
|
| 47 |
+
const normalized_text_embeds = text_embeds.normalize().tolist();
|
| 48 |
+
|
| 49 |
+
// Read image and run processor
|
| 50 |
+
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg';
|
| 51 |
+
const image = await RawImage.read(url);
|
| 52 |
+
const image_inputs = await processor(image);
|
| 53 |
+
|
| 54 |
+
// Compute vision embeddings
|
| 55 |
+
const { image_embeds } = await vision_model(image_inputs);
|
| 56 |
+
const normalized_image_embeds = image_embeds.normalize().tolist();
|
| 57 |
+
|
| 58 |
+
// Compute probabilities
|
| 59 |
+
const probabilities = normalized_image_embeds.map(
|
| 60 |
+
x => softmax(normalized_text_embeds.map(y => 100 * dot(x, y)))
|
| 61 |
+
);
|
| 62 |
+
console.log(probabilities); // [[ 0.9999057403656509, 0.00009141888000214805, 0.0000028407543469763894 ]]
|
| 63 |
+
```
|